终身会员
搜索
    上传资料 赚现金

    广西柳州市三年(2020-2022)中考数学真题分类汇编-03解答题

    立即下载
    加入资料篮
    广西柳州市三年(2020-2022)中考数学真题分类汇编-03解答题第1页
    广西柳州市三年(2020-2022)中考数学真题分类汇编-03解答题第2页
    广西柳州市三年(2020-2022)中考数学真题分类汇编-03解答题第3页
    还剩33页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广西柳州市三年(2020-2022)中考数学真题分类汇编-03解答题

    展开

    这是一份广西柳州市三年(2020-2022)中考数学真题分类汇编-03解答题,共36页。试卷主要包含了+22+|﹣4|,计算,解方程组,解分式方程,两点等内容,欢迎下载使用。


    广西柳州市三年(2020-2022)中考数学真题分类汇编-03解答题
    一.有理数的混合运算(共1小题)
    1.(2022•柳州)计算:3×(﹣1)+22+|﹣4|.
    二.实数的运算(共2小题)
    2.(2021•柳州)计算:|﹣3|﹣+1.
    3.(2020•柳州)计算:.
    三.解二元一次方程组(共1小题)
    4.(2022•柳州)解方程组:.
    四.解分式方程(共1小题)
    5.(2021•柳州)解分式方程:=.
    五.分式方程的应用(共1小题)
    6.(2022•柳州)习近平总书记在主持召开中央农村工作会议中指出:“坚持中国人的饭碗任何时候都要牢牢端在自己手中,饭碗主要装中国粮.”某粮食生产基地为了落实习近平总书记的重要讲话精神,积极扩大粮食生产规模,计划投入一笔资金购买甲、乙两种农机具,已知1件甲种农机具比1件乙种农机具多1万元,用15万元购买甲种农机具的数量和用10万元购买乙种农机具的数量相同.
    (1)求购买1件甲种农机具和1件乙种农机具各需多少万元?
    (2)若该粮食生产基地计划购买甲、乙两种农机具共20件,且购买的总费用不超过46万元,则甲种农机具最多能购买多少件?
    六.一元一次不等式的应用(共1小题)
    7.(2021•柳州)如今,柳州螺蛳粉已经成为名副其实的“国民小吃”,螺蛳粉小镇对A、B两种品牌的螺蛳粉举行展销活动.若购买20箱A品牌螺蛳粉和30箱B品牌螺蛳粉共需要4400元,购买10箱A品牌螺蛳粉和40箱B品牌螺蛳粉则需要4200元.
    (1)求A、B品牌螺蛳粉每箱售价各为多少元?
    (2)小李计划购买A、B品牌螺蛳粉共100箱,预算总费用不超过9200元,则A品牌螺蛳粉最多购买多少箱?
    七.解一元一次不等式组(共1小题)
    8.(2020•柳州)解不等式组请结合解题过程,完成本题的解答.
    (Ⅰ)解不等式①,得   ;
    (Ⅱ)解不等式②,得   ;
    (Ⅲ)把不等式①和②的解集在如图所示的数轴上表示出来:

    (Ⅳ)原不等式组的解集为   .
    八.反比例函数与一次函数的交点问题(共2小题)
    9.(2022•柳州)如图,在平面直角坐标系中,一次函数y=k1x+b(k1≠0)的图象与反比例函数y=(k2≠0)的图象相交于A(3,4),B(﹣4,m)两点.
    (1)求一次函数和反比例函数的解析式;
    (2)若点D在x轴上,位于原点右侧,且OA=OD,求△AOD的面积.

    10.(2020•柳州)如图,平行于y轴的直尺(部分)与反比例函数(x>0)的图象交于A、C两点,与x轴交于B、D两点,连接AC,点A、B对应直尺上的刻度分别为5、2,直尺的宽度BD=2,OB=2.设直线AC的解析式为y=kx+b.
    (1)请结合图象,直接写出:
    ①点A的坐标是   ;
    ②不等式的解集是   ;
    (2)求直线AC的解析式.

    九.二次函数综合题(共3小题)
    11.(2022•柳州)已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(m,0)两点,与y轴交于点C(0,5).
    (1)求b,c,m的值;
    (2)如图1,点D是抛物线上位于对称轴右侧的一个动点,且点D在第一象限内,过点D作x轴的平行线交抛物线于点E,作y轴的平行线交x轴于点G,过点E作EF⊥x轴,垂足为点F,当四边形DEFG的周长最大时,求点D的坐标;
    (3)如图2,点M是抛物线的顶点,将△MBC沿BC翻折得到△NBC,NB与y轴交于点Q,在对称轴上找一点P,使得△PQB是以QB为直角边的直角三角形,求出所有符合条件的点P的坐标.

    12.(2021•柳州)在平面直角坐标系xOy中,已知抛物线:y=ax2+bx+c交x轴于A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣).
    (1)求抛物线的函数解析式;
    (2)如图1,点D为第四象限抛物线上一点,连接OD,过点B作BE⊥OD,垂足为E,若BE=2OE,求点D的坐标;
    (3)如图2,点M为第四象限抛物线上一动点,连接AM,交BC于点N,连接BM,记△BMN的面积为S1,△ABN的面积为S2,求的最大值.

