2022年江苏省南通市启东市达标名校中考数学适应性模拟试题含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.在刚刚结束的中考英语听力、口语测试中,某班口语成绩情况如图所示,则下列说法正确的是( )
A.中位数是9 B.众数为16 C.平均分为7.78 D.方差为2
2.今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60m,若将短边增长到长边相等(长边不变),使扩大后的棣地的形状是正方形,则扩大后的绿地面积比原来增加1600,设扩大后的正方形绿地边长为xm,下面所列方程正确的是( )
A.x(x-60)=1600
B.x(x+60)=1600
C.60(x+60)=1600
D.60(x-60)=1600
3.下列各类数中,与数轴上的点存在一一对应关系的是( )
A.有理数 B.实数 C.分数 D.整数
4.某大学生利用课余时间在网上销售一种成本为50元/件的商品,每月的销售量y(件)与销售单价x(元/件)之间的函数关系式为y=–4x+440,要获得最大利润,该商品的售价应定为
A.60元 B.70元 C.80元 D.90元
5.小亮家1月至10月的用电量统计如图所示,这组数据的众数和中位数分别是( )
A.30和 20 B.30和25 C.30和22.5 D.30和17.5
6.实数a在数轴上的位置如图所示,则化简后为( )
A.7 B.﹣7 C.2a﹣15 D.无法确定
7.二元一次方程组的解是( )
A. B. C. D.
8.下列多边形中,内角和是一个三角形内角和的4倍的是( )
A.四边形 B.五边形 C.六边形 D.八边形
9.若一次函数y=(2m﹣3)x﹣1+m的图象不经过第三象限,则m的取值范图是( )
A.1<m< B.1≤m< C.1<m≤ D.1≤m≤
10.二次函数y=ax2+bx﹣2(a≠0)的图象的顶点在第三象限,且过点(1,0),设t=a﹣b﹣2,则t值的变化范围是( )
A.﹣2<t<0 B.﹣3<t<0 C.﹣4<t<﹣2 D.﹣4<t<0
二、填空题(共7小题,每小题3分,满分21分)
11.如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次变换,如果这样连续经过2018次变换后,等边△ABC的顶点C的坐标为_____.
12.函数中,自变量的取值范围是_____.
13.如图,在△ABC中,AD、BE分别是边BC、AC上的中线,AB=AC=5,cos∠C=,那么GE=_______.
14.某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A、B、C、D,并将统计结果绘制成两幅不完整的统计图.该年级共有700人,估计该年级足球测试成绩为D等的人数为_____人.
15.与直线平行的直线可以是__________(写出一个即可).
16.如果a+b=2,那么代数式(a﹣)÷的值是______.
17.一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是_____.
三、解答题(共7小题,满分69分)
18.(10分)如图①,在Rt△ABC中,∠ABC=90o,AB是⊙O的直径,⊙O交AC于点D,过点D的直线交BC于点E,交AB的延长线于点P,∠A=∠PDB.
(1)求证:PD是⊙O的切线;
(2)若AB=4,DA=DP,试求弧BD的长;
(3)如图②,点M是弧AB的中点,连结DM,交AB于点N.若tanA=,求的值.
19.(5分)已知抛物线y=x2﹣6x+9与直线y=x+3交于A,B两点(点A在点B的左侧),抛物线的顶点为C,直线y=x+3与x轴交于点D.
(1)求抛物线的顶点C的坐标及A,B两点的坐标;
(2)将抛物线y=x2﹣6x+9向上平移1个单位长度,再向左平移t(t>0)个单位长度得到新抛物线,若新抛物线的顶点E在△DAC内,求t的取值范围;
(3)点P(m,n)(﹣3<m<1)是抛物线y=x2﹣6x+9上一点,当△PAB的面积是△ABC面积的2倍时,求m,n的值.
20.(8分)在平面直角坐标系中,O为原点,点A(3,0),点B(0,4),把△ABO绕点A顺时针旋转,得△AB′O′,点B,O旋转后的对应点为B′,O.
