|试卷下载
搜索
    上传资料 赚现金
    2022年江苏省苏州市重点中学中考数学猜题卷含解析
    立即下载
    加入资料篮
    2022年江苏省苏州市重点中学中考数学猜题卷含解析01
    2022年江苏省苏州市重点中学中考数学猜题卷含解析02
    2022年江苏省苏州市重点中学中考数学猜题卷含解析03
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年江苏省苏州市重点中学中考数学猜题卷含解析

    展开
    这是一份2022年江苏省苏州市重点中学中考数学猜题卷含解析,共26页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.计算(﹣5)﹣(﹣3)的结果等于(  )
    A.﹣8 B.8 C.﹣2 D.2
    2.某小组7名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是(  )
    劳动时间(小时)
    3
    3.5
    4
    4.5
    人  数
    1
    1
    3
    2
    A.中位数是4,众数是4 B.中位数是3.5,众数是4
    C.平均数是3.5,众数是4 D.平均数是4,众数是3.5
    3.太原市出租车的收费标准是:白天起步价8元(即行驶距离不超过3km都需付8元车费),超过3km以后,每增加1km,加收1.6元(不足1km按1km计),某人从甲地到乙地经过的路程是xkm,出租车费为16元,那么x的最大值是(  )
    A.11 B.8 C.7 D.5
    4.北京故宫的占地面积达到720 000平方米,这个数据用科学记数法表示为(  )
    A.0.72×106平方米 B.7.2×106平方米
    C.72×104平方米 D.7.2×105平方米
    5.在平面直角坐标系中,将点 P (﹣4,2)绕原点O 顺时针旋转 90°,则其对应点Q 的坐标为( )
    A.(2,4) B.(2,﹣4) C.(﹣2,4) D.(﹣2,﹣4)
    6.若一元二次方程x2﹣2x+m=0有两个不相同的实数根,则实数m的取值范围是(  )
    A.m≥1 B.m≤1 C.m>1 D.m<1
    7.如图,Rt△ABC中,∠C=90°,∠A=35°,点D在边BC上,BD=2CD.把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=(  )

    A.35° B.60° C.70° D.70°或120°
    8.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是( )

    A.甲的速度是4km/h B.乙的速度是10km/h
    C.乙比甲晚出发1h D.甲比乙晚到B地3h
    9.在直角坐标系中,设一质点M自P0(1,0)处向上运动一个单位至P1(1,1),然后向左运动2个单位至P2处,再向下运动3个单位至P3处,再向右运动4个单位至P4处,再向上运动5个单位至P5处……,如此继续运动下去,设Pn(xn,yn),n=1,2,3,……,则x1+x2+……+x2018+x2019的值为(  )

    A.1 B.3 C.﹣1 D.2019
    10.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为( )
    A.x(x+1)=1035 B.x(x-1)=1035 C.x(x+1)=1035 D.x(x-1)=1035
    11.某射手在同一条件下进行射击,结果如下表所示:
    射击次数(n)
    10
    20
    50
    100
    200
    500
    ……
    击中靶心次数(m)
    8
    19
    44
    92
    178
    451
    ……
    击中靶心频率()
    0.80
    0.95
    0.88
    0.92
    0.89
    0.90
    ……
    由此表推断这个射手射击1次,击中靶心的概率是( )
    A.0.6 B.0.7 C.0.8 D.0.9
    12.如图,等边△ABC的边长为4,点D,E分别是BC,AC的中点,动点M从点A向点B匀速运动,同时动点N沿B﹣D﹣E匀速运动,点M,N同时出发且运动速度相同,点M到点B时两点同时停止运动,设点M走过的路程为x,△AMN的面积为y,能大致刻画y与x的函数关系的图象是(  )

    A. B.
    C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.已知点A(x1,y1),B(x2,y2)在直线y=kx+b上,且直线经过第一、三、四象限,当x1<x2时,y1与y2的大小关系为______________.
    14.如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=EF,则AB的长为_____.

    15.如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD=_________.

