2022年江苏省江阴市敔山湾实验校中考数学押题卷含解析
展开这是一份2022年江苏省江阴市敔山湾实验校中考数学押题卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,下列图形是中心对称图形的是,分式的值为0,则x的取值为,计算的值为等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.下列事件中,属于不确定事件的是( )
A.科学实验,前100次实验都失败了,第101次实验会成功
B.投掷一枚骰子,朝上面出现的点数是7点
C.太阳从西边升起来了
D.用长度分别是3cm,4cm,5cm的细木条首尾顺次相连可组成一个直角三角形
2.若一组数据1、、2、3、4的平均数与中位数相同,则不可能是下列选项中的( )
A.0 B.2.5 C.3 D.5
3.-2的绝对值是()
A.2 B.-2 C.±2 D.
4.已知二次函数y=x2﹣4x+m的图象与x轴交于A、B两点,且点A的坐标为(1,0),则线段AB的长为( )
A.1 B.2 C.3 D.4
5.下列图形是中心对称图形的是( )
A. B. C. D.
6.分式的值为0,则x的取值为( )
A.x=-3 B.x=3 C.x=-3或x=1 D.x=3或x=-1
7.空气的密度为0.00129g/cm3,0.00129这个数用科学记数法可表示为( )
A.0.129×10﹣2 B.1.29×10﹣2 C.1.29×10﹣3 D.12.9×10﹣1
8.下列几何体中,主视图和俯视图都为矩形的是( )
A. B. C. D.
9.如图,在△ABC中,AB=AC,AD和CE是高,∠ACE=45°,点F是AC的中点,AD与FE,CE分别交于点G、H,∠BCE=∠CAD,有下列结论:①图中存在两个等腰直角三角形;②△AHE≌△CBE;③BC•AD=AE2;④S△ABC=4S△ADF.其中正确的个数有( )
A.1 B.2 C.3 D.4
10.计算的值为( )
A. B.-4 C. D.-2
二、填空题(本大题共6个小题,每小题3分,共18分)
11.若2x+y=2,则4x+1+2y的值是_______.
12.一个多项式与的积为,那么这个多项式为 .
13.已知点A(x1,y1),B(x2,y2)在直线y=kx+b上,且直线经过第一、三、四象限,当x1<x2时,y1与y2的大小关系为______________.
14.如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若较短的直角边BC=5,将四个直角三角形中较长的直角边分别向外延长一倍,得到图2所示的“数学风车”,若△BCD的周长是30,则这个风车的外围周长是_____.
15.如图,这是一幅长为3m,宽为1m的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为___________________m1.
16.已知抛物线y=,那么抛物线在y轴右侧部分是_________(填“上升的”或“下降的”).
三、解答题(共8题,共72分)
17.(8分)如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C.
(1)求证:∠ACD=∠B;
(2)如图2,∠BDC的平分线分别交AC,BC于点E,F,求∠CEF的度数.
18.(8分)某市旅游部门统计了今年“五•一”放假期间该市A、B、C、D四个旅游景区的旅游人数,并绘制出如图所示的条形统计图和扇形统计图,根据图中的信息解答下列问题:
(1)求今年“五•一”放假期间该市这四个景点共接待游客的总人数;
(2)扇形统计图中景点A所对应的圆心角的度数是多少,请直接补全条形统计图;
(3)根据预测,明年“五•一”放假期间将有90万游客选择到该市的这四个景点旅游,请你估计有多少人会选择去景点D旅游?
19.(8分)如图,在中,,是角平分线,平分交于点,经过两点的交于点,交于点,恰为的直径.
求证:与相切;当时,求的半径.
20.(8分)如图,抛物线y=ax2+bx+c与x轴相交于点A(﹣3,0),B(1,0),与y轴相交于(0,﹣),顶点为P.
(1)求抛物线解析式;
(2)在抛物线是否存在点E,使△ABP的面积等于△ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由;
(3)坐标平面内是否存在点F,使得以A、B、P、F为顶点的四边形为平行四边形?直接写出所有符合条件的点F的坐标,并求出平行四边形的面积.
21.(8分)如图,AB是⊙O的直径,点C为⊙O上一点,经过C作CD⊥AB于点D,CF是⊙O的切线,过点A作AE⊥CF于E,连接AC.