    13.(2020•柳州)如图①,在平面直角坐标系xOy中,抛物线y=x2﹣4x+a(a<0)与y轴交于点A,与x轴交于E、F两点(点E在点F的右侧),顶点为M.直线与x轴、y轴分别交于B、C两点,与直线AM交于点D.
    (1)求抛物线的对称轴;
    (2)在y轴右侧的抛物线上存在点P,使得以P、A、C、D为顶点的四边形是平行四边形,求a的值;
    (3)如图②,过抛物线顶点M作MN⊥x轴于N,连接ME,点Q为抛物线上任意一点,过点Q作QG⊥x轴于G,连接QE.当a=﹣5时,是否存在点Q,使得以Q、E、G为顶点的三角形与△MNE相似(不含全等)?若存在,求出点Q的坐标;若不存在,请说明理由.

    一十.全等三角形的判定(共1小题)
    14.(2020•柳州)如图,已知OC平分∠MON,点A、B分别在射线OM,ON上,且OA=OB.
    求证:△AOC≌△BOC.

    一十一.全等三角形的判定与性质(共1小题)
    15.(2022•柳州)如图,点A,D,C,F在同一条直线上,AB=DE,BC=EF.有下列三个条件:①AC=DF,②∠ABC=∠DEF,③∠ACB=∠DFE.
    (1)请在上述三个条件中选取一个条件,使得△ABC≌△DEF.
    你选取的条件为(填写序号)    (只需选一个条件,多选不得分),你判定△ABC≌△DEF的依据是    (填“SSS”或“SAS”或“ASA”或“AAS”);
    (2)利用(1)的结论△ABC≌△DEF.求证:AB∥DE.

    一十二.全等三角形的应用(共1小题)
    16.(2021•柳州)如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个点C,从点C不经过池塘可以直接到达点A和B,连接AC并延长到点D,使CD=CA,连接BC并延长到点E,使CE=CB,连接DE,那么量出DE的长就是A、B的距离,为什么?请结合解题过程,完成本题的证明.
    证明:在△DEC和△ABC中,

    ∴△DEC≌△ABC(SAS),
    ∴   .

    一十三.平行四边形的性质(共1小题)
    17.(2020•柳州)如图,已知▱ABCD的对角线AC、BD相交于点O,AD=12,BD=10,AC=26.
    (1)求△ADO的周长;
    (2)求证:△ADO是直角三角形.

    一十四.圆的综合题(共3小题)
    18.(2022•柳州)如图,已知AB是⊙O的直径,点E是⊙O上异于A,B的点,点F是的中点,连接AE,AF,BF,过点F作FC⊥AE交AE的延长线于点C,交AB的延长线于点D,∠ADC的平分线DG交AF于点G,交FB于点H.
    (1)求证:CD是⊙O的切线;
    (2)求sin∠FHG的值;
    (3)若GH=4,HB=2,求⊙O的直径.

    19.(2021•柳州)如图,四边形ABCD中,AD∥BC,AD⊥AB,AD=AB=1,DC=,以A为圆心,AD为半径作圆,延长CD交⊙A于点F,延长DA交⊙A于点E,连结BF,交DE于点G.
    (1)求证:BC为⊙A的切线;
    (2)求cos∠EDF的值;
    (3)求线段BG的长.

    20.(2020•柳州)如图,AB为⊙O的直径,C为⊙O上的一点,连接AC、BC,OD⊥BC于点E,交⊙O于点D,连接CD、AD,AD与BC交于点F,CG与BA的延长线交于点G.
    (1)求证:△ACD∽△CFD;
    (2)若∠CDA=∠GCA,求证:CG为⊙O的切线;
    (3)若sin∠CAD=,求tan∠CDA的值.

    一十五.解直角三角形的应用-方向角问题(共1小题)
    21.(2021•柳州)在一次海上救援中,两艘专业救助船A、B同时收到某事故渔船P的求救讯息,已知此时救助船B在A的正北方向,事故渔船P在救助船A的北偏西30°方向上,在救助船B的西南方向上,且事故渔船P与救助船A相距120海里.
    (1)求收到求救讯息时事故渔船P与救助船B之间的距离(结果保留根号);
    (2)求救助船A、B分别以40海里/小时,30海里/小时的速度同时出发,匀速直线前往事故渔船P处搜救,试通过计算判断哪艘船先到达.

    一十六.条形统计图(共1小题)
    22.(2021•柳州)为迎接中国共产党建党100周年,某校开展了以“不忘初心,缅怀先烈”为主题的读书活动,学校政教处对本校七年级学生五月份“阅读该主题相关书籍的读书量”(下面简称“读书量”)进行了随机抽样调查,并对所有随机抽取学生的“读书量”(单位:本)进行了统计,如图所示:
    (1)补全下面图1的统计图;
    (2)本次所抽取学生五月份“读书量”的众数为    ;
    (3)已知该校七年级有1200名学生,请你估计该校七年级学生中,五月份“读书量”不少于4本的学生人数.