(1)如图1,当旋转角为90°时,求BB′的长;
(2)如图2,当旋转角为120°时,求点O′的坐标;
(3)在(2)的条件下,边OB上的一点P旋转后的对应点为P′,当O′P+AP′取得最小值时,求点P′的坐标.(直接写出结果即可)
21.(10分)某校为选拔一名选手参加“美丽邵阳,我为家乡做代言”主题演讲比赛,经研究,按图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整).下表是李明、张华在选拔赛中的得分情况:
项目
选手
服装
普通话
主题
演讲技巧
李明
85
70
80
85
张华
90
75
75
80
结合以上信息,回答下列问题:求服装项目的权数及普通话项目对应扇形的圆心角大小;求李明在选拔赛中四个项目所得分数的众数和中位数;根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽邵阳,我为家乡做代言”主题演讲比赛,并说明理由.
22.(10分)已知抛物线过点,,求抛物线的解析式,并求出抛物线的顶点坐标.
23.(12分)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.求证:AD是⊙O的切线.若BC=8,tanB=,求⊙O 的半径.
24.(14分)某学校准备采购一批茶艺耗材和陶艺耗材.经查询,如果按照标价购买两种耗材,当购买茶艺耗材的数量是陶艺耗材数量的2倍时,购买茶艺耗材共需要18000元,购买陶艺耗材共需要12000元,且一套陶艺耗材单价比一套茶艺耗材单价贵150元.求一套茶艺耗材、一套陶艺耗材的标价分别是多少元?学校计划购买相同数量的茶艺耗材和陶艺耗材.商家告知,因为周年庆,茶艺耗材的单价在标价的基础上降价2元,陶艺耗材的单价在标价的基础降价150元,该校决定增加采购数量,实际购买茶艺耗材和陶艺耗材的数量在原计划基础上分别增加了2.5%和,结果在结算时发现,两种耗材的总价相等,求的值.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
根据中位数,众数,平均数,方差等知识即可判断;
【详解】
观察图象可知,共有50个学生,从低到高排列后,中位数是25位与26位的平均数,即为1.
故选A.
【点睛】
本题考查中位数,众数,平均数,方差的定义,解题的关键是熟练掌握基本知识,属于中考常考题型.
2、A
【解析】
试题分析:根据题意可得扩建的部分相当于一个长方形,这个长方形的长和宽分别为x米和(x-60)米,根据长方形的面积计算法则列出方程.
考点:一元二次方程的应用.
3、B
【解析】
根据实数与数轴上的点存在一一对应关系解答.
【详解】
实数与数轴上的点存在一一对应关系,
故选:B.
【点睛】
本题考查了实数与数轴上点的关系,每一个实数都可以用数轴上唯一的点来表示,反过来,数轴上的每个点都表示一个唯一的实数,也就是说实数与数轴上的点一一对应.
4、C
【解析】
设销售该商品每月所获总利润为w,
则w=(x–50)(–4x+440)=–4x2+640x–22000=–4(x–80)2+3600,
∴当x=80时,w取得最大值,最大值为3600,
即售价为80元/件时,销售该商品所获利润最大,故选C.
5、C
【解析】
将折线统计图中的数据从小到大重新排列后,根据中位数和众数的定义求解可得.
【详解】
将这10个数据从小到大重新排列为:10、15、15、20、20、25、25、30、30、30,
所以该组数据的众数为30、中位数为=22.5,
故选:C.
【点睛】
此题考查了众数与中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
6、C
【解析】
根据数轴上点的位置判断出a﹣4与a﹣11的正负,原式利用二次根式性质及绝对值的代数意义化简,去括号合并即可得到结果.
【详解】
解:根据数轴上点的位置得:5<a<10,
∴a﹣4>0,a﹣11<0,
则原式=|a﹣4|﹣|a﹣11|=a﹣4+a﹣11=2a﹣15,
故选:C.
【点睛】
此题考查了二次根式的性质与化简,以及实数与数轴,熟练掌握运算法则是解本题的关键.
7、B
【解析】
利用加减消元法解二元一次方程组即可得出答案
【详解】
解:①﹣②得到y=2,把y=2代入①得到x=4,
∴,
故选:B.