    16.如图,已知AE∥BD,∠1=130°,∠2=28°,则∠C的度数为____.

    17.若,,则代数式的值为__________.
    18.如图,点E是正方形ABCD的边CD上一点,以A为圆心,AB为半径的弧与BE交于点F,则∠EFD=_____°.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)为了解某校初二学生每周上网的时间,两位学生进行了抽样调查.小丽调查了初二电脑爱好者中40名学生每周上网的时间;小杰从全校400名初二学生中随机抽取了40名学生,调查了每周上网的时间.小丽与小杰整理各自样本数据,如下表所示.
    时间段(小时/周)
    小丽抽样(人数)
    小杰抽样(人数)
    0~1
    6
    22
    1~2
    10
    10
    2~3
    16
    6
    3~4
    8
    2
    (1)你认为哪位学生抽取的样本不合理?请说明理由.专家建议每周上网2小时以上(含2小时)的学生应适当减少上网的时间,估计该校全体初二学生中有多少名学生应适当减少上网的时间.
    20.(6分)如图,抛物线y=ax2﹣2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A坐标为(4,0).
    (1)求该抛物线的解析式;
    (2)抛物线的顶点为N,在x轴上找一点K,使CK+KN最小,并求出点K的坐标;
    (3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
    (4)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

    21.(6分)为上标保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:
    设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围;求出最低费用,并说明费用最低时的调配方案.
    22.(8分)如图,将等腰直角三角形纸片ABC对折,折痕为CD.展平后,再将点B折叠在边AC上(不与A、C重合),折痕为EF,点B在AC上的对应点为M,设CD与EM交于点P,连接PF.已知BC=1.
    (1)若M为AC的中点,求CF的长;
    (2)随着点M在边AC上取不同的位置,
    ①△PFM的形状是否发生变化?请说明理由;
    ②求△PFM的周长的取值范围.

    23.(8分)在以“关爱学生、安全第一”为主题的安全教育宣传月活动中,某学校为了了解本校学生的上学方式,在全校范围内随机抽查部分学生,了解到上学方式主要有:A:结伴步行、B:自行乘车、C:家人接送、D:其他方式,并将收集的数据整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列问题:

    (1)本次抽查的学生人数是多少人?
    (2)请补全条形统计图;请补全扇形统计图;
    (3)“自行乘车”对应扇形的圆心角的度数是  度;
    (4)如果该校学生有2000人,请你估计该校“家人接送”上学的学生约有多少人?
    24.(10分)勾股定理神秘而美妙,它的证法多样,其中的“面积法”给了李明灵感,他惊喜地发现;当两个全等的直角三角形如图(1)摆放时可以利用面积法”来证明勾股定理,过程如下

    如图(1)∠DAB=90°,求证:a2+b2=c2
    证明:连接DB,过点D作DF⊥BC交BC的延长线于点F,则DF=b-a
    S四边形ADCB=
    S四边形ADCB=
    ∴化简得:a2+b2=c2
    请参照上述证法,利用“面积法”完成如图(2)的勾股定理的证明,如图(2)中∠DAB=90°,求证:a2+b2=c2
    25.(10分)计算:|﹣|+(π﹣2017)0﹣2sin30°+3﹣1.
    26.(12分)如图,对称轴为直线的抛物线与x轴相交于A、B两点,其中A点的坐标为(-3,0).