    一十七.列表法与树状图法(共2小题)
    23.(2022•柳州)在习近平总书记视察广西、亲临柳州视察指导一周年之际,某校开展“紧跟伟大复兴领航人踔厉笃行”主题演讲比赛,演讲的题目有:《同甘共苦民族情》《民族团结一家亲,一起向未来》《画出最美同心圆》.赛前采用抽签的方式确定各班演讲题目,将演讲题目制成编号为A,B,C的3张卡片(如图所示,卡片除编号和内容外,其余完全相同).现将这3张卡片背面朝上,洗匀放好.

    (1)某班从3张卡片中随机抽取1张,抽到卡片C的概率为    ;
    (2)若七(1)班从3张卡片中随机抽取1张,记下题目后放回洗匀,再由七(2)班从中随机抽取1张,请用列表或画树状图的方法,求这两个班抽到不同卡片的概率.(这3张卡片分别用它们的编号A,B,C表示)

    24.(2020•柳州)共享经济已经进入人们的生活.小沈收集了自己感兴趣的4个共享经济领域的图标,共享出行、共享服务、共享物品、共享知识,制成编号为A、B、C、D的四张卡片(除字母和内容外,其余完全相同).现将这四张卡片背面朝上,洗匀放好.

    (1)小沈从中随机抽取一张卡片是“共享服务”的概率是   ;
    (2)小沈从中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请你用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率.(这四张卡片分别用它们的编号A、B、C、D表示)

    参考答案与试题解析
    一.有理数的混合运算(共1小题)
    1.(2022•柳州)计算:3×(﹣1)+22+|﹣4|.
    【解答】解:原式=﹣3+4+4
    =5.
    二.实数的运算(共2小题)
    2.(2021•柳州)计算:|﹣3|﹣+1.
    【解答】解:原式=3﹣3+1
    =1.
    3.(2020•柳州)计算:.
    【解答】解:
    =8﹣8+2×2
    =0+4
    =4.
    三.解二元一次方程组(共1小题)
    4.(2022•柳州)解方程组:.
    【解答】解:①+②得:3x=9,
    ∴x=3,
    将x=3代入②得:6+y=7,
    ∴y=1.
    ∴原方程组的解为:.
    四.解分式方程(共1小题)
    5.(2021•柳州)解分式方程:=.
    【解答】解:去分母得:x+3=2x,
    解得:x=3,
    检验:当x=3时,x(x+3)≠0,
    ∴分式方程的解为x=3.
    五.分式方程的应用(共1小题)
    6.(2022•柳州)习近平总书记在主持召开中央农村工作会议中指出:“坚持中国人的饭碗任何时候都要牢牢端在自己手中,饭碗主要装中国粮.”某粮食生产基地为了落实习近平总书记的重要讲话精神,积极扩大粮食生产规模,计划投入一笔资金购买甲、乙两种农机具,已知1件甲种农机具比1件乙种农机具多1万元,用15万元购买甲种农机具的数量和用10万元购买乙种农机具的数量相同.
    (1)求购买1件甲种农机具和1件乙种农机具各需多少万元?
    (2)若该粮食生产基地计划购买甲、乙两种农机具共20件,且购买的总费用不超过46万元,则甲种农机具最多能购买多少件?
    【解答】解:(1)设购买1件乙种农机具需要x万元,则购买1件甲种农机具需要(x+1)万元,
    依题意得:=,
    解得:x=2,
    经检验,x=2是原方程的解,且符合题意,
    ∴x+1=2+1=3.
    答:购买1件甲种农机具需要3万元,1件乙种农机具需要2万元.
    (2)设购买m件甲种农机具,则购买(20﹣m)件乙种农机具,
    依题意得:3m+2(20﹣m)≤46,
    解得:m≤6.
    答:甲种农机具最多能购买6件.
    六.一元一次不等式的应用(共1小题)
    7.(2021•柳州)如今,柳州螺蛳粉已经成为名副其实的“国民小吃”,螺蛳粉小镇对A、B两种品牌的螺蛳粉举行展销活动.若购买20箱A品牌螺蛳粉和30箱B品牌螺蛳粉共需要4400元,购买10箱A品牌螺蛳粉和40箱B品牌螺蛳粉则需要4200元.
    (1)求A、B品牌螺蛳粉每箱售价各为多少元?
    (2)小李计划购买A、B品牌螺蛳粉共100箱,预算总费用不超过9200元,则A品牌螺蛳粉最多购买多少箱?
    【解答】解:(1)设A品牌螺蛳粉每箱售价为x元,B品牌螺蛳粉每箱售价为y元,
    依题意得:,
    解得:.
    答:A品牌螺蛳粉每箱售价为100元,B品牌螺蛳粉每箱售价为80元.
    (2)设购买A品牌螺蛳粉m箱,则购买B品牌螺蛳粉(100﹣m)箱,
    依题意得:100m+80(100﹣m)≤9200,
    解得:m≤60.
    答:A品牌螺蛳粉最多购买60箱.
    七.解一元一次不等式组(共1小题)
    8.(2020•柳州)解不等式组请结合解题过程,完成本题的解答.
    (Ⅰ)解不等式①,得 x>﹣1 ;
    (Ⅱ)解不等式②,得 x≤2 ;
    (Ⅲ)把不等式①和②的解集在如图所示的数轴上表示出来:

