2022年江苏省泰州白马中学中考数学四模试卷含解析
展开
这是一份2022年江苏省泰州白马中学中考数学四模试卷含解析,共22页。试卷主要包含了平面直角坐标系中的点P,若一个正比例函数的图象经过A,计算的结果为等内容,欢迎下载使用。
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若,大正方形的面积为13,则小正方形的面积为( )
A.3B.4C.5D.6
2.花园甜瓜是乐陵的特色时令水果.甜瓜一上市,水果店的小李就用3000元购进了一批甜瓜,前两天以高于进价40%的价格共卖出150kg,第三天她发现市场上甜瓜数量陡增,而自己的甜瓜卖相已不大好,于是果断地将剩余甜瓜以低于进价20%的价格全部售出,前后一共获利750元,则小李所进甜瓜的质量为( )kg.
A.180B.200C.240D.300
3.如图,某小区计划在一块长为31m,宽为10m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m1.若设道路的宽为xm,则下面所列方程正确的是( )
A.(31﹣1x)(10﹣x)=570B.31x+1×10x=31×10﹣570
C.(31﹣x)(10﹣x)=31×10﹣570D.31x+1×10x﹣1x1=570
4.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:
①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,
其中正确的是( )
A.①②③B.①③④C.①③⑤D.②④⑤
5.平面直角坐标系中的点P(2﹣m,m)在第一象限,则m的取值范围在数轴上可表示为( )
A.B.
C.D.
6.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )
A.B.C.D.
7.如图,在菱形ABCD中,∠A=60°,E是AB边上一动点(不与A、B重合),且∠EDF=∠A,则下列结论错误的是( )
A.AE=BFB.∠ADE=∠BEF
C.△DEF是等边三角形D.△BEF是等腰三角形
8.若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为( )
A.2B.8C.﹣2D.﹣8
9.计算(x-l)(x-2)的结果为( )
A.x2+2B.x2-3x+2C.x2-3x-3D.x2-2x+2
10.如图,在ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,,则DE:EC=( )
A.2:5B.2:3C.3:5D.3:2
二、填空题(共7小题,每小题3分,满分21分)
11.将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边为1,如图2,将Rt△BCD沿射线BD方向平移,在平移的过程中,当点B的移动距离为 时,四边ABC1D1为矩形;当点B的移动距离为 时,四边形ABC1D1为菱形.
12.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为_____.
13.如图,在平面直角坐标系中,已知点A(﹣4,0)、B(0,3),对△AOB连续作旋转变换依次得到三角形(1)、(2)、(3)、(4)、…,则第(5)个三角形的直角顶点的坐标是_____,第(2018)个三角形的直角顶点的坐标是______.
14.关于x的一元二次方程有两个不相等的实数根,则k的取值范围是 ▲ .
15.如图,已知正方形ABCD中,∠MAN=45°,连接BD与AM,AN分别交于E,F点,则下列结论正确的有_____.
①MN=BM+DN
②△CMN的周长等于正方形ABCD的边长的两倍;
③EF1=BE1+DF1;
④点A到MN的距离等于正方形的边长
⑤△AEN、△AFM都为等腰直角三角形.
⑥S△AMN=1S△AEF
⑦S正方形ABCD:S△AMN=1AB:MN
⑧设AB=a,MN=b,则≥1﹣1.
16.使得分式值为零的x的值是_________;
17.若y=,则x+y= .
三、解答题(共7小题,满分69分)
18.(10分)如图山坡上有一根旗杆AB,旗杆底部B点到山脚C点的距离BC为米,斜坡BC的坡度i=1:.小明在山脚的平地F处测量旗杆的高,点C到测角仪EF的水平距离CF=1米,从E处测得旗杆顶部A的仰角为45°,旗杆底部B的仰角为20°.
(1)求坡角∠BCD;
(2)求旗杆AB的高度.
