2022年江苏省南通市通州区十总中学中考数学模试卷含解析
展开1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.已知:如图四边形OACB是菱形,OB在X轴的正半轴上,sin∠AOB=.反比例函数y=在第一象限图象经过点A,与BC交于点F.S△AOF=,则k=( )
A.15B.13C.12D.5
2.下列运算正确的是( )
A.a6÷a2=a3 B.(2a+b)(2a﹣b)=4a2﹣b2 C.(﹣a)2•a3=a6 D.5a+2b=7ab
3.在Rt△ABC中,∠C=90°,AB=4,AC=1,则csB的值为( )
A.B.C.D.
4.将抛物线向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为( )
A.
B.
C.
D.
5.已知a-2b=-2,则4-2a+4b的值是( )
A.0B.2C.4D.8
6.如图,在△ABC中,AB=AC=3,BC=4,AE平分∠BAC交BC于点E,点D为AB的中点,连接DE,则△BDE的周长是( )
A.3B.4C.5D.6
7.如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为( )
A. B. C. D.
8.已知直线y=ax+b(a≠0)经过第一,二,四象限,那么直线y=bx-a一定不经过( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
9.下列说法正确的是( )
A.一个游戏的中奖概率是则做10次这样的游戏一定会中奖
B.为了解全国中学生的心理健康情况,应该采用普查的方式
C.一组数据 8 , 8 , 7 , 10 , 6 , 8 , 9 的众数和中位数都是 8
D.若甲组数据的方差 S=" 0.01" ,乙组数据的方差 s= 0 .1 ,则乙组数据比甲组数据稳定
10.下列运算正确的是( )
A.a3+a3=a6B.a6÷a2=a4C.a3•a5=a15D.(a3)4=a7
11.小带和小路两个人开车从A城出发匀速行驶至B城.在整个行驶过程中,小带和小路两人车离开A城的距离y(km)与行驶的时间t(h)之间的函数关系如图所示.有下列结论;①A,B两城相距300 km;②小路的车比小带的车晚出发1 h,却早到1 h;③小路的车出发后2.5 h追上小带的车;④当小带和小路的车相距50 km时,t=或t=.其中正确的结论有( )
A.①②③④B.①②④
C.①②D.②③④
12.要使式子有意义,x的取值范围是( )
A.x≠1B.x≠0C.x>﹣1且≠0D.x≥﹣1且x≠0
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,AB是⊙O的直径,点E是的中点,连接AF交过E的切线于点D,AB的延长线交该切线于点C,若∠C=30°,⊙O的半径是2,则图形中阴影部分的面积是_____.
14.我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为______.
15.如图,正△ABC 的边长为 2,顶点 B、C 在半径为 的圆上,顶点 A在圆内,将正△ABC 绕点 B 逆时针旋转,当点 A 第一次落在圆上时,则点 C 运动的路线长为 (结果保留π);若 A 点落在圆上记做第 1 次旋转,将△ABC 绕点 A 逆时针旋转,当点 C 第一次落在圆上记做第 2 次旋转,再绕 C 将△ABC 逆时针旋转,当点 B 第一次落在圆上,记做第 3 次旋转……,若此旋转下去,当△ABC 完成第 2017 次旋转时,BC 边共回到原来位置 次.
16.可燃冰是一种新型能源,它的密度很小,可燃冰的质量仅为.数字0.00092用科学记数法表示是__________.
17.如图,是用三角形摆成的图案,摆第一层图需要1个三角形,摆第二层图需要3个三角形,摆第三层图需要7个三角形,摆第四层图需要13个三角形,摆第五层图需要21个三角形,…,摆第n层图需要_____个三角形.
18.因式分解:______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)现有A、B两种手机上网计费方式,收费标准如下表所示:
设上网时间为x分钟,
(1)若按方式A和方式B的收费金额相等,求x的值;
(2)若上网时间x超过320分钟,选择哪一种方式更省钱?
20.(6分)如图,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等边三角形,点D在边AB上.
(1)如图1,当点E在边BC上时,求证DE=EB;
(2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;
(1)如图1,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=1.求CG的长.
21.(6分)如图,中,,于,,为边上一点.
(1)当时,直接写出 , .