(1)求证:AE=AD.
(2)若AE=3,CD=4,求AB的长.
22.(10分)如图,△ABC中AB=AC,请你利用尺规在BC边上求一点P,使△ABC~△PAC不写画法,(保留作图痕迹).
23.(12分)先化简,再求值:(x+1y)1﹣(1y+x)(1y﹣x)﹣1x1,其中x=+1,y=﹣1.
24.随着互联网的发展,同学们的学习习惯也有了改变,一些同学在做题遇到困难时,喜欢上网查找答案.针对这个问题,某校调查了部分学生对这种做法的意见(分为:赞成、无所谓、反对),并将调查结果绘制成图1和图2两个不完整的统计图.
请根据图中提供的信息,解答下列问题:此次抽样调查中,共调查了多少名学生?将图1补充完整;求出扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;根据抽样调查结果,请你估计该校1500名学生中有多少名学生持“无所谓”意见.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
根据事件发生的可能性大小判断相应事件的类型即可.
【详解】
解:A、是随机事件,故A符合题意;
B、是不可能事件,故B不符合题意;
C、是不可能事件,故C不符合题意;
D、是必然事件,故D不符合题意;
故选A.
【点睛】
本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的
概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不
发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
2、C
【解析】
解:这组数据1、a、2、1、4的平均数为:(1+a+2+1+4)÷5=(a+10)÷5=0.2a+2,
(1)将这组数据从小到大的顺序排列后为a,1,2,1,4,中位数是2,平均数是0.2a+2,
∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=2,解得a=0,符合排列顺序.
(2)将这组数据从小到大的顺序排列后为1,a,2,1,4,中位数是2,平均数是0.2a+2,
∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=2,解得a=0,不符合排列顺序.
(1)将这组数据从小到大的顺序排列后1,2,a,1,4,中位数是a,平均数是0.2a+2,
∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=a,解得a=2.5,符合排列顺序.
(4)将这组数据从小到大的顺序排列后为1,2,1,a,4,中位数是1,平均数是0.2a+2,
∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=1,解得a=5,不符合排列顺序.
(5)将这组数据从小到大的顺序排列为1,2,1,4,a,中位数是1,平均数是0.2a+2,
∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=1,解得a=5;符合排列顺序;
综上,可得:a=0、2.5或5,∴a不可能是1.
故选C.
【点睛】
本题考查中位数;算术平均数.
3、A
【解析】
根据绝对值的性质进行解答即可
【详解】
解:﹣1的绝对值是:1.
故选:A.
【点睛】
此题考查绝对值,难度不大
4、B
【解析】
先将点A(1,0)代入y=x2﹣4x+m,求出m的值,将点A(1,0)代入y=x2﹣4x+m,得到x1+x2=4,x1•x2=3,即可解答
【详解】
将点A(1,0)代入y=x2﹣4x+m,
得到m=3,
所以y=x2﹣4x+3,与x轴交于两点,
设A(x1,y1),b(x2,y2)
∴x2﹣4x+3=0有两个不等的实数根,
∴x1+x2=4,x1•x2=3,
∴AB=|x1﹣x2|= =2;
故选B.
【点睛】
此题考查抛物线与坐标轴的交点,解题关键在于将已知点代入.
5、B
【解析】
根据中心对称图形的概念,轴对称图形与中心对称图形是图形沿对称中心旋转180度后与原图重合,即可解题.
A、不是中心对称图形,故本选项错误;
B、是中心对称图形,故本选项正确;
C、不是中心对称图形,故本选项错误;
D、不是中心对称图形,故本选项错误.
故选B.
考点:中心对称图形.
【详解】
请在此输入详解!
6、A
【解析】
分式的值为2的条件是:(2)分子等于2;(2)分母不为2.两个条件需同时具备,缺一不可.据此可以解答本题.
【详解】
∵原式的值为2,
∴,
∴(x-2)(x+3)=2,即x=2或x=-3;
又∵|x|-2≠2,即x≠±2.
∴x=-3.
故选:A.
【点睛】
此题考查的是对分式的值为2的条件的理解,该类型的题易忽略分母不为2这个条件.