(参考数值:sin20°≈0.34,cs20°≈0.94,tan20°≈0.36)
19.(5分)如图,在矩形ABCD中,AB=1DA,以点A为圆心,AB为半径的圆弧交DC于点E,交AD的延长线于点F,设DA=1.求线段EC的长;求图中阴影部分的面积.
20.(8分)(1)计算:.
(2)解方程:x2﹣4x+2=0
21.(10分)某中学开学初到商场购买A、B两种品牌的足球,购买A种品牌的足球20个,B种品牌的足球30个,共花费4600元,已知购买4个B种品牌的足球与购买5个A种品牌的足球费用相同.
(1)求购买一个A种品牌、一个B种品牌的足球各需多少元.
(2)学校为了响应习总书记“足球进校园”的号召,决定再次购进A、B两种品牌足球共42个,正好赶上商场对商品价格进行调整,A品牌足球售价比第一次购买时提高5元,B品牌足球按第一次购买时售价的9折出售,如果学校此次购买A、B两种品牌足球的总费用不超过第一次花费的80%,且保证这次购买的B种品牌足球不少于20个,则这次学校有哪几种购买方案?
(3)请你求出学校在第二次购买活动中最多需要多少资金?
22.(10分)某市为了解市民对已闭幕的某一博览会的总体印象,利用最新引进的“计算机辅助电话访问系统”(简称CATI系统),采取电脑随机抽样的方式,对本市年龄在16~65岁之间的居民,进行了400个电话抽样调查.并根据每个年龄段的抽查人数和该年龄段对博览会总体印象感到满意的人数绘制了下面的图(1)和图(1)(部分)
根据上图提供的信息回答下列问题:
(1)被抽查的居民中,人数最多的年龄段是 岁;
(1)已知被抽查的400人中有83%的人对博览会总体印象感到满意,请你求出31~40岁年龄段的满意人数,并补全图1.
注:某年龄段的满意率=该年龄段满意人数÷该年龄段被抽查人数×100%.
23.(12分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,过点D作⊙O的切线DE交AC于点E.
(1)求证:∠A=∠ADE;
(2)若AB=25,DE=10,弧DC的长为a,求DE、EC和弧DC围成的部分的面积S.(用含字母a的式子表示).
24.(14分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.如图,已知折痕与边BC交于点O,连接AP、OP、OA.
(1)求证:;
(2)若△OCP与△PDA的面积比为1:4,求边AB的长.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
如图所示,∵(a+b)2=21
∴a2+2ab+b2=21,
∵大正方形的面积为13,2ab=21﹣13=8,
∴小正方形的面积为13﹣8=1.
故选C.
考点:勾股定理的证明.
2、B
【解析】
根据题意去设所进乌梅的数量为,根据前后一共获利元,列出方程,求出x值即可.
【详解】
解:设小李所进甜瓜的数量为,根据题意得:
,
解得:,
经检验是原方程的解.
答:小李所进甜瓜的数量为200kg.
故选:B.
【点睛】
本题考查的是分式方程的应用,解题关键在于对等量关系的理解,进而列出方程即可.
3、A
【解析】
六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m1,即可列出方程:(31−1x)(10−x)=570,
故选A.
4、C
【解析】
试题解析:∵抛物线的顶点坐标A(1,3),
∴抛物线的对称轴为直线x=-=1,
∴2a+b=0,所以①正确;
∵抛物线开口向下,
∴a<0,
∴b=-2a>0,
∵抛物线与y轴的交点在x轴上方,
∴c>0,
∴abc<0,所以②错误;
∵抛物线的顶点坐标A(1,3),
∴x=1时,二次函数有最大值,
∴方程ax2+bx+c=3有两个相等的实数根,所以③正确;
∵抛物线与x轴的一个交点为(4,0)
而抛物线的对称轴为直线x=1,
∴抛物线与x轴的另一个交点为(-2,0),所以④错误;
∵抛物线y1=ax2+bx+c与直线y2=mx+n(m≠0)交于A(1,3),B点(4,0)
∴当1<x<4时,y2<y1,所以⑤正确.
故选C.
考点:1.二次函数图象与系数的关系;2.抛物线与x轴的交点.