【点睛】
此题考查了解二元一次方程组,解方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.
8、C
【解析】
利用多边形的内角和公式列方程求解即可
【详解】
设这个多边形的边数为n.
由题意得:(n﹣2)×180°=4×180°.
解得:n=1.
答:这个多边形的边数为1.
故选C.
【点睛】
本题主要考查的是多边形的内角和公式,掌握多边形的内角和公式是解题的关键.
9、B
【解析】
根据一次函数的性质,根据不等式组即可解决问题;
【详解】
∵一次函数y=(2m-3)x-1+m的图象不经过第三象限,
∴,
解得1≤m<.
故选:B.
【点睛】
本题考查一次函数的图象与系数的关系等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.
10、D
【解析】
由二次函数的解析式可知,当x=1时,所对应的函数值y=a+b-2,把点(1,0)代入y=ax2+bx-2,a+b-2=0,然后根据顶点在第三象限,可以判断出a与b的符号,进而求出t=a-b-2的变化范围.
【详解】
解:∵二次函数y=ax2+bx-2的顶点在第三象限,且经过点(1,0)
∴该函数是开口向上的,a>0
∵y=ax2+bx﹣2过点(1,0),
∴a+b-2=0.
∵a>0,
∴2-b>0.
∵顶点在第三象限,
∴-<0.
∴b>0.
∴2-a>0.
∴0 ∴0 ∴t=a-b-2.
∴﹣4<t<0.
【点睛】
本题考查大小二次函数的图像,熟练掌握图像的性质是解题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、(﹣2016, +1)
【解析】
据轴对称判断出点C变换后在x轴上方,然后求出点C纵坐标,再根据平移的距离求出点A变换后的横坐标,最后写出即可.
【详解】
解:∵△ABC是等边三角形AB=3﹣1=2,
∴点C到x轴的距离为1+2×=+1,
横坐标为2,
∴C(2, +1),
第2018次变换后的三角形在x轴上方,
点C的纵坐标为+1,
横坐标为2﹣2018×1=﹣2016,
所以,点C的对应点C′的坐标是(﹣2016,+1)
故答案为:(﹣2016,+1)
【点睛】
本题考查坐标与图形变化,平移和轴对称变换,等边三角形的性质,读懂题目信息,确定出连续2018次这样的变换得到三角形在x轴上方是解题的关键.
12、
【解析】
根据被开方式是非负数列式求解即可.
【详解】
依题意,得,
解得:,
故答案为:.
【点睛】
本题考查了函数自变量的取值范围,函数有意义时字母的取值范围一般从几个方面考虑:①当函数解析式是整式时,字母可取全体实数;②当函数解析式是分式时,考虑分式的分母不能为0;③当函数解析式是二次根式时,被开方数为非负数.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.
13、
【解析】
过点E作EF⊥BC交BC于点F,分别求得AD=3,BD=CD=4,EF=,DF=2,BF=6,再结合△BGD∽△BEF即可.
【详解】
过点E作EF⊥BC交BC于点F.
∵AB=AC, AD为BC的中线 ∴AD⊥BC ∴EF为△ADC的中位线.
又∵cos∠C=,AB=AC=5,∴AD=3,BD=CD=4,EF=,DF=2
∴BF=6
∴在Rt△BEF中BE==,
又∵△BGD∽△BEF
∴,即BG=.
GE=BE-BG=
故答案为.
【点睛】
本题考查的知识点是三角形的相似,解题的关键是熟练的掌握三角形的相似.
14、1
【解析】
试题解析:∵总人数为14÷28%=50(人),
∴该年级足球测试成绩为D等的人数为(人).
故答案为:1.
15、y=-2x+5(答案不唯一)
【解析】
根据两条直线平行的条件:k相等,b不相等解答即可.
【详解】
解:如y=2x+1(只要k=2,b≠0即可,答案不唯一).
故答案为y=2x+1.(提示:满足的形式,且)
【点睛】
本题考查了两条直线相交或平行问题.直线y=kx+b,(k≠0,且k,b为常数),当k相同,且b不相等,图象平行;当k不同,且b相等,图象相交;当k,b都相同时,两条直线重合.