7、C
【解析】
试题分析:0.00129这个数用科学记数法可表示为1.29×10﹣1.故选C.
考点:科学记数法—表示较小的数.
8、B
【解析】
A、主视图为等腰三角形,俯视图为圆以及圆心,故A选项错误;
B、主视图为矩形,俯视图为矩形,故B选项正确;
C、主视图,俯视图均为圆,故C选项错误;
D、主视图为矩形,俯视图为三角形,故D选项错误.
故选:B.
9、C
【解析】
①图中有3个等腰直角三角形,故结论错误;
②根据ASA证明即可,结论正确;
③利用面积法证明即可,结论正确;
④利用三角形的中线的性质即可证明,结论正确.
【详解】
∵CE⊥AB,∠ACE=45°,
∴△ACE是等腰直角三角形,
∵AF=CF,
∴EF=AF=CF,
∴△AEF,△EFC都是等腰直角三角形,
∴图中共有3个等腰直角三角形,故①错误,
∵∠AHE+∠EAH=90°,∠DHC+∠BCE=90°,∠AHE=∠DHC,
∴∠EAH=∠BCE,
∵AE=EC,∠AEH=∠CEB=90°,
∴△AHE≌△CBE,故②正确,
∵S△ABC=BC•AD=AB•CE,AB=AC=AE,AE=CE,
∴BC•AD=CE2,故③正确,
∵AB=AC,AD⊥BC,
∴BD=DC,
∴S△ABC=2S△ADC,
∵AF=FC,
∴S△ADC=2S△ADF,
∴S△ABC=4S△ADF.
故选C.
【点睛】
本题考查相似三角形的判定和性质、等腰直角三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.
10、C
【解析】
根据二次根式的运算法则即可求出答案.
【详解】
原式=-3=-2,
故选C.
【点睛】
本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1
【解析】
分析:将原式化简成2(2x+y)+1,然后利用整体代入的思想进行求解得出答案.
详解:原式=2(2x+y)+1=2×2+1=1.
点睛:本题主要考查的是整体思想求解,属于基础题型.找到整体是解题的关键.
12、
【解析】
试题分析:依题意知
=
考点:整式运算
点评:本题难度较低,主要考查学生对整式运算中多项式计算知识点的掌握。同底数幂相乘除,指数相加减。
13、y1
直接利用一次函数的性质分析得出答案.
【详解】
解:∵直线经过第一、三、四象限,
∴y随x的增大而增大,
∵x1<x1,
∴y1与y1的大小关系为:y1<y1.
故答案为:y1
此题主要考查了一次函数图象上点的坐标特征,正确掌握一次函数增减性是解题关键.
14、71
【解析】
分析:由题意∠ACB为直角,利用勾股定理求得外围中一条边,又由AC延伸一倍,从而求得风车的一个轮子,进一步求得四个.
详解:依题意,设“数学风车”中的四个直角三角形的斜边长为x,AC=y,则
x2=4y2+52,
∵△BCD的周长是30,
∴x+2y+5=30
则x=13,y=1.
∴这个风车的外围周长是:4(x+y)=4×19=71.
故答案是:71.
点睛:本题考查了勾股定理在实际情况中的应用,注意隐含的已知条件来解答此类题.
15、1.4
【解析】
由概率估计图案在整副画中所占比例,再求出图案的面积.
【详解】
估计宣传画上世界杯图案的面积约为3×1×0.4=1.4m1.
故答案为1.4
【点睛】
本题考核知识点:几何概率. 解题关键点:由几何概率估计图案在整副画中所占比例.
16、上升的
【解析】
∵抛物线y=x2-1开口向上,对称轴为x=0 (y 轴),
∴在y 轴右侧部分抛物线呈上升趋势.
故答案为:上升的.
【点睛】
本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质.
三、解答题(共8题,共72分)
17、(1)详见解析;(2)∠CEF=45°.
【解析】
试题分析:(1)连接OC,根据切线的性质和直径所对的圆周角是直角得出∠DCO=∠ACB=90°,然后根据等角的余角相等即可得出结论;
(2)根据三角形的外角的性质证明∠CEF=∠CFE即可求解.