(2)如图1,当,时,连并延长交延长线于,求证:.
(3)如图2,连交于,当且时,求的值.
22.(8分)(1)计算:|﹣3|+(+π)0﹣(﹣)﹣2﹣2cs60°;
(2)先化简,再求值:()+,其中a=﹣2+.
23.(8分)计算:|﹣1|﹣2sin45°+﹣
24.(10分)如图1,的余切值为2,,点D是线段上的一动点(点D不与点A、B重合),以点D为顶点的正方形的另两个顶点E、F都在射线上,且点F在点E的右侧,联结,并延长,交射线于点P.
(1)点D在运动时,下列的线段和角中,________是始终保持不变的量(填序号);
①;②;③;④;⑤;⑥;
(2)设正方形的边长为x,线段的长为y,求y与x之间的函数关系式,并写出定义域;
(3)如果与相似,但面积不相等,求此时正方形的边长.
25.(10分)如图,在△ABC中,D为AC上一点,且CD=CB,以BC为直径作☉O,交BD于点E,连接CE,过D作DFAB于点F,∠BCD=2∠ABD.
(1)求证:AB是☉O的切线;
(2)若∠A=60°,DF=,求☉O的直径BC的长.
26.(12分)在抗洪抢险救灾中,某地粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到没有受洪水威胁的A,B两仓库,已知甲库有粮食100吨,乙库有粮食80吨,而A库的容量为60吨,B库的容量为120吨,从甲、乙两库到A、B两库的路程和运费如表(表中“元/吨•千米”表示每吨粮食运送1千米所需人民币)
若从甲库运往A库粮食x吨,
(1)填空(用含x的代数式表示):
①从甲库运往B库粮食 吨;
②从乙库运往A库粮食 吨;
③从乙库运往B库粮食 吨;
(2)写出将甲、乙两库粮食运往A、B两库的总运费y(元)与x(吨)的函数关系式,并求出当从甲、乙两库各运往A、B两库多少吨粮食时,总运费最省,最省的总运费是多少?
27.(12分)如图,抛物线y=x2﹣2mx(m>0)与x轴的另一个交点为A,过P(1,﹣m)作PM⊥x轴于点M,交抛物线于点B,点B关于抛物线对称轴的对称点为C
(1)若m=2,求点A和点C的坐标;
(2)令m>1,连接CA,若△ACP为直角三角形,求m的值;
(3)在坐标轴上是否存在点E,使得△PEC是以P为直角顶点的等腰直角三角形?若存在,求出点E的坐标;若不存在,请说明理由.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
过点A作AM⊥x轴于点M,设OA=a,通过解直角三角形找出点A的坐标,再根据四边形OACB是菱形、点F在边BC上,即可得出S△AOF=S菱形OBCA,结合菱形的面积公式即可得出a的值,进而依据点A的坐标得到k的值.
【详解】
过点A作AM⊥x轴于点M,如图所示.
设OA=a=OB,则,
在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,
∴AM=OA•sin∠AOB=a,OM=a,
∴点A的坐标为(a,a).
∵四边形OACB是菱形,S△AOF=,
∴OB×AM=,
即×a×a=39,
解得a=±,而a>0,
∴a=,即A(,6),
∵点A在反比例函数y=的图象上,
∴k=×6=1.
故选A.
【解答】
解:
【点评】
本题考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是利用S△AOF=S菱形OBCA.
2、B
【解析】
A选项:利用同底数幂的除法法则,底数不变,只把指数相减即可;
B选项:利用平方差公式,应先把2a看成一个整体,应等于(2a)2-b2而不是2a2-b2,故本选项错误;
C选项:先把(-a)2化为a2,然后利用同底数幂的乘法法则,底数不变,只把指数相加,即可得到;
D选项:两项不是同类项,故不能进行合并.
【详解】
A选项:a6÷a2=a4,故本选项错误;
B选项:(2a+b)(2a-b)=4a2-b2,故本选项正确;
C选项:(-a)2•a3=a5,故本选项错误;
D选项:5a与2b不是同类项,不能合并,故本选项错误;
故选:B.
【点睛】
考查学生同底数幂的乘除法法则的运用以及对平方差公式的掌握,同时要求学生对同类项进行正确的判断.