16、2
【解析】
分析:根据分式的运算法则即可求出答案.
详解:当a+b=2时,
原式=
=
=a+b
=2
故答案为:2
点睛:本题考查分式的运算,解题的关键熟练运用分式的运算法则,本题属于基础题型.
17、
【解析】
分析:根据概率的计算公式.颜色搭配总共有4种可能,分别列出搭配正确和搭配错误的可能,进而求出各自的概率即可.
详解:用A和a分别表示第一个有盖茶杯的杯盖和茶杯;
用B和b分别表示第二个有盖茶杯的杯盖和茶杯、经过搭配所能产生的结果如下:
Aa、Ab、Ba、Bb.
所以颜色搭配正确的概率是.
故答案为:.
点睛:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
三、解答题(共7小题,满分69分)
18、(1)见解析;(2);(3).
【解析】
(1)连结OD;由AB是⊙O的直径,得到∠ADB=90°,根据等腰三角形的性质得到∠ADO=∠A,∠BDO=∠ABD;得到∠PDO=90°,且D在圆上,于是得到结论;
(2)设∠A=x,则∠A=∠P=x,∠DBA=2x,在△ABD中,根据∠A+∠ABD=90o列方程求出x的值,进而可得到∠DOB=60o,然后根据弧长公式计算即可;
(3)连结OM,过D作DF⊥AB于点F,然后证明△OMN∽△FDN,根据相似三角形的性质求解即可.
【详解】
(1)连结OD,∵AB是⊙O的直径,∴∠ADB=90o,
∠A+∠ABD=90o,又∵OA=OB=OD,∴∠BDO=∠ABD,
又∵∠A=∠PDB,∴∠PDB+∠BDO=90o,即∠PDO=90o,
且D在圆上,∴PD是⊙O的切线.
(2)设∠A=x,
∵DA=DP,∴∠A=∠P=x,∴∠DBA=∠P+∠BDP=x+x=2x,
在△ABD中,
∠A+∠ABD=90o,x=2x=90o,即x=30o,
∴∠DOB=60o,∴弧BD长.
(3)连结OM,过D作DF⊥AB于点F,∵点M是的中点,
∴OM⊥AB,设BD=x,则AD=2x,AB==2OM,即OM=,
在Rt△BDF中,DF=,
由△OMN∽△FDN得.
【点睛】
本题是圆的综合题,考查了切线的判定,圆周角定理及其推论,三角形外角的性质,含30°角的直角三角形的性质,弧长的计算,弧弦圆心角的关系,相似三角形的判定与性质.熟练掌握切线的判定方法是解(1)的关键,求出∠A=30o是解(2)的关键,证明△OMN∽△FDN是解(3)的关键.
19、(1)C(2,0),A(1,4),B(1,9);(2)<t<5;(2)m=,∴n=.
【解析】
分析:(Ⅰ)将抛物线的一般式配方为顶点式即可求出点C的坐标,联立抛物线与直线的解析式即可求出A、B的坐标.
(Ⅱ)由题意可知:新抛物线的顶点坐标为(2﹣t,1),然后求出直线AC的解析式后,将点E的坐标分别代入直线AC与AD的解析式中即可求出t的值,从而可知新抛物线的顶点E在△DAC内,求t的取值范围.
(Ⅲ)直线AB与y轴交于点F,连接CF,过点P作PM⊥AB于点M,PN⊥x轴于点N,交DB于点G,由直线y=x+2与x轴交于点D,与y轴交于点F,得D(﹣2,0),F(0,2),易得CF⊥AB,△PAB的面积是△ABC面积的2倍,所以AB•PM=AB•CF,PM=2CF=1,从而可求出PG=3,利用点G在直线y=x+2上,P(m,n),所以G(m,m+2),所以PG=n﹣(m+2),所以n=m+4,由于P(m,n)在抛物线y=x2﹣1x+9上,联立方程从而可求出m、n的值.