    (1)求点B的坐标;
    (2)已知,C为抛物线与y轴的交点.
    ①若点P在抛物线上,且,求点P的坐标;
    ②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.
    27.(12分)如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.
    (1)求证:AH是⊙O的切线;
    (2)若OB=4,AC=6,求sin∠ACB的值;
    (3)若,求证:CD=DH.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】分析:减去一个数,等于加上这个数的相反数. 依此计算即可求解.
    详解:(-5)-(-3)=-1.
    故选:C.
    点睛:考查了有理数的减法,方法指引:①在进行减法运算时,首先弄清减数的符号; ②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号); 二是减数的性质符号(减数变相反数).
    2、A
    【解析】
    根据众数和中位数的概念求解.
    【详解】
    这组数据中4出现的次数最多,众数为4,
    ∵共有7个人,
    ∴第4个人的劳动时间为中位数,
    所以中位数为4,
    故选A.
    【点睛】
    本题考查众数与中位数的意义,一组数据中出现次数最多的数据叫做众数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
    3、B
    【解析】
    根据等量关系,即(经过的路程﹣3)×1.6+起步价2元≤1.列出不等式求解.
    【详解】
    可设此人从甲地到乙地经过的路程为xkm,
    根据题意可知:(x﹣3)×1.6+2≤1,
    解得:x≤2.
    即此人从甲地到乙地经过的路程最多为2km.
    故选B.
    【点睛】
    考查了一元一次方程的应用.关键是掌握正确理解题意,找出题目中的数量关系.
    4、D
    【解析】
    试题分析:把一个数记成a×10n(1≤a<10,n整数位数少1)的形式,叫做科学记数法.
    ∴此题可记为1.2×105平方米.
    考点:科学记数法
    5、A
    【解析】
    首先求出∠MPO=∠QON,利用AAS证明△PMO≌△ONQ,即可得到PM=ON,OM=QN,进而求出Q点坐标.
    【详解】
    作图如下,

    ∵∠MPO+∠POM=90°,∠QON+∠POM=90°,
    ∴∠MPO=∠QON,
    在△PMO和△ONQ中,
    ∵ ,
    ∴△PMO≌△ONQ,
    ∴PM=ON,OM=QN,
    ∵P点坐标为(﹣4,2),
    ∴Q点坐标为(2,4),
    故选A.
    【点睛】
    此题主要考查了旋转的性质,以及全等三角形的判定和性质,关键是掌握旋转后对应线段相等.
    6、D
    【解析】
    分析:根据方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.
    详解:∵方程有两个不相同的实数根,

    解得:m<1.
    故选D.
    点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.
    7、D
    【解析】
    ①当点B落在AB边上时,根据DB=DB1,即可解决问题,②当点B落在AC上时,在RT△DCB2中,根据∠C=90°,DB2=DB=2CD可以判定∠CB2D=30°,由此即可解决问题.
    【详解】

    ①当点B落在AB边上时,
    ∵,
    ∴,
    ∴,
    ②当点B落在AC上时,
    在中,
    ∵∠C=90°, ,
    ∴,
    ∴,
    故选D.
    【点睛】
    本题考查的知识点是旋转的性质,解题关键是考虑多种情况,进行分类讨论.
    8、C
    【解析】
    甲的速度是:20÷4=5km/h;
    乙的速度是:20÷1=20km/h;
    由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,
    故选C.
    9、C
    【解析】
    根据各点横坐标数据得出规律,进而得出x +x +…+x ;经过观察分析可得每4个数的和为2,把2019个数分为505组,即可得到相应结果.
    【详解】
    解:根据平面坐标系结合各点横坐标得出:x1、x2、x3、x4、x5、x6、x7、x8的值分别为:1,﹣1,﹣1,3,3,﹣3,﹣3,5;
    ∴x1+x2+…+x7=﹣1
    ∵x1+x2+x3+x4=1﹣1﹣1+3=2;
    x5+x6+x7+x8=3﹣3﹣3+5=2;