3、A
【解析】
∵在Rt△ABC中,∠C=90°,AB=4,AC=1,
∴BC== ,
则csB== ,
故选A
4、A
【解析】
先确定抛物线y=x2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)平移后所得对应点的坐标为(-2,-1),然后根据顶点式写出平移后的抛物线解析式.
【详解】
抛物线y=x2的顶点坐标为(0,0),把点(0,0)向左平移1个单位,再向下平移2个单位长度所得对应点的坐标为(-2,-1),所以平移后的抛物线解析式为y=(x+2)2-1.
故选A.
5、D
【解析】
∵a-2b=-2,
∴-a+2b=2,
∴-2a+4b=4,
∴4-2a+4b=4+4=8,
故选D.
6、C
【解析】
根据等腰三角形的性质可得BE=BC=2,再根据三角形中位线定理可求得BD、DE长,根据三角形周长公式即可求得答案.
【详解】
解:∵在△ABC中,AB=AC=3,AE平分∠BAC,
∴BE=CE=BC=2,
又∵D是AB中点,
∴BD=AB=,
∴DE是△ABC的中位线,
∴DE=AC=,
∴△BDE的周长为BD+DE+BE=++2=5,
故选C.
【点睛】
本题考查了等腰三角形的性质、三角形中位线定理,熟练掌握三角形中位线定理是解题的关键.
7、B
【解析】【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.
【详解】分三种情况:
①当P在AB边上时,如图1,
设菱形的高为h,
y=AP•h,
∵AP随x的增大而增大,h不变,
∴y随x的增大而增大,
故选项C不正确;
②当P在边BC上时,如图2,
y=AD•h,
AD和h都不变,
∴在这个过程中,y不变,
故选项A不正确;
③当P在边CD上时,如图3,
y=PD•h,
∵PD随x的增大而减小,h不变,
∴y随x的增大而减小,
∵P点从点A出发沿A→B→C→D路径匀速运动到点D,
∴P在三条线段上运动的时间相同,
故选项D不正确,
故选B.
【点睛】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,运用分类讨论思想,分三段求出△PAD的面积的表达式是解题的关键.
8、D
【解析】
根据直线y=ax+b(a≠0)经过第一,二,四象限,可以判断a、b的正负,从而可以判断直线y=bx-a经过哪几个象限,不经过哪个象限,本题得以解决.
【详解】
∵直线y=ax+b(a≠0)经过第一,二,四象限,
∴a<0,b>0,
∴直线y=bx-a经过第一、二、三象限,不经过第四象限,
故选D.
【点睛】
本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.
9、C
【解析】
众数,中位数,方差等概念分析即可.
【详解】
A、中奖是偶然现象,买再多也不一定中奖,故是错误的;
B、全国中学生人口多,只需抽样调查就行了,故是错误的;
C、这组数据的众数和中位数都是8,故是正确的;
D、方差越小越稳定,甲组数据更稳定,故是错误.故选C.
【点睛】
考核知识点:众数,中位数,方差.
10、B
【解析】
根据同底数幂的乘法、除法、幂的乘方依次计算即可得到答案.
【详解】
A、a3+a3=2a3,故A错误;
B、a6÷a2=a4,故B正确;
C、a3•a5=a8,故C错误;
D、(a3)4=a12,故D错误.
故选:B.
【点睛】
此题考查整式的计算,正确掌握同底数幂的乘法、除法、幂的乘方的计算方法是解题的关键.
11、C
【解析】
观察图象可判断①②,由图象所给数据可求得小带、小路两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.
【详解】
由图象可知A,B两城市之间的距离为300 km,小带行驶的时间为5 h,而小路是在小带出发1 h后出发的,且用时3 h,即比小带早到1 h,
∴①②都正确;
设小带车离开A城的距离y与t的关系式为y小带=kt,
把(5,300)代入可求得k=60,
∴y小带=60t,
设小路车离开A城的距离y与t的关系式为y小路=mt+n,
把(1,0)和(4,300)代入可得
解得
∴y小路=100t-100,
令y小带=y小路,可得60t=100t-100,
解得t=2.5,
即小带和小路两直线的交点横坐标为t=2.5,
此时小路出发时间为1.5 h,即小路车出发1.5 h后追上甲车,
∴③不正确;
令|y小带-y小路|=50,
可得|60t-100t+100|=50,即|100-40t|=50,
当100-40t=50时,
可解得t=,
当100-40t=-50时,
可解得t=,
又当t=时,y小带=50,此时小路还没出发,
当t=时,小路到达B城,y小带=250.