5、B
【解析】
根据第二象限中点的特征可得: ,
解得: .
在数轴上表示为:
故选B.
考点:(1)、不等式组;(2)、第一象限中点的特征
6、C
【解析】
画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.
【详解】
解:画树状图得:
∵共有12种等可能的结果,两次都摸到白球的有2种情况,
∴两次都摸到白球的概率是:.
故答案为C.
【点睛】
本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.
7、D
【解析】
连接BD,可得△ADE≌△BDF,然后可证得DE=DF,AE=BF,即可得△DEF是等边三角形,然后可证得∠ADE=∠BEF.
【详解】
连接BD,∵四边形ABCD是菱形,
∴AD=AB,∠ADB=∠ADC,AB∥CD,
∵∠A=60°,
∴∠ADC=120°,∠ADB=60°,
同理:∠DBF=60°,
即∠A=∠DBF,
∴△ABD是等边三角形,
∴AD=BD,
∵∠ADE+∠BDE=60°,∠BDE+∠BDF=∠EDF=60°,
∴∠ADE=∠BDF,
∵在△ADE和△BDF中,
,
∴△ADE≌△BDF(ASA),
∴DE=DF,AE=BF,故A正确;
∵∠EDF=60°,
∴△EDF是等边三角形,
∴C正确;
∴∠DEF=60°,
∴∠AED+∠BEF=120°,
∵∠AED+∠ADE=180°-∠A=120°,
∴∠ADE=∠BEF;
故B正确.
∵△ADE≌△BDF,
∴AE=BF,
同理:BE=CF,
但BE不一定等于BF.
故D错误.
故选D.
【点睛】
本题考查了菱形的性质、等边三角形的判定与性质以及全等三角形的判定与性质,解题的关键是正确寻找全等三角形解决问题.
8、A
【解析】
试题分析:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选A.
考点:一次函数图象上点的坐标特征.
9、B
【解析】
根据多项式的乘法法则计算即可.
【详解】
(x-l)(x-2)
= x2-2x-x+2
= x2-3x+2.
故选B.
【点睛】
本题考查了多项式与多项式的乘法运算,多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加.
10、B
【解析】
∵四边形ABCD是平行四边形,
∴AB∥CD
∴∠EAB=∠DEF,∠AFB=∠DFE
∴△DEF∽△BAF
∴
∵,
∴DE:AB=2:5
∵AB=CD,
∴DE:EC=2:3
故选B
二、填空题(共7小题,每小题3分,满分21分)
11、,.
【解析】
试题分析:当点B的移动距离为时,∠C1BB1=60°,则∠ABC1=90°,根据有一直角的平行四边形是矩形,可判定四边形ABC1D1为矩形;当点B的移动距离为时,D、B1两点重合,根据对角线互相垂直平分的四边形是菱形,可判定四边形ABC1D1为菱形.
试题解析:如图:
当四边形ABC1D是矩形时,∠B1BC1=90°﹣30°=60°,
∵B1C1=1,
∴BB1=,
当点B的移动距离为时,四边形ABC1D1为矩形;
当四边形ABC1D是菱形时,∠ABD1=∠C1BD1=30°,
∵B1C1=1,
∴BB1=,
当点B的移动距离为时,四边形ABC1D1为菱形.
考点:1.菱形的判定;2.矩形的判定;3.平移的性质.
12、
【解析】
解:∵弦CD∥AB,∴S△ACD=S△OCD,∴S阴影=S扇形COD==.故答案为.
13、(16,) (8068,)
【解析】
利用勾股定理列式求出AB的长,再根据图形写出第(5)个三角形的直角顶点的坐标即可;观察图形不难发现,每3个三角形为一个循环组依次循环,用2018除以3,根据商和余数的情况确定出第(2018)个三角形的直角顶点到原点O的距离,然后写出坐标即可.