    (Ⅳ)原不等式组的解集为 ﹣1<x≤2 .
    【解答】解:
    (Ⅰ)解不等式①,得x>﹣1;
    (Ⅱ)解不等式②,得x≤2;
    (Ⅲ)把不等式①和②的解集在如图所示的数轴上表示出来:

    (Ⅳ)原不等式的解集为﹣1<x≤2.
    故答案为:x>﹣1;x≤2;﹣1<x≤2.
    八.反比例函数与一次函数的交点问题(共2小题)
    9.(2022•柳州)如图,在平面直角坐标系中,一次函数y=k1x+b(k1≠0)的图象与反比例函数y=(k2≠0)的图象相交于A(3,4),B(﹣4,m)两点.
    (1)求一次函数和反比例函数的解析式;
    (2)若点D在x轴上,位于原点右侧,且OA=OD,求△AOD的面积.

    【解答】解:(1)∵反比例函数图象与一次函数图象相交于点A(3,4),B(﹣4,m).
    ∴4=,
    解得k2=12,
    ∴反比例函数解析式为y=,
    ∴m=,
    解得m=﹣3,
    ∴点B的坐标为(﹣4,﹣3),
    ∴,
    解得,
    ∴一次函数解析式为y=x+1;
    (2)∵A(3,4),
    ∴OA==5,
    ∴OA=OD,
    ∴OD=5,
    ∴△AOD的面积==10.
    10.(2020•柳州)如图,平行于y轴的直尺(部分)与反比例函数(x>0)的图象交于A、C两点,与x轴交于B、D两点,连接AC,点A、B对应直尺上的刻度分别为5、2,直尺的宽度BD=2,OB=2.设直线AC的解析式为y=kx+b.
    (1)请结合图象,直接写出:
    ①点A的坐标是 (2,3) ;
    ②不等式的解集是 2<x<4 ;
    (2)求直线AC的解析式.

    【解答】解:(1)①∵直尺平行于y轴,A、B对应直尺的刻度为5、2,且OB=2,
    ∴A(2,3)
    ②∵直尺的宽度BD=2,OB=2.
    ∴C的横坐标为4,
    ∴不等式的解集是2<x<4,
    故答案为(2,3); 2<x<4;
    (2)∵A在反比例函数y=图象上,
    ∴m=2×3=6,
    ∴反比例函数的解析式为y=,
    ∵C点在反比例函数y=图象上,
    ∴yc=,
    ∴C(4,),
    将A、C代入y=kx+b有解得,
    ∴直线AC的解析式为:y=+.
    九.二次函数综合题(共3小题)
    11.(2022•柳州)已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(m,0)两点,与y轴交于点C(0,5).
    (1)求b,c,m的值;
    (2)如图1,点D是抛物线上位于对称轴右侧的一个动点,且点D在第一象限内,过点D作x轴的平行线交抛物线于点E,作y轴的平行线交x轴于点G,过点E作EF⊥x轴,垂足为点F,当四边形DEFG的周长最大时,求点D的坐标;
    (3)如图2,点M是抛物线的顶点,将△MBC沿BC翻折得到△NBC,NB与y轴交于点Q,在对称轴上找一点P,使得△PQB是以QB为直角边的直角三角形,求出所有符合条件的点P的坐标.

    【解答】解:(1)把A(﹣1,0),C(0,5)代入y=﹣x2+bx+c,
    得,
    解得.
    ∴这个抛物线的解析式为:y=﹣x2+4x+5,
    令y=0,则﹣x2+4x+5=0,解得x1=5,x2=﹣1,
    ∴B(5,0),
    ∴m=5;

    (2)∵抛物线的解析式为:y=﹣x2+4x+5=﹣(x﹣2)2+9,
    ∴对称轴为x=2,
    设D(x,﹣x2+4x+5),
    ∵DE∥x轴,
    ∴E(4﹣x,﹣x2+4x+5),
    ∵过点D作x轴的平行线交抛物线于点E,作y轴的平行线交x轴于点G,过点E作EF⊥x轴,
    ∴四边形DEFG是矩形,
    ∴四边形DEFG的周长=2(﹣x2+4x+5)+2(x﹣4+x)=﹣2x2+12x+2=﹣2(x﹣3)2+20,
    ∴当x=3时,四边形DEFG的周长最大,
    ∴当四边形DEFG的周长最大时,点D的坐标为(3,8);