试题解析:
(1)证明:如图1中,连接OC.
∵OA=OC,∴∠1=∠2,
∵CD是⊙O切线,∴OC⊥CD,
∴∠DCO=90°,∴∠3+∠2=90°,
∵AB是直径,∴∠1+∠B=90°,
∴∠3=∠B.
(2)解:∵∠CEF=∠ECD+∠CDE,∠CFE=∠B+∠FDB,
∵∠CDE=∠FDB,∠ECD=∠B,∴∠CEF=∠CFE,
∵∠ECF=90°,
∴∠CEF=∠CFE=45°.
18、(1)60人;(2)144°,补全图形见解析;(3)15万人.
【解析】
(1)用B景点人数除以其所占百分比可得;
(2)用360°乘以A景点人数所占比例即可,根据各景点人数之和等于总人数求得C的人数即可补全条形图;
(3)用总人数乘以样本中D景点人数所占比例
【详解】
(1)今年“五•一”放假期间该市这四个景点共接待游客的总人数为18÷30%=60万人;
(2)扇形统计图中景点A所对应的圆心角的度数是360°×=144°,C景点人数为60﹣(24+18+10)=8万人,
补全图形如下:
(3)估计选择去景点D旅游的人数为90×=15(万人).
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
19、 (1)证明见解析;(2).
【解析】
(1)连接OM,证明OM∥BE,再结合等腰三角形的性质说明AE⊥BE,进而证明OM⊥AE;
(2)结合已知求出AB,再证明△AOM∽△ABE,利用相似三角形的性质计算.
【详解】
(1)连接OM,则OM=OB,
∴∠1=∠2,
∵BM平分∠ABC,
∴∠1=∠3,
∴∠2=∠3,
∴OM∥BC,
∴∠AMO=∠AEB,
在△ABC中,AB=AC,AE是角平分线,
∴AE⊥BC,
∴∠AEB=90°,
∴∠AMO=90°,
∴OM⊥AE,
∵点M在圆O上,
∴AE与⊙O相切;
(2)在△ABC中,AB=AC,AE是角平分线,
∴BE=BC,∠ABC=∠C,
∵BC=4,cosC=
∴BE=2,cos∠ABC=,
在△ABE中,∠AEB=90°,
∴AB==6,
设⊙O的半径为r,则AO=6-r,
∵OM∥BC,
∴△AOM∽△ABE,
∴∴,
∴,
解得,
∴的半径为.
【点睛】
本题考查了切线的判定;等腰三角形的性质;相似三角形的判定与性质;解直角三角形等知识,综合性较强,正确添加辅助线,熟练运用相关知识是解题的关键.
20、(1)y=x2+x﹣(2)存在,(﹣1﹣2,2)或(﹣1+2,2)(3)点F的坐标为(﹣1,2)、(3,﹣2)、(﹣5,﹣2),且平行四边形的面积为 1
【解析】
(1)设抛物线解析式为y=ax2+bx+c,把(﹣3,0),(1,0),(0,)代入求出a、b、c的值即可;(2)根据抛物线解析式可知顶点P的坐标,由两个三角形的底相同可得要使两个三角形面积相等则高相等,根据P点坐标可知E点纵坐标,代入解析式求出x的值即可;(3)分别讨论AB为边、AB为对角线两种情况求出F点坐标并求出面积即可;
【详解】
(1)设抛物线解析式为y=ax2+bx+c,将(﹣3,0),(1,0),(0,)代入抛物线解析式得,
解得:a=,b=1,c=﹣
∴抛物线解析式:y=x2+x﹣
(2)存在.
∵y=x2+x﹣=(x+1)2﹣2
∴P点坐标为(﹣1,﹣2)
∵△ABP的面积等于△ABE的面积,
∴点E到AB的距离等于2,
设E(a,2),
∴a2+a﹣=2
解得a1=﹣1﹣2,a2=﹣1+2
∴符合条件的点E的坐标为(﹣1﹣2,2)或(﹣1+2,2)
(3)∵点A(﹣3,0),点B(1,0),
∴AB=4
若AB为边,且以A、B、P、F为顶点的四边形为平行四边形
∴AB∥PF,AB=PF=4
∵点P坐标(﹣1,﹣2)
∴点F坐标为(3,﹣2),(﹣5,﹣2)
∴平行四边形的面积=4×2=1
若AB为对角线,以A、B、P、F为顶点的四边形为平行四边形
∴AB与PF互相平分
设点F(x,y)且点A(﹣3,0),点B(1,0),点P(﹣1,﹣2)
∴ ,
∴x=﹣1,y=2
∴点F(﹣1,2)
∴平行四边形的面积=×4×4=1
综上所述:点F的坐标为(﹣1,2)、(3,﹣2)、(﹣5,﹣2),且平行四边形的面积为1.