综上可知当t的值为或或或时,两车相距50 km,
∴④不正确.
故选C.
【点睛】
本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.
12、D
【解析】
根据二次根式由意义的条件是:被开方数大于或等于1,和分母不等于1,即可求解.
【详解】
根据题意得:,
解得:x≥-1且x≠1.
故选:D.
【点睛】
本题考查的知识点为:分式有意义,分母不为1;二次根式的被开方数是非负数.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
首先根据切线的性质及圆周角定理得CE的长以及圆周角度数,进而利用锐角三角函数关系得出DE,AD的长,利用S△ADE﹣S扇形FOE=图中阴影部分的面积求出即可.
【详解】
解:连接OE,OF、EF,
∵DE是切线,
∴OE⊥DE,
∵∠C=30°,OB=OE=2,
∴∠EOC=60°,OC=2OE=4,
∴CE=OC×sin60°=
∵点E是弧BF的中点,
∴∠EAB=∠DAE=30°,
∴F,E是半圆弧的三等分点,
∴∠EOF=∠EOB=∠AOF=60°,
∴OE∥AD,∠DAC=60°,
∴∠ADC=90°,
∵CE=AE=
∴DE=,
∴AD=DE×tan60°=
∴S△ADE
∵△FOE和△AEF同底等高,
∴△FOE和△AEF面积相等,
∴图中阴影部分的面积为:S△ADE﹣S扇形FOE
故答案为
【点睛】
此题主要考查了扇形的面积计算以及三角形面积求法等知识,根据已知得出△FOE和△AEF面积相等是解题关键.
14、4.4×1
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
4400000000的小数点向左移动9位得到4.4,
所以4400000000用科学记数法可表示为:4.4×1,
故答案为4.4×1.
【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
15、,1.
【解析】
首先连接OA′、OB、OC,再求出∠C′BC的大小,进而利用弧长公式问题即可解决.因为△ABC是三边在正方形CBA′C″上,BC边每12次回到原来位置,2017÷12=1.08,推出当△ABC完成第2017次旋转时,BC边共回到原来位置1次.
【详解】
如图,连接OA′、OB、OC.
∵OB=OC=,BC=2,
∴△OBC是等腰直角三角形,
∴∠OBC=45°;
同理可证:∠OBA′=45°,
∴∠A′BC=90°;
∵∠ABC=60°,
∴∠A′BA=90°-60°=30°,
∴∠C′BC=∠A′BA=30°,
∴当点A第一次落在圆上时,则点C运动的路线长为:.
∵△ABC是三边在正方形CBA′C″上,BC边每12次回到原来位置,
2017÷12=1.08,
∴当△ABC完成第2017次旋转时,BC边共回到原来位置1次,
故答案为:,1.
【点睛】
本题考查轨迹、等边三角形的性质、旋转变换、规律问题等知识,解题的关键是循环利用数形结合的思想解决问题,循环从特殊到一般的探究方法,所以中考填空题中的压轴题.
16、9.2×10﹣1.
【解析】
根据科学记数法的正确表示为,由题意可得0.00092用科学记数法表示是9.2×10﹣1.
【详解】
根据科学记数法的正确表示形式可得:
0.00092用科学记数法表示是9.2×10﹣1.
故答案为: 9.2×10﹣1.
【点睛】
本题主要考查科学记数法的正确表现形式,解决本题的关键是要熟练掌握科学记数法的正确表现形式.
17、n2﹣n+1
【解析】
观察可得,第1层三角形的个数为1,第2层三角形的个数为3,比第1层多2个;第3层三角形的个数为7,比第2层多4个;…可得,每一层比上一层多的个数依次为2,4,6,…据此作答.