    (3)过点C作CH⊥对称轴于H,过点N作NK⊥y轴于K,

    ∴∠NKC=∠MHC=90°,
    由翻折得CN=CM,∠BCN=∠BCM,
    ∵B(5,0),C(0,5).
    ∴OB=OC,
    ∴∠OCB=∠OBC=45°,
    ∵CH⊥对称轴于H,
    ∴CH∥x轴,
    ∴∠BCH=45°,
    ∴∠BCH=∠OCB,
    ∴∠NCK=∠MCH,
    ∴△MCH≌△NCK(AAS),
    ∴NK=MH,CK=CH,
    ∵抛物线的解析式为:y=﹣x2+4x+5=﹣(x﹣2)2+9,
    ∴对称轴为x=2,M(2,9),
    ∴MH=9﹣5=4,CH=2,
    ∴NK=MH=4,CK=CH=2,
    ∴N(﹣4,3),
    设直线BN的解析式为y=mx+n,
    ∴,解得,
    ∴直线BN的解析式为y=﹣x+,
    ∴Q(0,),
    设P(2,p),
    ∴PQ2=22+(p﹣)2=p2﹣p+,
    BP2=(5﹣2)2p2=9+p2,
    BQ2=52+()2=25+,
    分两种情况:
    ①当∠BQP=90°时,BP2=PQ2+BQ2,
    ∴9+p2=p2﹣p++25+,解得p=,
    ∴点P的坐标为(2,);
    ②当∠QBP=90°时,P′Q2=BP′2+BQ2,
    ∴p2﹣p+=9+p2+25+,解得p=﹣9,
    ∴点P′的坐标为(2,﹣9).
    综上,所有符合条件的点P的坐标为(2,),(2,﹣9).
    12.(2021•柳州)在平面直角坐标系xOy中,已知抛物线:y=ax2+bx+c交x轴于A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣).
    (1)求抛物线的函数解析式;
    (2)如图1,点D为第四象限抛物线上一点,连接OD,过点B作BE⊥OD,垂足为E,若BE=2OE,求点D的坐标;
    (3)如图2,点M为第四象限抛物线上一动点,连接AM,交BC于点N,连接BM,记△BMN的面积为S1,△ABN的面积为S2,求的最大值.

    【解答】解:(1)依题意,设y=a(x+1)(x﹣3),
    代入C(0,﹣)得:a•1•(﹣3)=﹣,
    解得:a=,
    ∴y=(x+1)(x﹣3)=x2﹣x﹣;
    (2)∵BE=2OE,
    设OE为x,BE=2x,
    由勾股定理得:OE2+BE2=OB2,
    x2+4x2=9,
    解得:x1=,x2=﹣(舍),
    ∴OE=,BE=,
    过点E作TG平行于OB,T在y轴上,过B作BG⊥TG于G,

    ∴△ETO∽△OEB,
    ∴==,
    ∴OE2=OB•TE,
    ∴TE==,
    ∴OT==,
    ∴E(,﹣),
    ∴直线OE的解析式为y=﹣2x,
    ∵OE的延长线交抛物线于点D,
    ∴,
    解得:x1=1,x2=﹣3(舍),
    当x=1时,y=﹣2,
    ∴D(1,﹣2);
    (3)如图所示,延长BC于点F,AF∥y轴,过A点作AH⊥BF于点H,作MT∥y轴交BF于点T,过M点作MG⊥BF于点J,

    ∵AF∥MT,
    ∴∠AFH=∠MTJ,
    ∵AH⊥BF,MJ⊥BF,
    ∴∠AHF=∠MJT=90°,
    ∴△AFH∽△MJT,
    ∴=,
    ∵S1=NB•MJ,S2=NB•AH,
    ∴==,
    设直线BC的解析式为y=kx+b,将B,C两点代入得,

    解得:,
    ∴直线BC的解析式为y=x﹣,
    当x=﹣1时,y=•(﹣1)﹣=﹣2,
    ∴F(﹣1,﹣2),
    ∴AF=2,
    设M(x,x2﹣x﹣),
    ∴MT=x﹣﹣(x2﹣x﹣)=﹣(x﹣)2+,
    ∴a=﹣<0,
    ∴MTmax=,
    ∴=====.
    13.(2020•柳州)如图①,在平面直角坐标系xOy中,抛物线y=x2﹣4x+a(a<0)与y轴交于点A,与x轴交于E、F两点(点E在点F的右侧),顶点为M.直线与x轴、y轴分别交于B、C两点,与直线AM交于点D.
    (1)求抛物线的对称轴;
    (2)在y轴右侧的抛物线上存在点P,使得以P、A、C、D为顶点的四边形是平行四边形,求a的值;
    (3)如图②,过抛物线顶点M作MN⊥x轴于N,连接ME,点Q为抛物线上任意一点,过点Q作QG⊥x轴于G,连接QE.当a=﹣5时,是否存在点Q,使得以Q、E、G为顶点的三角形与△MNE相似(不含全等)?若存在,求出点Q的坐标;若不存在,请说明理由.

    【解答】解:(1)∵y=x2﹣4x+a=(x﹣2)2+a﹣4,
    ∴抛物线的对称轴为直线x=2;

    (2)由y=(x﹣2)2+a﹣4得:A(0,a),M(2,a﹣4),
    由y=x﹣a 得C(0,﹣a),
    设直线AM的解析式为y=kx+a,
    将M(2,a﹣4)代入y=kx+a中,得2k+a=a﹣4,
    解得k=﹣2,
    直线AM的解析式为y=﹣2x+a,
    联立方程组得,解得 ,
    ∴D(a,a),
    ∵a<0,
    ∴点D在第二象限,
    又点A与点C关于原点对称,
    ∴AC是以P、A、C、D为顶点的平行四边形的对角线,则点P与点D关于原点对称,
    即P(a,a),
    将点P(﹣a,a)代入抛物线y=x2﹣4x+a,解得a=或a=0(舍去),
    ∴a=;