    x97+x98+x99+x100=2…
    ∴x1+x2+…+x2016=2×(2016÷4)=1.
    而x2017、x2018、x2019的值分别为:1009、﹣1009、﹣1009,
    ∴x2017+x2018+x2019=﹣1009,
    ∴x1+x2+…+x2018+x2019=1﹣1009=﹣1,
    故选C.
    【点睛】
    此题主要考查规律型:点的坐标,解题关键在于找到其规律
    10、B
    【解析】
    试题分析:如果全班有x名同学,那么每名同学要送出(x-1)张,共有x名学生,那么总共送的张数应该是x(x-1)张,即可列出方程.
    ∵全班有x名同学,
    ∴每名同学要送出(x-1)张;
    又∵是互送照片,
    ∴总共送的张数应该是x(x-1)=1.
    故选B
    考点:由实际问题抽象出一元二次方程.
    11、D
    【解析】
    观察表格的数据可以得到击中靶心的频率,然后用频率估计概率即可求解.
    【详解】
    依题意得击中靶心频率为0.90,
    估计这名射手射击一次,击中靶心的概率约为0.90.
    故选:D.
    【点睛】
    此题主要考查了利用频率估计概率,首先通过实验得到事件的频率,然后用频率估计概率即可解决问题.
    12、A
    【解析】
    根据题意,将运动过程分成两段.分段讨论求出解析式即可.
    【详解】
    ∵BD=2,∠B=60°,
    ∴点D到AB距离为,
    当0≤x≤2时,
    y=;
    当2≤x≤4时,y=.
    根据函数解析式,A符合条件.
    故选A.
    【点睛】
    本题为动点问题的函数图象,解答关键是找到动点到达临界点前后的一般图形,分类讨论,求出函数关系式.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、y1 【解析】
    直接利用一次函数的性质分析得出答案.
    【详解】
    解:∵直线经过第一、三、四象限,
    ∴y随x的增大而增大,
    ∵x1<x1,
    ∴y1与y1的大小关系为:y1<y1.
    故答案为:y1 【点睛】
    此题主要考查了一次函数图象上点的坐标特征,正确掌握一次函数增减性是解题关键.
    14、3
    【解析】
    【分析】根据旋转的性质知AB=AE,在直角三角形ADE中根据勾股定理求得AE长即可得.
    【详解】∵四边形ABCD是矩形,∴∠D=90°,BC=AD=3,
    ∵将矩形ABCD绕点A逆时针旋转得到矩形AEFG,
    ∴EF=BC=3,AE=AB,
    ∵DE=EF,
    ∴AD=DE=3,
    ∴AE==3,
    ∴AB=3,
    故答案为3.
    【点睛】本题考查矩形的性质和旋转的性质,熟知旋转前后哪些线段是相等的是解题的关键.
    15、或
    【解析】
    根据裁开折叠之后平行四边形的面积可得CD的长度为2+4或2+.
    【详解】
    如图①,当四边形ABCE为平行四边形时,
    作AE∥BC,延长AE交CD于点N,过点B作BT⊥EC于点T.
    ∵AB=BC,
    ∴四边形ABCE是菱形.
    ∵∠BAD=∠BCD=90°,∠ABC=150°,
    ∴∠ADC=30°,∠BAN=∠BCE=30°,
    ∴∠NAD=60°,
    ∴∠AND=90°.
    设BT=x,则CN=x,BC=EC=2x.
    ∵四边形ABCE面积为2,
    ∴EC·BT=2,即2x×x=2,解得x=1,
    ∴AE=EC=2,EN= ,
    ∴AN=AE+EN=2+ ,
    ∴CD=AD=2AN=4+2.

    如图②,当四边形BEDF是平行四边形,
    ∵BE=BF,
    ∴平行四边形BEDF是菱形.
    ∵∠A=∠C=90°,∠ABC=150°,
    ∴∠ADB=∠BDC=15°.
    ∵BE=DE,
    ∴∠EBD=∠ADB=15°,
    ∴∠AEB=30°.
    设AB=y,则DE=BE=2y,AE=y.
    ∵四边形BEDF的面积为2,
    ∴AB·DE=2,即2y2=2,解得y=1,
    ∴AE=,DE=2,
    ∴AD=AE+DE=2+.
    综上所述,CD的值为4+2或2+.
    【点睛】
    考核知识点:平行四边形的性质,菱形判定和性质.
    16、22°
    【解析】
    由AE∥BD,根据平行线的性质求得∠CBD的度数,再由对顶角相等求得∠CDB的度数,继而利用三角形的内角和等于180°求得∠C的度数.
    【详解】
    解:∵AE∥BD,∠1=130°,∠2=28°,
    ∴∠CBD=∠1=130°,∠CDB=∠2=28°,
    ∴∠C=180°﹣∠CBD﹣∠CDB=180°﹣130°﹣28°=22°.
    故答案为22°
    【点睛】
    本题考查了平行线的性质,对顶角相等及三角形内角和定理.熟练运用相关知识是解决问题的关键.
    17、-12
    【解析】
    分析:对所求代数式进行因式分解,把,,代入即可求解.
    详解:,,