【点睛】
本题考查待定系数法求二次函数解析式及二次函数的几何应用,分类讨论并熟练掌握数形结合的数学思想方法是解题关键.
21、(1)证明见解析(2)
【解析】
(1)连接OC,根据垂直定义和切线性质定理证出△CAE≌△CAD(AAS),得AE=AD;(2)连接CB,由(1)得AD=AE=3,根据勾股定理得:AC=5,由cos∠EAC=,cos∠CAB==,∠EAC=∠CAB,得=.
【详解】
(1)证明:连接OC,如图所示,
∵CD⊥AB,AE⊥CF,
∴∠AEC=∠ADC=90°,
∵CF是圆O的切线,
∴CO⊥CF,即∠ECO=90°,
∴AE∥OC,
∴∠EAC=∠ACO,
∵OA=OC,
∴∠CAO=∠ACO,
∴∠EAC=∠CAO,
在△CAE和△CAD中,
,
∴△CAE≌△CAD(AAS),
∴AE=AD;
(2)解:连接CB,如图所示,
∵△CAE≌△CAD,AE=3,
∴AD=AE=3,
∴在Rt△ACD中,AD=3,CD=4,
根据勾股定理得:AC=5,
在Rt△AEC中,cos∠EAC==,
∵AB为直径,
∴∠ACB=90°,
∴cos∠CAB==,
∵∠EAC=∠CAB,
∴=,即AB=.
【点睛】
本题考核知识点:切线性质,锐角三角函数的应用. 解题关键点:由全等三角形性质得到线段相等,根据直角三角形性质得到相应等式.
22、见解析
【解析】
根据题意作∠CBA=∠CAP即可使得△ABC~△PAC.
【详解】
如图,作∠CBA=∠CAP,P点为所求.
【点睛】
此题主要考查相似三角形的尺规作图,解题的关键是作一个角与已知角相等.
23、﹣2
【解析】
【分析】先利用完全平方公式、平方差公式进行展开,然后合并同类项,最后代入x、y的值进行计算即可得.
【详解】原式=x1+2xy+2y1﹣(2y1﹣x1)﹣1x1
=x1+2xy+2y1﹣2y1+x1﹣1x1
=2xy,
当x=+1,y=﹣1时,
原式=2×(+1)×(﹣1)
=2×(3﹣2)
=﹣2.
【点睛】本题考查了整式的混合运算——化简求值,熟练掌握完全平方公式、平方差公式是解题的关键.
24、200名;见解析;;(4)375.
【解析】
根据统计图中的数据可以求得此次抽样调查中,共调查了多少名学生;
根据中的结果和统计图中的数据可以求得反对的人数,从而可以将条形统计图补充完整;
根据统计图中的数据可以求得扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;
根据统计图中的数据可以估计该校1500名学生中有多少名学生持“无所谓”意见.
【详解】
解:,
答:此次抽样调查中,共调查了200名学生;
反对的人数为:,
补全的条形统计图如右图所示;
扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数是:;
(4),
答:该校1500名学生中有375名学生持“无所谓”意见.
【点睛】
本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
相关试卷
这是一份江苏省江阴市敔山湾实验学校2023-2024学年九上数学期末经典模拟试题含答案,共8页。试卷主要包含了在平面直角坐标系中,点等内容,欢迎下载使用。
这是一份江苏省无锡市敔山湾实验校2022年中考数学五模试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,民族图案是数学文化中的一块瑰宝,下列运算正确的是等内容,欢迎下载使用。
这是一份江苏省无锡市敔山湾实验校2022年中考数学模拟试题含解析,共21页。