【详解】
观察可得,第1层三角形的个数为1,第2层三角形的个数为22−2+1=3,
第3层三角形的个数为32−3+1=7,
第四层图需要42−4+1=13个三角形
摆第五层图需要52−5+1=21.
那么摆第n层图需要n2−n+1个三角形。
故答案为:n2−n+1.
【点睛】
本题考查了规律型:图形的变化类,解题的关键是由图形得到一般规律.
18、
【解析】
先提取公因式x,再对余下的多项式利用完全平方公式继续分解.
【详解】
xy1+1xy+x,
=x(y1+1y+1),
=x(y+1)1.
故答案为:x(y+1)1.
【点睛】
本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)x=270或x=520;(2)当320
(1)根据收取费用=月使用费+超时单价×超过时间,可找出yA、yB关于x的函数关系式;根据方式A和方式B的收费金额相等,分类讨论,列出方程,求解即可.
(2)列不等式,求解即可得出结论.
【详解】
(1)当时,与x之间的函数关系式为:
当时,与x之间的函数关系式为:
即
当时,与x之间的函数关系式为:
当时, 与x之间的函数关系式为:
即
方式A和方式B的收费金额相等,
当时,
当时, 解得:
当时, 解得:
即x=270或x=520时,方式A和方式B的收费金额相等.
(2) 若上网时间x超过320分钟,
解得320
当x=520时,两种方式花钱一样多;
解得x>520,
当x>520时选择方式A更省钱.
【点睛】
考查一次函数的应用,列出函数关系式是解题的关键.注意分类讨论,不要漏解.
20、(1)证明见解析;(2)ED=EB,证明见解析;(1)CG=2.
【解析】
(1)、根据等边三角形的性质得出∠CED=60°,从而得出∠EDB=10°,从而得出DE=BE;
(2)、取AB的中点O,连接CO、EO,根据△ACO和△CDE为等边三角形,从而得出△ACD和△OCE全等,然后得出△COE和△BOE全等,从而得出答案;
(1)、取AB的中点O,连接CO、EO、EB,根据题意得出△COE和△BOE全等,然后得出△CEG和△DCO全等,设CG=a,则AG=5a,OD=a,根据题意列出一元一次方程求出a的值得出答案.
【详解】
(1)∵△CDE是等边三角形,
∴∠CED=60°,
∴∠EDB=60°﹣∠B=10°,
∴∠EDB=∠B,
∴DE=EB;
(2) ED=EB, 理由如下:
取AB的中点O,连接CO、EO,
∵∠ACB=90°,∠ABC=10°,
∴∠A=60°,OC=OA,
∴△ACO为等边三角形,
∴CA=CO,
∵△CDE是等边三角形,
∴∠ACD=∠OCE,
∴△ACD≌△OCE,
∴∠COE=∠A=60°,
∴∠BOE=60°,
∴△COE≌△BOE,
∴EC=EB,
∴ED=EB;
(1)、取AB的中点O,连接CO、EO、EB, 由(2)得△ACD≌△OCE,
∴∠COE=∠A=60°,
∴∠BOE=60°,△COE≌△BOE,
∴EC=EB,
∴ED=EB,
∵EH⊥AB,
∴DH=BH=1,
∵GE∥AB,
∴∠G=180°﹣∠A=120°,
∴△CEG≌△DCO,
∴CG=OD,
设CG=a,则AG=5a,OD=a,
∴AC=OC=4a,
∵OC=OB,
∴4a=a+1+1,
解得,a=2,
即CG=2.
21、(1),;(2)证明见解析;(3).
【解析】
(1)利用相似三角形的判定可得,列出比例式即可求出结论;
(2)作交于,设,则,根据平行线分线段成比例定理列出比例式即可求出AH和EH,然后根据平行线分线段成比例定理列出比例式即可得出结论;
(3)作于,根据相似三角形的判定可得,列出比例式可得,设,,,即可求出x的值,根据平行线分线段成比例定理求出,设,,,然后根据勾股定理求出AC,即可得出结论.
【详解】
(1)如图1中,当时,.
,,
,
,
,,
.
故答案为:,.
(2)如图中,作交于.
,,
∴tan∠B=,tan∠ACE= tan∠B=
∴BE=2CE,
,,设,则,
,
,
,,
,
,
.