    (3)存在,
    理由如下:当a=﹣5时,y=x2﹣4x﹣5=(x﹣2)2﹣9,此时M(2,﹣9),
    令y=0,即(x﹣2)2﹣9=0,解得x1=﹣1,x2=5,
    ∴点F(﹣1,0)E(5,0),
    ∴EN=FN=3 MN=9,
    设点Q(m,m2﹣4m﹣5),则G(m,0),
    ∴EG=|m﹣5|,QG=|m2﹣4m﹣5|,
    又△QEG与△MNE都是直角三角形,且∠MNE=∠QGE=90°,
    如图所示,需分两种情况进行讨论:

    i)当==3时,即=3,
    当m=2时点Q与点M重合,不符合题意,舍去,
    当m=﹣4时,此时Q坐标为点Q1(﹣4,27);
    ii)当===时,即=,
    解得m=或m=或m=5(舍去),
    当m=时,Q坐标为点Q2(,),
    当m=,Q坐标为点Q3(,),
    综上所述,点Q的坐标为(﹣4,27)或(,)或(,).
    一十.全等三角形的判定(共1小题)
    14.(2020•柳州)如图,已知OC平分∠MON,点A、B分别在射线OM,ON上,且OA=OB.
    求证:△AOC≌△BOC.

    【解答】证明:∵OC平分∠MON,
    ∴∠AOC=∠BOC,
    在△AOC和△BOC中,

    ∴△AOC≌△BOC(SAS).
    一十一.全等三角形的判定与性质(共1小题)
    15.(2022•柳州)如图,点A,D,C,F在同一条直线上,AB=DE,BC=EF.有下列三个条件:①AC=DF,②∠ABC=∠DEF,③∠ACB=∠DFE.
    (1)请在上述三个条件中选取一个条件,使得△ABC≌△DEF.
    你选取的条件为(填写序号)  ① (只需选一个条件,多选不得分),你判定△ABC≌△DEF的依据是  SSS (填“SSS”或“SAS”或“ASA”或“AAS”);
    (2)利用(1)的结论△ABC≌△DEF.求证:AB∥DE.

    【解答】(1)解:在△ABC和△DEF中,

    ∴△ABC≌△DEF(SSS),
    ∴在上述三个条件中选取一个条件,使得△ABC≌△DEF,
    选取的条件为①,判定△ABC≌△DEF的依据是SSS.
    故答案为:①,SSS;(答案不唯一).
    (2)证明:∵△ABC≌△DEF.
    ∴∠A=∠EDF,
    ∴AB∥DE.
    一十二.全等三角形的应用(共1小题)
    16.(2021•柳州)如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个点C,从点C不经过池塘可以直接到达点A和B,连接AC并延长到点D,使CD=CA,连接BC并延长到点E,使CE=CB,连接DE,那么量出DE的长就是A、B的距离,为什么?请结合解题过程,完成本题的证明.
    证明:在△DEC和△ABC中,

    ∴△DEC≌△ABC(SAS),
    ∴ DE=AB .

    【解答】证明:在△DEC和△ABC中,

    ∴△DEC≌△ABC(SAS),
    ∴DE=AB.
    故答案为:CA,∠DCE=∠ACB,CB,DE=AB.
    一十三.平行四边形的性质(共1小题)
    17.(2020•柳州)如图,已知▱ABCD的对角线AC、BD相交于点O,AD=12,BD=10,AC=26.
    (1)求△ADO的周长;
    (2)求证:△ADO是直角三角形.

    【解答】解:(1)∵四边形ABCD是平行四边形,
    ∴对角线AC与BD相互平分,
    ∴OA=OC=AC,OB=OD=BD,
    ∵AC=26,BD=10,
    ∴OA=13,OD=5,
    ∵AD=12,
    ∴△AOD的周长=5+12+13=30;
    (2)由(1)知 OA=13,OD=5,AD=12,
    ∵52+ 122=132 ,
    ∴在△AOD中,AD2+DO2=AO2 ,
    ∴△AOD是直角三角形.
    一十四.圆的综合题(共3小题)
    18.(2022•柳州)如图,已知AB是⊙O的直径,点E是⊙O上异于A,B的点,点F是的中点,连接AE,AF,BF,过点F作FC⊥AE交AE的延长线于点C,交AB的延长线于点D,∠ADC的平分线DG交AF于点G,交FB于点H.
    (1)求证:CD是⊙O的切线;
    (2)求sin∠FHG的值;
    (3)若GH=4,HB=2,求⊙O的直径.

    【解答】(1)证明:连接OF.
    ∵OA=OF,
    ∴∠OAF=∠OFA,
    ∵=,
    ∴∠CAF=∠FAB,
    ∴∠CAF=∠AFO,
    ∴OF∥AC,
    ∵AC⊥CD,
    ∴OF⊥CD,
    ∵OF是半径,
    ∴CD是⊙O的切线.