详解:(I)∵y=x2﹣1x+9=(x﹣2)2,∴顶点坐标为(2,0).
联立,
解得:或;
(II)由题意可知:新抛物线的顶点坐标为(2﹣t,1),设直线AC的解析式为y=kx+b
将A(1,4),C(2,0)代入y=kx+b中,∴,
解得:,
∴直线AC的解析式为y=﹣2x+1.
当点E在直线AC上时,﹣2(2﹣t)+1=1,解得:t=.
当点E在直线AD上时,(2﹣t)+2=1,解得:t=5,
∴当点E在△DAC内时,<t<5;
(III)如图,直线AB与y轴交于点F,连接CF,过点P作PM⊥AB于点M,PN⊥x轴于点N,交DB于点G.
由直线y=x+2与x轴交于点D,与y轴交于点F,
得D(﹣2,0),F(0,2),∴OD=OF=2.
∵∠FOD=90°,∴∠OFD=∠ODF=45°.
∵OC=OF=2,∠FOC=90°,
∴CF==2,∠OFC=∠OCF=45°,
∴∠DFC=∠DFO+∠OFC=45°+45°=90°,∴CF⊥AB.
∵△PAB的面积是△ABC面积的2倍,∴AB•PM=AB•CF,
∴PM=2CF=1.
∵PN⊥x轴,∠FDO=45°,∴∠DGN=45°,∴∠PGM=45°.
在Rt△PGM中,sin∠PGM=, ∴PG===3.
∵点G在直线y=x+2上,P(m,n), ∴G(m,m+2).
∵﹣2<m<1,∴点P在点G的上方,∴PG=n﹣(m+2),∴n=m+4.
∵P(m,n)在抛物线y=x2﹣1x+9上,
∴m2﹣1m+9=n,∴m2﹣1m+9=m+4,解得:m=.
∵﹣2<m<1,∴m=不合题意,舍去,∴m=,∴n=m+4=.
点睛:本题是二次函数综合题,涉及待定系数法,解方程,勾股定理,三角形的面积公式,综合程度较高,需要学生综合运用所学知识.
20、(1)5;(2)O'(,);(3)P'(,).
【解析】
(1)先求出AB.利用旋转判断出△ABB'是等腰直角三角形,即可得出结论;
(2)先判断出∠HAO'=60°,利用含30度角的直角三角形的性质求出AH,OH,即可得出结论;
(3)先确定出直线O'C的解析式,进而确定出点P的坐标,再利用含30度角的直角三角形的性质即可得出结论.
【详解】
解:(1)∵A(3,0),B(0,4),∴OA=3,OB=4,∴AB=5,由旋转知,BA=B'A,∠BAB'=90°,∴△ABB'是等腰直角三角形,∴BB'=AB=5;
(2)如图2,过点O'作O'H⊥x轴于H,由旋转知,O'A=OA=3,∠OAO'=120°,∴∠HAO'=60°,∴∠HO'A=30°,∴AH=AO'=,OH=AH=,∴OH=OA+AH=,∴O'();
(3)由旋转知,AP=AP',∴O'P+AP'=O'P+AP.如图3,作A关于y轴的对称点C,连接O'C交y轴于P,∴O'P+AP=O'P+CP=O'C,此时,O'P+AP的值最小.
∵点C与点A关于y轴对称,∴C(﹣3,0).
∵O'(),∴直线O'C的解析式为y=x+,令x=0,∴y=,∴P(0,),∴O'P'=OP=,作P'D⊥O'H于D.
∵∠B'O'A=∠BOA=90°,∠AO'H=30°,∴∠DP'O'=30°,∴O'D=O'P'=,P'D=O'D=,∴DH=O'H﹣O'D=,O'H+P'D=,∴P'().
【点睛】
本题是几何变换综合题,考查了旋转的性质,等腰直角三角形的性质,含30度角的直角三角形的性质,构造出直角三角形是解答本题的关键.
21、(1)服装项目的权数是10%,普通话项目对应扇形的圆心角是72°;(2)众数是85,中位数是82.5;(3)选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛,理由见解析.