(3)如图2中,作于.
,
,,
,
,
,
,
,
,
,
,设,,,
则有,
解得或(舍弃),
,
,,,
,,
,
,
,
,设,,,
在中,,
,
,
,
.
【点睛】
此题考查的是相似三角形的应用和锐角三角函数,此题难度较大,掌握相似三角形的判定及性质、平行线分线段成比例定理和利用锐角三角函数解直角三角形是解决此题的关键.
22、(1)-1;(2).
【解析】
(1)根据零指数幂的意义、特殊角的锐角三角函数以及负整数指数幂的意义即可求出答案;
(2)先化简原式,然后将a的值代入即可求出答案.
【详解】
(1)原式=3+1﹣(﹣2)2﹣2×=4﹣4﹣1=﹣1;
(2)原式=+
=
当a=﹣2+时,原式==.
【点睛】
本题考查了学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.
23、﹣1
【解析】
直接利用负指数幂的性质以及绝对值的性质、特殊角的三角函数值分别化简得出答案.
【详解】
原式=(﹣1)﹣2×+2﹣4
=﹣1﹣+2﹣4
=﹣1.
【点睛】
此题主要考查了实数运算,正确化简各数是解题关键.
24、(1)④⑤;(2);(3)或.
【解析】
(1)作于M,交于N,如图,利用三角函数的定义得到,设,则,利用勾股定理得,解得,即,,设正方形的边长为x,则,,由于,则可判断为定值;再利用得到,则可判断为定值;在中,利用勾股定理和三角函数可判断在变化,在变化,在变化;
(2)易得四边形为矩形,则,证明,利用相似比可得到y与x的关系式;
(3)由于,与相似,且面积不相等,利用相似比得到,讨论:当点P在点F点右侧时,则,所以,当点P在点F点左侧时,则,所以,然后分别解方程即可得到正方形的边长.
【详解】
(1)如图,作于M,交于N,
在中,∵,
设,则,
∵,
∴,解得,
∴,,
设正方形的边长为x,
在中,∵,
∴,
∴,
在中,,
∴为定值;
∵,
∴,
∴为定值;
在中,,
而在变化,
∴在变化,在变化,
∴在变化,
所以和是始终保持不变的量;
故答案为:④⑤
(2)∵MN⊥AP,DEFG是正方形,
∴四边形为矩形,
∴,
∵,
∴,
∴,
即,
∴
(3)∵,与相似,且面积不相等,
∴,即,
∴,
当点P在点F点右侧时,AP=AF+PF==,
∴,
解得,
当点P在点F点左侧时,,
∴,
解得,
综上所述,正方形的边长为或.
【点睛】
本题考查了相似形综合题:熟练掌握锐角三角函数的定义、正方形的性质和相似三角形的判定与性质.
25、(1)证明过程见解析;(2)
【解析】
(1)根据CB=CD得出∠CBD=∠CDB,然后结合∠BCD=2∠ABD得出∠ABD=∠BCE,从而得出∠CBD+∠ABD=∠CBD+∠BCE=90°,然后得出切线;(2)根据Rt△AFD和Rt△BFD的性质得出AF和DF的长度,然后根据△ADF和△ACB相似得出相似比,从而得出BC的长度.
【详解】
(1)∵CB=CD
∴∠CBD=∠CDB
又∵∠CEB=90°
∴∠CBD+∠BCE=∠CDE+∠DCE
∴∠BCE=∠DCE且∠BCD=2∠ABD
∴∠ABD=∠BCE
∴∠CBD+∠ABD=∠CBD+∠BCE=90°
∴CB⊥AB垂足为B
又∵CB为直径
∴AB是⊙O的切线.
(2)∵∠A=60°,DF=
∴在Rt△AFD中得出AF=1
在Rt△BFD中得出DF=3
∵∠ADF=∠ACB ∠A=∠A
∴△ADF∽△ACB
∴
即
解得:CB=
考点:(1)圆的切线的判定;(2)三角函数;(3)三角形相似的判定
26、(1)①(100﹣x);②(1﹣x);③(20+x);(2)从甲库运往A库1吨粮食,从甲库运往B库40吨粮食,从乙库运往B库80吨粮食时,总运费最省,最省的总运费是2元.