    (2)解:∵AB是直径,
    ∴∠AFB=90°,
    ∵OF⊥CD,
    ∴∠OFB=∠AFB=90°,
    ∴∠AFO=∠DFB,
    ∵∠OAF=∠OFA,
    ∴∠DFB=∠OAF,
    ∵GD平分∠ADF,
    ∴∠ADG=∠FDG,
    ∵∠FGH=∠OAF+∠ADG,∠FHG=∠DFB+∠FDG,
    ∴∠FGH=∠FHG=45°,
    ∴sin∠FHG=;

    (3)解:过点H作HM⊥DF于点M,HN⊥AD于点N.
    ∵HD平分∠ADF,
    ∴HM=HN,
    ∵===,
    ∵△FGH是等腰直角三角形,GH=4,
    ∴FH=FG=4,
    ∴==2,
    设DB=k,DF=2k,
    ∵∠FDB=∠ABF,∠DFB=∠DAF,
    ∴△DFB∽△DAF,
    ∴DF2=DB•DA,
    ∴AD=4k,
    ∵GD平分∠ADF,
    ∴==,
    ∴AG=8,
    ∵∠AFB=90°,AF=12,FB=6,
    ∴AB===6,
    ∴⊙O的直径为6.

    19.(2021•柳州)如图,四边形ABCD中,AD∥BC,AD⊥AB,AD=AB=1,DC=,以A为圆心,AD为半径作圆,延长CD交⊙A于点F,延长DA交⊙A于点E,连结BF,交DE于点G.
    (1)求证:BC为⊙A的切线;
    (2)求cos∠EDF的值;
    (3)求线段BG的长.

    【解答】(1)证明:∵AD⊥AB,
    ∴∠BAD=90°,
    ∵AD∥BC,
    ∴∠ABC=180°﹣∠BAD=90°,
    ∵AB=AD,
    ∴BC为⊙A的切线;

    (2)解:如图1,过点D作DH⊥BC于H,
    ∴∠DHB=90°,
    由(1)知,∠BAD=∠ABC=90°,
    ∴∠ABC=∠BAD=∠BHD=90°,
    ∴四边形ABHD为矩形,
    ∵AB=AD=1,
    ∴矩形ABHD是正方形,
    ∴BH=DH=AB=1,
    在Rt△DHC中,CD=,根据勾股定理得,CH==2,
    ∴cosC===,
    ∵AD∥BC,
    ∴∠EDF=∠C,
    ∴cos∠EDF=cosC=;

    (3)如图2,
    过点A作AM⊥DF于M,则DF=2DM,∠AMD=90°,
    在Rt△AMD中,AD=1,cos∠EDF=,
    ∴DM=AD•cos∠EDF=1×=,
    ∴DF=2DM=,
    ∴CF=DF+CD=+=,
    ∵AD∥BC,
    ∴△DFG∽△CFB,
    ∴,
    由(2)知,BC=1+2=3,
    ∴=,
    ∴DG=,
    ∴AG=DG﹣AD=,
    在Rt△BAG中,BG===.


    20.(2020•柳州)如图,AB为⊙O的直径,C为⊙O上的一点,连接AC、BC,OD⊥BC于点E,交⊙O于点D,连接CD、AD,AD与BC交于点F,CG与BA的延长线交于点G.
    (1)求证:△ACD∽△CFD;
    (2)若∠CDA=∠GCA,求证:CG为⊙O的切线;
    (3)若sin∠CAD=,求tan∠CDA的值.

    【解答】(1)证明:∵OD⊥BC,
    ∴,
    ∴∠CAD=∠FCD,
    又∵∠ADC=∠CDF,
    ∴△ACD∽△CFD;
    (2)证明:连接OC,如图1所示:
    ∵AB是⊙O的直径,
    ∴∠ACB=90°,
    ∴∠ABC+∠CAB=90°,
    ∵OB=OC,
    ∴∠OBC=∠OCB,
    ∵∠CDA=∠OBC,∠CDA=∠GCA,
    ∴∠OCB=∠GCA,
    ∴∠OCG=∠GCA+∠OCA=∠OCB+∠OCA=90°,
    ∴CG⊥OC,
    ∵OC是⊙O的半径,
    ∴CG是⊙O的切线;
    (3)解:连接BD,如图2所示:
    ∵∠CAD=∠CBD,
    ∵OD⊥BC,
    ∴sin∠CAD=sin∠CBD==,BE=CE,
    设DE=x,OD=OB=r,则OE=r﹣x,BD=3x
    在Rt△BDE中,BE===,
    ∴BC=2BE=,
    在Rt△OBE中,OE2+BE2=OB2,
    即(r﹣x)2+()2=r2,
    解得:r=x,
    ∴AB=2r=9x,
    在Rt△ABC中,AC2+BC2=AB2,
    ∴AC2+()2=(9x)2,
    ∴AC=7x或AC=﹣7x(舍去),
    ∴tan∠CDA=tan∠CBA===.


    一十五.解直角三角形的应用-方向角问题(共1小题)
    21.(2021•柳州)在一次海上救援中,两艘专业救助船A、B同时收到某事故渔船P的求救讯息,已知此时救助船B在A的正北方向,事故渔船P在救助船A的北偏西30°方向上,在救助船B的西南方向上,且事故渔船P与救助船A相距120海里.
    (1)求收到求救讯息时事故渔船P与救助船B之间的距离(结果保留根号);
    (2)求救助船A、B分别以40海里/小时,30海里/小时的速度同时出发,匀速直线前往事故渔船P处搜救,试通过计算判断哪艘船先到达.