【详解】
∵点A(﹣4,0),B(0,3),
∴OA=4,OB=3,
∴AB==5,
∴第(2)个三角形的直角顶点的坐标是(4,);
∵5÷3=1余2,
∴第(5)个三角形的直角顶点的坐标是(16,),
∵2018÷3=672余2,
∴第(2018)个三角形是第672组的第二个直角三角形,
其直角顶点与第672组的第二个直角三角形顶点重合,
∴第(2018)个三角形的直角顶点的坐标是(8068,).
故答案为:(16,);(8068,)
【点睛】
本题考查了坐标与图形变化-旋转,解题的关键是根据题意找出每3个三角形为一个循环组依次循环.
14、k<且k≠1.
【解析】
根据一元二次方程kx2-x+1=1有两个不相等的实数根,知△=b2-4ac>1,然后据此列出关于k的方程,解方程,结合一元二次方程的定义即可求解:
∵有两个不相等的实数根,
∴△=1-4k>1,且k≠1,解得,k<且k≠1.
15、①②③④⑤⑥⑦.
【解析】
将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH.证明△MAN≌△HAN,得到MN=NH,根据三角形周长公式计算判断①;判断出BM=DN时,MN最小,即可判断出⑧;根据全等三角形的性质判断②④;将△ADF绕点A顺时针性质90°得到△ABH,连接HE.证明△EAH≌△EAF,得到∠HBE=90°,根据勾股定理计算判断③;根据等腰直角三角形的判定定理判断⑤;根据等腰直角三角形的性质、三角形的面积公式计算,判断⑥,根据点A到MN的距离等于正方形ABCD的边长、三角形的面积公式计算,判断⑦.
【详解】
将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH.
则∠DAH=∠BAM,
∵四边形ABCD是正方形,
∴∠BAD=90°,
∵∠MAN=45°,
∴∠BAN+∠DAN=45°,
∴∠NAH=45°,
在△MAN和△HAN中,
,
∴△MAN≌△HAN,
∴MN=NH=BM+DN,①正确;
∵BM+DN≥1,(当且仅当BM=DN时,取等号)
∴BM=DN时,MN最小,
∴BM=b,
∵DH=BM=b,
∴DH=DN,
∵AD⊥HN,
∴∠DAH=∠HAN=11.5°,
在DA上取一点G,使DG=DH=b,
∴∠DGH=45°,HG=DH=b,
∵∠DGH=45°,∠DAH=11.5°,
∴∠AHG=∠HAD,
∴AG=HG=b,
∴AB=AD=AG+DG=b+b=b=a,
∴,
∴,
当点M和点B重合时,点N和点C重合,此时,MN最大=AB,
即:,
∴≤≤1,⑧错误;
∵MN=NH=BM+DN
∴△CMN的周长=CM+CN+MN=CM+BM+CN+DN=CB+CD,
∴△CMN的周长等于正方形ABCD的边长的两倍,②结论正确;
∵△MAN≌△HAN,
∴点A到MN的距离等于正方形ABCD的边长AD,④结论正确;
如图1,将△ADF绕点A顺时针性质90°得到△ABH,连接HE.
∵∠DAF+∠BAE=90°-∠EAF=45°,∠DAF=∠BAE,
∴∠EAH=∠EAF=45°,
∵EA=EA,AH=AD,
∴△EAH≌△EAF,
∴EF=HE,
∵∠ABH=∠ADF=45°=∠ABD,
∴∠HBE=90°,
在Rt△BHE中,HE1=BH1+BE1,
∵BH=DF,EF=HE,
∵EF1=BE1+DF1,③结论正确;
∵四边形ABCD是正方形,
∴∠ADC=90°,∠BDC=∠ADB=45°,
∵∠MAN=45°,
∴∠EAN=∠EDN,
∴A、E、N、D四点共圆,
∴∠ADN+∠AEN=180°,
∴∠AEN=90°
∴△AEN是等腰直角三角形,
同理△AFM是等腰直角三角形;⑤结论正确;
∵△AEN是等腰直角三角形,同理△AFM是等腰直角三角形,
∴AM=AF,AN=AE,
如图3,过点M作MP⊥AN于P,
在Rt△APM中,∠MAN=45°,
∴MP=AMsin45°,
∵S△AMN=AN•MP=AM•AN•sin45°,
S△AEF=AE•AF•sin45°,
∴S△AMN:S△AEF=1,
∴S△AMN=1S△AEF,⑥正确;
∵点A到MN的距离等于正方形ABCD的边长,
∴S正方形ABCD:S△AMN==1AB:MN,⑦结论正确.