【解析】
(1)根据扇形图用1减去其它项目的权重可求得服装项目的权重,用360度乘以普通话项目的权重即可求得普通话项目对应扇形的圆心角大小;
(2)根据统计表中的数据可以求得李明在选拔赛中四个项目所得分数的众数和中位数;
(3)根据统计图和统计表中的数据可以分别计算出李明和张华的成绩,然后比较大小,即可解答本题.
【详解】
(1)服装项目的权数是:1﹣20%﹣30%﹣40%=10%,
普通话项目对应扇形的圆心角是:360°×20%=72°;
(2)明在选拔赛中四个项目所得分数的众数是85,中位数是:(80+85)÷2=82.5;
(3)李明得分为:85×10%+70×20%+80×30%+85×40%=80.5,
张华得分为:90×10%+75×20%+75×30%+80×40%=78.5,
∵80.5>78.5,
∴李明的演讲成绩好,
故选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛.
【点睛】
本题考查了扇形统计图、中位数、众数、加权平均数,明确题意,结合统计表和统计图找出所求问题需要的条件,运用数形结合的思想进行解答是解题的关键.
22、y=+2x;(-1,-1).
【解析】
试题分析:首先将两点代入解析式列出关于b和c的二元一次方程组,然后求出b和c的值,然后将抛物线配方成顶点式,求出顶点坐标.
试题解析:将点(0,0)和(1,3)代入解析式得:解得:
∴抛物线的解析式为y=+2x ∴y=+2x=-1 ∴顶点坐标为(-1,-1).
考点:待定系数法求函数解析式.
23、(1)证明见解析;(2).
【解析】
(1)连接OD,由OD=OB,利用等边对等角得到一对角相等,再由已知角相等,等量代换得到∠1=∠3,求出∠4为90°,即可得证;
(2)设圆的半径为r,利用锐角三角函数定义求出AB的长,再利用勾股定理列出关于r的方程,求出方程的解即可得到结果.
【详解】
(1)证明:连接,
,
,
,
,
在中,,
,
,
则为圆的切线;
(2)设圆的半径为,
在中,,
根据勾股定理得:,
,
在中,,
,
根据勾股定理得:,
在中,,即,
解得:.
【点睛】
此题考查了切线的判定与性质,以及勾股定理,熟练掌握切线的判定与性质是解本题的关键.
24、(1)购买一套茶艺耗材需要450元,购买一套陶艺耗材需要600元;(2)的值为95.
【解析】
(1)设购买一套茶艺耗材需要元,则购买一套陶艺耗材需要元,根据购买茶艺耗材的数量是陶艺耗材数量的2倍列方程求解即可;
(2)设今年原计划购买茶艺耗材和陶艺素材的数量均为,根据两种耗材的总价相等列方程求解即可.
【详解】
(1)设购买一套茶艺耗材需要元,则购买一套陶艺耗材需要元,根据题意,得.
解方程,得.
经检验,是原方程的解,且符合题意
.
答:购买一套茶艺耗材需要450元,购买一套陶艺耗材需要600元.
(2)设今年原计划购买茶艺耗材和陶艺素材的数量均为,由题意得:
整理,得
解方程,得,(舍去).
的值为95.
【点睛】
本题考查了分式方程的应用及一元二次方程的应用,找出等量关系,列出方程是解答本题的关键,列方程解决实际问题注意要检验与实际情况是否相符.
2023年江苏省南通市启东市中考数学三模试卷(含解析): 这是一份2023年江苏省南通市启东市中考数学三模试卷(含解析),共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江苏省淮安市淮阴区达标名校2022年中考数学适应性模拟试题含解析: 这是一份江苏省淮安市淮阴区达标名校2022年中考数学适应性模拟试题含解析,共22页。试卷主要包含了下列运算中,正确的是,抛物线y=3等内容,欢迎下载使用。
2022年苏州市吴江区达标名校中考数学适应性模拟试题含解析: 这是一份2022年苏州市吴江区达标名校中考数学适应性模拟试题含解析,共23页。试卷主要包含了下列实数中是无理数的是,已知二次函数等内容,欢迎下载使用。