【解析】
分析:(Ⅰ)根据题意解答即可;
(Ⅱ)弄清调动方向,再依据路程和运费列出y(元)与x(吨)的函数关系式,最后可以利用一次函数的增减性确定“最省的总运费”.
详解:(Ⅰ)设从甲库运往A库粮食x吨;
①从甲库运往B库粮食(100﹣x)吨;
②从乙库运往A库粮食(1﹣x)吨;
③从乙库运往B库粮食(20+x)吨;
故答案为(100﹣x);(1﹣x);(20+x).
(Ⅱ)依题意有:若甲库运往A库粮食x吨,则甲库运到B库(100﹣x)吨,乙库运往A库(1﹣x)吨,乙库运到B库(20+x)吨.
则,解得:0≤x≤1.
从甲库运往A库粮食x吨时,总运费为:
y=12×20x+10×25(100﹣x)+12×15(1﹣x)+8×20×[120﹣(100﹣x)]
=﹣30x+39000;
∵从乙库运往A库粮食(1﹣x)吨,∴0≤x≤1,此时100﹣x>0,∴y=﹣30x+39000(0≤x≤1).
∵﹣30<0,∴y随x的增大而减小,∴当x=1时,y取最小值,最小值是2.
答:从甲库运往A库1吨粮食,从甲库运往B库40吨粮食,从乙库运往B库80吨粮食时,总运费最省,最省的总运费是2元.
点睛:本题是一次函数与不等式的综合题,先解不等式确定自变量的取值范围,然后依据一次函数的增减性来确定“最佳方案”.
27、(1)A(4,0),C(3,﹣3);(2) m=;(3) E点的坐标为(2,0)或(,0)或(0,﹣4);
【解析】
方法一:(1)m=2时,函数解析式为y=,分别令y=0,x=1,即可求得点A和点B的坐标, 进而可得到点C的坐标;
(2) 先用m表示出P, A C三点的坐标,分别讨论∠APC=,∠ACP=,∠PAC=三种情况, 利用勾股定理即可求得m的值;
(3) 设点F(x,y)是直线PE上任意一点,过点F作FN⊥PM于N,可得Rt△FNP∽Rt△PBC,
NP:NF=BC:BP求得直线PE的解析式,后利用△PEC是以P为直角顶点的等腰直角三角形求得E点坐标.
方法二:(1)同方法一.
(2) 由△ACP为直角三角形, 由相互垂直的两直线斜率相乘为-1,可得m的值;
(3)利用△PEC是以P为直角顶点的等腰直角三角形,分别讨论E点再x轴上,y轴上的情况求得E点坐标.
【详解】
方法一:
解:
(1)若m=2,抛物线y=x2﹣2mx=x2﹣4x,
∴对称轴x=2,
令y=0,则x2﹣4x=0,
解得x=0,x=4,
∴A(4,0),
∵P(1,﹣2),令x=1,则y=﹣3,
∴B(1,﹣3),
∴C(3,﹣3).
(2)∵抛物线y=x2﹣2mx(m>1),
∴A(2m,0)对称轴x=m,
∵P(1,﹣m)
把x=1代入抛物线y=x2﹣2mx,则y=1﹣2m,
∴B(1,1﹣2m),
∴C(2m﹣1,1﹣2m),
∵PA2=(﹣m)2+(2m﹣1)2=5m2﹣4m+1,
PC2=(2m﹣2)2+(1﹣m)2=5m2﹣10m+5,
AC2=1+(1﹣2m)2=2﹣4m+4m2,
∵△ACP为直角三角形,
∴当∠ACP=90°时,PA2=PC2+AC2,
即5m2﹣4m+1=5m2﹣10m+5+2﹣4m+4m2,整理得:4m2﹣10m+6=0,
解得:m=,m=1(舍去),
当∠APC=90°时,PA2+PC2=AC2,
即5m2﹣4m+1+5m2﹣10m+5=2﹣4m+4m2,整理得:6m2﹣10m+4=0,
解得:m=,m=1,和1都不符合m>1,
故m=.