    故答案为:
    点睛:考查代数式的求值,掌握提取公因式法和公式法进行因式分解是解题的关键.
    18、45
    【解析】
    由四边形ABCD为正方形及半径相等得到AB=AF=AD,∠ABD=∠ADB=45°,利用等边对等角得到两对角相等,由四边形ABFD的内角和为360度,得到四个角之和为270,利用等量代换得到∠ABF+∠ADF=135°,进而确定出∠1+∠2=45°,由∠EFD为三角形DEF的外角,利用外角性质即可求出∠EFD的度数.
    【详解】
    ∵正方形ABCD,AF,AB,AD为圆A半径,
    ∴AB=AF=AD,∠ABD=∠ADB=45°,
    ∴∠ABF=∠AFB,∠AFD=∠ADF,
    ∵四边形ABFD内角和为360°,∠BAD=90°,
    ∴∠ABF+∠AFB+∠AFD+∠ADF=270°,
    ∴∠ABF+∠ADF=135°,
    ∵∠ABD=∠ADB=45°,即∠ABD+∠ADB=90°,
    ∴∠1+∠2=135°−90°=45°,
    ∵∠EFD为△DEF的外角,
    ∴∠EFD=∠1+∠2=45°.
    故答案为45
    【点睛】
    此题考查了切线的性质,四边形的内角和,等腰三角形的性质,以及正方形的性质,熟练掌握性质是解本题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)小丽;(2)80
    【解析】
    解:(1)小丽;因为她没有从全校初二学生中随机进行抽查,不具有随机性与代表性.
    (2).
    答:该校全体初二学生中有80名同学应适当减少上网的时间.
    20、(1)y=﹣;(1)点K的坐标为(,0);(2)点P的坐标为:(1+,1)或(1﹣,1)或(1+,2)或(1﹣,2).
    【解析】
    试题分析:(1)把A、C两点坐标代入抛物线解析式可求得a、c的值,可求得抛物线解析;
    (1)可求得点C关于x轴的对称点C′的坐标,连接C′N交x轴于点K,再求得直线C′K的解析式,可求得K点坐标;
    (2)过点E作EG⊥x轴于点G,设Q(m,0),可表示出AB、BQ,再证明△BQE≌△BAC,可表示出EG,可得出△CQE关于m的解析式,再根据二次函数的性质可求得Q点的坐标;
    (4)分DO=DF、FO=FD和OD=OF三种情况,分别根据等腰三角形的性质求得F点的坐标,进一步求得P点坐标即可.
    试题解析:(1)∵抛物线经过点C(0,4),A(4,0),
    ∴,解得 ,
    ∴抛物线解析式为y=﹣ x1+x+4;
    (1)由(1)可求得抛物线顶点为N(1, ),
    如图1,作点C关于x轴的对称点C′(0,﹣4),连接C′N交x轴于点K,则K点即为所求,

    设直线C′N的解析式为y=kx+b,把C′、N点坐标代入可得 ,解得 ,
    ∴直线C′N的解析式为y=x-4 ,
    令y=0,解得x= ,
    ∴点K的坐标为(,0);
    (2)设点Q(m,0),过点E作EG⊥x轴于点G,如图1,