    【解答】解:(1)作PC⊥AB于C,如图所示:
    则∠PCA=∠PCB=90°,
    由题意得:PA=120海里,∠A=30°,∠CBP=45°,
    在Rt△ACP中,∵∠CAP=30°,∠PCA=90°,
    ∴PC=PA=60海里,
    在Rt△BCP中,∵∠PCB=90°,∠CBP=45°,sin∠CBP=,
    ∴PB===60(海里),
    答:收到求救讯息时事故渔船P与救助船B之间的距离为60海里;
    (2)∵PA=120海里,PB=60海里,救助船A,B分别以40海里/小时、30海里/小时的速度同时出发,
    ∴救助船A所用的时间为=3(小时),救助船B所用的时间为=2(小时),
    ∵3>2,
    ∴救助船B先到达.

    一十六.条形统计图(共1小题)
    22.(2021•柳州)为迎接中国共产党建党100周年,某校开展了以“不忘初心,缅怀先烈”为主题的读书活动,学校政教处对本校七年级学生五月份“阅读该主题相关书籍的读书量”(下面简称“读书量”)进行了随机抽样调查,并对所有随机抽取学生的“读书量”(单位:本)进行了统计,如图所示:
    (1)补全下面图1的统计图;
    (2)本次所抽取学生五月份“读书量”的众数为  3 ;
    (3)已知该校七年级有1200名学生,请你估计该校七年级学生中,五月份“读书量”不少于4本的学生人数.

    【解答】解:(1)抽样调查的学生总数为:=50(人),
    “读书量”4本的人数所占的百分比是1﹣10%﹣10%﹣20%﹣40%=20%,
    “读书量”4本的人数有:50×20%=10(人),
    补全图1的统计图如下,

    (2)根据统计图可知众数为3,
    故答案为:3;
    (3)根据题意得,
    1200×(10%+20%)=360(人),
    答:估计该校七年级学生中,五月份“读书量”不少于4本的学生有360人.
    一十七.列表法与树状图法(共2小题)
    23.(2022•柳州)在习近平总书记视察广西、亲临柳州视察指导一周年之际,某校开展“紧跟伟大复兴领航人踔厉笃行”主题演讲比赛,演讲的题目有:《同甘共苦民族情》《民族团结一家亲,一起向未来》《画出最美同心圆》.赛前采用抽签的方式确定各班演讲题目,将演讲题目制成编号为A,B,C的3张卡片(如图所示,卡片除编号和内容外,其余完全相同).现将这3张卡片背面朝上,洗匀放好.

    (1)某班从3张卡片中随机抽取1张,抽到卡片C的概率为   ;
    (2)若七(1)班从3张卡片中随机抽取1张,记下题目后放回洗匀,再由七(2)班从中随机抽取1张,请用列表或画树状图的方法,求这两个班抽到不同卡片的概率.(这3张卡片分别用它们的编号A,B,C表示)

    【解答】解:(1)某班从3张卡片中随机抽取1张,抽到卡片C的概率为,
    故答案为:;
    (2)画树状图如下:

    共有9种等可能的结果,其中七(1)班和七(2)班抽到不同卡片的结果有6种,
    ∴这两个班抽到不同卡片的概率为=.
    24.(2020•柳州)共享经济已经进入人们的生活.小沈收集了自己感兴趣的4个共享经济领域的图标,共享出行、共享服务、共享物品、共享知识,制成编号为A、B、C、D的四张卡片(除字母和内容外,其余完全相同).现将这四张卡片背面朝上,洗匀放好.

    (1)小沈从中随机抽取一张卡片是“共享服务”的概率是  ;
    (2)小沈从中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请你用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率.(这四张卡片分别用它们的编号A、B、C、D表示)
    【解答】解:(1)∵有共享出行、共享服务、共享物品、共享知识,共四张卡片,
    ∴小沈从中随机抽取一张卡片是“共享服务”的概率是,
    故答案为:;
    (2)画树状图如图:

    共有12种等可能的结果数,其中两张卡片恰好是“共享出行”和“共享知识”的结果数为2,
    ∴抽到的两张卡片恰好是“共享出行”和“共享知识”的概率==.

    相关试卷

    广西梧州三年(2020-2022)中考数学真题分类汇编-03解答题:

    这是一份广西梧州三年(2020-2022)中考数学真题分类汇编-03解答题,共33页。试卷主要包含了÷2,,其中+|y+2|=0,运用方程或方程组解决实际问题,解方程,解不等式组等内容,欢迎下载使用。

    广西贵港市三年(2020-2022)中考数学真题分类汇编-03解答题:

    这是一份广西贵港市三年(2020-2022)中考数学真题分类汇编-03解答题,共42页。试卷主要包含了0﹣+6cs30°;,计算,,与x轴的正半轴相交于点B,两点等内容,欢迎下载使用。

    广西柳州市三年(2020-2022)中考数学真题分类汇编-02填空题:

    这是一份广西柳州市三年(2020-2022)中考数学真题分类汇编-02填空题,共13页。试卷主要包含了因式分解,计算等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        广西柳州市三年(2020-2022)中考数学真题分类汇编-03解答题
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map