即:正确的有①②③④⑤⑥⑦,
故答案为①②③④⑤⑥⑦.
【点睛】
此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,解本题的关键是构造全等三角形.
16、2
【解析】
根据分式的性质,要使分式有意义,则必须分母不能为0,要使分式为零,则只有分子为0,因此计算即可.
【详解】
解:要使分式有意义则 ,即
要使分式为零,则 ,即
综上可得
故答案为2
【点睛】
本题主要考查分式的性质,关键在于分式的分母不能为0.
17、1.
【解析】
试题解析:∵原二次根式有意义,
∴x-3≥0,3-x≥0,
∴x=3,y=4,
∴x+y=1.
考点:二次根式有意义的条件.
三、解答题(共7小题,满分69分)
18、旗杆AB的高度为6.4米.
【解析】
分析:(1)根据坡度i与坡角α之间的关系为:i=tanα进行计算;
(2)根据余弦的概念求出CD,根据正切的概念求出AG、BG,计算即可.
本题解析:(1)∵斜坡BC的坡度i=1:,∴tan∠BCD= ,
∴∠BCD=30°;
(2)在Rt△BCD中,CD=BC×cs∠BCD=6×=9,
则DF=DC+CF=10(米),∵四边形GDFE为矩形,∴GE=DF=10(米),
∵∠AEG=45°,∴AG=DE=10(米),
在Rt△BEG中,BG=GE×tan∠BEG=10×0.36=3.6(米),
则AB=AG−BG=10−3.6=6.4(米).
答:旗杆AB的高度为6.4米。
19、(1);(1).
【解析】
(1)根据矩形的性质得出AB=AE=4,进而利用勾股定理得出DE的长,即可得出答案;(1)利用锐角三角函数关系得出∠DAE=60°,进而求出图中阴影部分的面积为:,求出即可.
【详解】
解:(1)∵在矩形ABCD中,AB=1DA,DA=1,
∴AB=AE=4,
∴DE= ,
∴EC=CD-DE=4-1;
(1)∵sin∠DEA= ,
∴∠DEA=30°,
∴∠EAB=30°,
∴图中阴影部分的面积为:
S扇形FAB-S△DAE-S扇形EAB=
.
【点睛】
此题主要考查了扇形的面积计算以及勾股定理和锐角三角函数关系等知识,根据已知得出DE的长是解题关键.
20、(1)-1;(2)x1=2+,x2=2﹣
【解析】
(1)按照实数的运算法则依次计算即可;
(2)利用配方法解方程.
【详解】
(1)原式=﹣2﹣1+2×=﹣1;
(2)x2﹣4x+2=0,
x2﹣4x=﹣2,
x2﹣4x+4=﹣2+4,即(x﹣2)2=2,
∴x﹣2=±,
∴x1=2+,x2=2﹣.
【点睛】
此题考查计算能力,(1)考查实数的计算,正确掌握绝对值的定义,零次幂的定义,特殊角度的三角函数值是解题的关键;(2)是解一元二次方程,能根据方程的特点选择适合的解法是解题的关键.
21、(1)购买一个A种品牌的足球需要50元,购买一个B种品牌的足球需要80元;(2)有三种方案,具体见解析;(3)3150元.
【解析】
试题分析:(1)、设A种品牌足球的单价为x元,B种品牌足球的单价为y元,根据题意列出二元一次方程组,从而求出x和y的值得出答案;(2)、设第二次购买A种足球m个,则购买B种足球(50-m)个,根据题意列出不等式组求出m的取值范围,从而得出答案;(3)、分别求出第二次购买时足球的单件,然后得出答案.