    由﹣ x1+x+4=0,得x1=﹣1,x1=4,
    ∴点B的坐标为(﹣1,0),AB=6,BQ=m+1,
    又∵QE∥AC,∴△BQE≌△BAC,
    ∴ ,即 ,解得EG= ;
    ∴S△CQE=S△CBQ﹣S△EBQ=(CO-EG)·BQ=(m+1)(4-)
    = =-(m-1)1+2 .
    又∵﹣1≤m≤4,
    ∴当m=1时,S△CQE有最大值2,此时Q(1,0);
    (4)存在.在△ODF中,
    (ⅰ)若DO=DF,∵A(4,0),D(1,0),
    ∴AD=OD=DF=1.
    又在Rt△AOC中,OA=OC=4,
    ∴∠OAC=45°.
    ∴∠DFA=∠OAC=45°.
    ∴∠ADF=90°.
    此时,点F的坐标为(1,1).
    由﹣ x1+x+4=1,得x1=1+ ,x1=1﹣.
    此时,点P的坐标为:P1(1+,1)或P1(1﹣,1);
    (ⅱ)若FO=FD,过点F作FM⊥x轴于点M.

    由等腰三角形的性质得:OM=OD=1,
    ∴AM=2.
    ∴在等腰直角△AMF中,MF=AM=2.
    ∴F(1,2).
    由﹣ x1+x+4=2,得x1=1+,x1=1﹣.
    此时,点P的坐标为:P2(1+,2)或P4(1﹣,2);
    (ⅲ)若OD=OF,
    ∵OA=OC=4,且∠AOC=90°.
    ∴AC=4.
    ∴点O到AC的距离为1.
    而OF=OD=1<1,与OF≥1矛盾.
    ∴在AC上不存在点使得OF=OD=1.
    此时,不存在这样的直线l,使得△ODF是等腰三角形.
    综上所述,存在这样的直线l,使得△ODF是等腰三角形.所求点P的坐标为:(1+,1)或(1﹣,1)或(1+,2)或(1﹣,2).
    点睛:本题是二次函数综合题,主要考查待定系数法、三角形全等的判定与性质、等腰三角形的性质等,能正确地利用数形结合思想、分类讨论思想等进行解题是关键.
    21、(1)y=﹣8x+2560(30≤x≤1);(2)把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口.
    【解析】
    试题分析:(1)设从甲仓库运x吨往A港口,根据题意得从甲仓库运往B港口的有(1﹣x)吨,从乙仓库运往A港口的有吨,运往B港口的有50﹣(1﹣x)=(x﹣30)吨,再由等量关系:总运费=甲仓库运往A港口的费用+甲仓库运往B港口的费用+乙仓库运往A港口的费用+乙仓库运往B港口的费用列式并化简,即可得总运费y(元)与x(吨)之间的函数关系式;由题意可得x≥0,8-x≥0,x-30≥0,100-x≥0,即可得出x的取值;(2)因为所得的函数为一次函数,由增减性可知:y随x增大而减少,则当x=1时,y最小,并求出最小值,写出运输方案.
    试题解析:(1)设从甲仓库运x吨往A港口,则从甲仓库运往B港口的有(1﹣x)吨,
    从乙仓库运往A港口的有吨,运往B港口的有50﹣(1﹣x)=(x﹣30)吨,
    所以y=14x+20+10(1﹣x)+8(x﹣30)=﹣8x+2560,
    x的取值范围是30≤x≤1.
    (2)由(1)得y=﹣8x+2560y随x增大而减少,所以当x=1时总运费最小,
    当x=1时,y=﹣8×1+2560=1920,