(3)设点F(x,y)是直线PE上任意一点,过点F作FN⊥PM于N,
∵∠FPN=∠PCB,∠PNF=∠CBP=90°,
∴Rt△FNP∽Rt△PBC,
∴NP:NF=BC:BP,即=,
∴y=2x﹣2﹣m,
∴直线PE的解析式为y=2x﹣2﹣m.
令y=0,则x=1+,
∴E(1+m,0),
∴PE2=(﹣m)2+(m)2=,
∴=5m2﹣10m+5,解得:m=2,m=,
∴E(2,0)或E(,0),
∴在x轴上存在E点,使得△PEC是以P为直角顶点的等腰直角三角形,此时E(2,0)或E(,0);
令x=0,则y=﹣2﹣m,
∴E(0,﹣2﹣m)
∴PE2=(﹣2)2+12=5
∴5m2﹣10m+5=5,解得m=2,m=0(舍去),
∴E(0,﹣4)
∴y轴上存在点E,使得△PEC是以P为直角顶点的等腰直角三角形,此时E(0,﹣4),
∴在坐标轴上是存在点E,使得△PEC是以P为直角顶点的等腰直角三角形,E点的坐标为(2,0)或(,0)或(0,﹣4);
方法二:
(1)略.
(2)∵P(1,﹣m),
∴B(1,1﹣2m),
∵对称轴x=m,
∴C(2m﹣1,1﹣2m),A(2m,0),
∵△ACP为直角三角形,
∴AC⊥AP,AC⊥CP,AP⊥CP,
①AC⊥AP,∴KAC×KAP=﹣1,且m>1,
∴,m=﹣1(舍)
②AC⊥CP,∴KAC×KCP=﹣1,且m>1,
∴=﹣1,∴m=,
③AP⊥CP,∴KAP×KCP=﹣1,且m>1,
∴=﹣1,∴m=(舍)
(3)∵P(1,﹣m),C(2m﹣1,1﹣2m),
∴KCP=,
△PEC是以P为直角顶点的等腰直角三角形,
∴PE⊥PC,∴KPE×KCP=﹣1,∴KPE=2,
∵P(1,﹣m),
∴lPE:y=2x﹣2﹣m,
∵点E在坐标轴上,
∴①当点E在x轴上时,
E(,0)且PE=PC,
∴(1﹣)2+(﹣m)2=(2m﹣1﹣1)2+(1﹣2m+m)2,
∴m2=5(m﹣1)2,
∴m1=2,m2=,
∴E1(2,0),E2(,0),
②当点E在y轴上时,E(0,﹣2﹣m)且PE=PC,
∴(1﹣0)2+(﹣m+2+m)2=(2m﹣1﹣1)2+(1﹣2m+m)2,
∴1=(m﹣1)2,
∴m1=2,m2=0(舍),
∴E(0,4),
综上所述,(2,0)或(,0)或(0,﹣4).
【点睛】
本题主要考查二次函数的图象与性质.
扩展:
设坐标系中两点坐标分别为点A(), 点B(), 则线段AB的长度为:
AB=.
设平面内直线AB的解析式为:,直线CD的解析式为:
(1)若AB//CD,则有:;
(2)若AB⊥CD,则有:.
计费方式
月使用费/元
包月上网时间/分
超时费/(元/分)
A
30
120
0.20
B
60
320
0.25
路程(千米)
运费(元/吨•千米)
甲库
乙库
甲库
乙库
A库
20
15
12
12
B库
25
20
10
8
江苏省南通市通州区十总中学2023-2024学年数学九上期末检测模拟试题含答案: 这是一份江苏省南通市通州区十总中学2023-2024学年数学九上期末检测模拟试题含答案,共8页。
2023-2024学年江苏省南通市通州区十总中学数学八年级第一学期期末调研试题含答案: 这是一份2023-2024学年江苏省南通市通州区十总中学数学八年级第一学期期末调研试题含答案,共6页。试卷主要包含了的算术平方根是,下列因式分解正确的是等内容,欢迎下载使用。
2023年江苏省南通市通州区、如东县中考数学二模试卷(含解析): 这是一份2023年江苏省南通市通州区、如东县中考数学二模试卷(含解析),共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。