    此时方案为:把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口.
    考点:一次函数的应用.
    22、(1)CF=;(2)①△PFM的形状是等腰直角三角形,不会发生变化,理由见解析;②△PFM的周长满足:2+2<(1+)y<1+1.
    【解析】
    (1)由折叠的性质可知,FB=FM,设CF=x,则FB=FM=1﹣x,在Rt△CFM中,根据FM2=CF2+CM2,构建方程即可解决问题;
    (2)①△PFM的形状是等腰直角三角形,想办法证明△POF∽△MOC,可得∠PFO=∠MCO=15°,延长即可解决问题;
    ②设FM=y,由勾股定理可知:PF=PM=y,可得△PFM的周长=(1+)y,由2<y<1,可得结论.
    【详解】
    (1)∵M为AC的中点,
    ∴CM=AC=BC=2,
    由折叠的性质可知,FB=FM,
    设CF=x,则FB=FM=1﹣x,
    在Rt△CFM中,FM2=CF2+CM2,即(1﹣x)2=x2+22,
    解得,x=,即CF=;
    (2)①△PFM的形状是等腰直角三角形,不会发生变化,
    理由如下:由折叠的性质可知,∠PMF=∠B=15°,
    ∵CD是中垂线,
    ∴∠ACD=∠DCF=15°,
    ∵∠MPC=∠OPM,
    ∴△POM∽△PMC,
    ∴=,
    ∴=,
    ∵∠EMC=∠AEM+∠A=∠CMF+∠EMF,
    ∴∠AEM=∠CMF,
    ∵∠DPE+∠AEM=90°,∠CMF+∠MFC=90°,∠DPE=∠MPC,
    ∴∠DPE=∠MFC,∠MPC=∠MFC,
    ∵∠PCM=∠OCF=15°,
    ∴△MPC∽△OFC,
    ∴ ,
    ∴,
    ∴,
    ∵∠POF=∠MOC,
    ∴△POF∽△MOC,
    ∴∠PFO=∠MCO=15°,
    ∴△PFM是等腰直角三角形;
    ②∵△PFM是等腰直角三角形,设FM=y,
    由勾股定理可知:PF=PM=y,
    ∴△PFM的周长=(1+)y,
    ∵2<y<1,
    ∴△PFM的周长满足:2+2<(1+)y<1+1.
    【点睛】
    本题考查三角形综合题、等腰直角三角形的性质和判定、翻折变换、相似三角形的判定和性质、勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数解决问题,属于中考常考题型.
    23、(1)本次抽查的学生人数是120人;(2)见解析;(3)126;(4)该校“家人接送”上学的学生约有500人.
    【解析】
    (1)本次抽查的学生人数:18÷15%=120(人);
    (2)A:结伴步行人数120﹣42﹣30﹣18=30(人),据此补全条形统计图;
    (3)“自行乘车”对应扇形的圆心角的度数360°×=126°;
    (4)估计该校“家人接送”上学的学生约有:2000×25%=500(人).
    【详解】
    解:(1)本次抽查的学生人数:18÷15%=120(人),
    答:本次抽查的学生人数是120人;
    (2)A:结伴步行人数120﹣42﹣30﹣18=30(人),
    补全条形统计图如下:

    “结伴步行”所占的百分比为×100%=25%;“自行乘车”所占的百分比为×100%=35%,
    “自行乘车”在扇形统计图中占的度数为360°×35%=126°,补全扇形统计图,如图所示;

    (3)“自行乘车”对应扇形的圆心角的度数360°×=126°,
    故答案为126;
    (4)估计该校“家人接送”上学的学生约有:2000×25%=500(人),
    答:该校“家人接送”上学的学生约有500人.
    【点睛】
    本题主要考查条形统计图及扇形统计图及相关计算,用样本估计总体.解题的关键是读懂统计图,从条形统计图中得到必要的信息是解决问题的关键.
    24、见解析.
    【解析】
    首先连结BD,过点B作DE边上的高BF,则BF=b-a,表示出S五边形ACBED,两者相等,整理即可得证.
    【详解】
    证明:连结BD,过点B作DE边上的高BF,则BF=b-a,

    ∵S五边形ACBED=S△ACB+S△ABE+S△ADE=ab+b1+ab,
    又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=ab+c1+a(b-a),
    ∴ab+b1+ab=ab+c1+a(b-a),
    ∴a1+b1=c1.
    【点睛】
    此题考查了勾股定理的证明,用两种方法表示出五边形ACBED的面积是解本题的关键.
    25、
    【解析】
    分析:化简绝对值、0次幂和负指数幂,代入30°角的三角函数值,然后按照有理数的运算顺序和法则进行计算即可.
    详解:原式=+1﹣2×+=.
    点睛:本题考查了实数的运算,用到的知识点主要有绝对值、零指数幂和负指数幂,以及特殊角的三角函数值,熟记相关法则和性质是解决此题的关键.
    26、(1)点B的坐标为(1,0).
    (2)①点P的坐标为(4,21)或(-4,5).
    ②线段QD长度的最大值为.
    【解析】
    (1)由抛物线的对称性直接得点B的坐标.
    (2)①用待定系数法求出抛物线的解析式,从而可得点C的坐标,得到,设出点P 的坐标,根据列式求解即可求得点P的坐标.
    ②用待定系数法求出直线AC的解析式,由点Q在线段AC上,可设点Q的坐标为(q,-q-3),从而由QD⊥x轴交抛物线于点D,得点D的坐标为(q,q2+2q-3),从而线段QD等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解.
    【详解】
    解:(1)∵A、B两点关于对称轴对称 ,且A点的坐标为(-3,0),
    ∴点B的坐标为(1,0).
    (2)①∵抛物线,对称轴为,经过点A(-3,0),
    ∴,解得.
    ∴抛物线的解析式为.
    ∴B点的坐标为(0,-3).∴OB=1,OC=3.∴.
    设点P的坐标为(p,p2+2p-3),则.
    ∵,∴,解得.
    当时;当时,,
    ∴点P的坐标为(4,21)或(-4,5).
    ②设直线AC的解析式为,将点A,C的坐标代入,得:
    ,解得:.
    ∴直线AC的解析式为.
    ∵点Q在线段AC上,∴设点Q的坐标为(q,-q-3).
    又∵QD⊥x轴交抛物线于点D,∴点D的坐标为(q,q2+2q-3).
    ∴.
    ∵,
    ∴线段QD长度的最大值为.
    27、(1)证明见解析;(2);(3)证明见解析.
    【解析】
    (1)连接OA,证明△DAB≌△DAE,得到AB=AE,得到OA是△BDE的中位线,根据三角形中位线定理、切线的判定定理证明;
    (2)利用正弦的定义计算;
    (3)证明△CDF∽△AOF,根据相似三角形的性质得到CD=CE,根据等腰三角形的性质证明.
    【详解】
    (1)证明:连接OA,
    由圆周角定理得,∠ACB=∠ADB,
    ∵∠ADE=∠ACB,
    ∴∠ADE=∠ADB,
    ∵BD是直径,
    ∴∠DAB=∠DAE=90°,
    在△DAB和△DAE中,

    ∴△DAB≌△DAE,
    ∴AB=AE,又∵OB=OD,
    ∴OA∥DE,又∵AH⊥DE,
    ∴OA⊥AH,
    ∴AH是⊙O的切线;
    (2)解:由(1)知,∠E=∠DBE,∠DBE=∠ACD,
    ∴∠E=∠ACD,
    ∴AE=AC=AB=1.
    在Rt△ABD中,AB=1,BD=8,∠ADE=∠ACB,
    ∴sin∠ADB==,即sin∠ACB=;
    (3)证明:由(2)知,OA是△BDE的中位线,
    ∴OA∥DE,OA=DE.
    ∴△CDF∽△AOF,
    ∴=,
    ∴CD=OA=DE,即CD=CE,
    ∵AC=AE,AH⊥CE,
    ∴CH=HE=CE,
    ∴CD=CH,
    ∴CD=DH.

    【点睛】
    本题考查的是圆的知识的综合应用,掌握圆周角定理、相似三角形的判定定理和性质定理、三角形中位线定理是解题的关键.

    相关试卷

    江苏省苏州市区重点名校2022年中考猜题数学试卷含解析: 这是一份江苏省苏州市区重点名校2022年中考猜题数学试卷含解析,共20页。

    江苏省苏州市吴江区市级名校2022年中考数学猜题卷含解析: 这是一份江苏省苏州市吴江区市级名校2022年中考数学猜题卷含解析,共18页。试卷主要包含了下列哪一个是假命题,下列运算正确的是等内容,欢迎下载使用。

    2022年江苏省徐州邳州市重点中学中考数学猜题卷含解析: 这是一份2022年江苏省徐州邳州市重点中学中考数学猜题卷含解析,共17页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map