试题解析:(1) 设A种品牌足球的单价为x元,B种品牌足球的单价为y元
,解得
(2) 设第二次购买A种足球m个,则购买B种足球(50-m)个
,解得25≤m≤27
∵m为整数 ∴m=25、26、27
(3) ∵第二次购买足球时,A种足球单价为50+4=54(元),B种足球单价为80×0.9=72
∴当购买B种足球越多时,费用越高 此时25×54+25×72=3150(元)
22、(1)11~30;(1)31~40岁年龄段的满意人数为66人,图见解析;
【解析】
(1)取扇形统计图中所占百分比最大的年龄段即可;
(1)先求出总体感到满意的总人数,然后减去其它年龄段的人数即可,再补全条形图.
【详解】
(1)由扇形统计图可得11~30岁的人数所占百分比最大为39%,
所以,人数最多的年龄段是11~30岁;
(1)根据题意,被调查的人中,总体印象感到满意的有:400×83%=331人,
31~40岁年龄段的满意人数为:331﹣54﹣116﹣53﹣14﹣9=331﹣116=66人,
补全统计图如图.
【点睛】
本题考点:条形统计图与扇形统计图.
23、(1)见解析;(2)75﹣a.
【解析】
(1)连接CD,求出∠ADC=90°,根据切线长定理求出DE=EC,即可求出答案;
(2)连接CD、OD、OE,求出扇形DOC的面积,分别求出△ODE和△OCE的面积,即可求出答案
【详解】
(1)证明:连接DC,
∵BC是⊙O直径,
∴∠BDC=90°,
∴∠ADC=90°,
∵∠C=90°,BC为直径,
∴AC切⊙O于C,
∵过点D作⊙O的切线DE交AC于点E,
∴DE=CE,
∴∠EDC=∠ECD,
∵∠ACB=∠ADC=90°,
∴∠A+∠ACD=90°,∠ADE+∠EDC=90°,
∴∠A=∠ADE;
(2)解:连接CD、OD、OE,
∵DE=10,DE=CE,
∴CE=10,
∵∠A=∠ADE,
∴AE=DE=10,
∴AC=20,
∵∠ACB=90°,AB=25,
∴由勾股定理得:BC===15,
∴CO=OD=,
∵的长度是a,
∴扇形DOC的面积是×a×=a,
∴DE、EC和弧DC围成的部分的面积S=××10+×10﹣a=75﹣a.
【点睛】
本题考查了圆周角定理,切线的性质,切线长定理,等腰三角形的性质和判定,勾股定理,扇形的面积,三角形的面积等知识点,能综合运用知识点进行推理和计算是解此题的关键.
24、 (1)详见解析;(2)10.
【解析】
①只需证明两对对应角分别相等可得两个三角形相似;故.
②根据相似三角形的性质求出PC长以及AP与OP的关系,然后在Rt△PCO中运用勾股定理求出OP长,从而求出AB长.
【详解】
①∵四边形ABCD是矩形,
∴AD=BC,DC=AB,∠DAB=∠B=∠C=∠D=90°.
由折叠可得:AP=AB,PO=BO,∠PAO=∠BAO,∠APO=∠B.
∴∠APO=90°.
∴∠APD=90°−∠CPO=∠POC.
∵∠D=∠C,∠APD=∠POC.
∴△OCP∽△PDA.
∴.
②∵△OCP与△PDA的面积比为1:4,
∴OCPD=OPPA=CPDA=14−−√=12.
∴PD=2OC,PA=2OP,DA=2CP.
∵AD=8,
∴CP=4,BC=8.
设OP=x,则OB=x,CO=8−x.
在△PCO中,
∵∠C=90∘,CP=4,OP=x,CO=8−x,
∴x2=(8−x)2+42.
解得:x=5.
∴AB=AP=2OP=10.
∴边AB的长为10.
【点睛】
本题考查了相似三角形的判定与性质以及翻转变换,解题的关键是熟练的掌握相似三角形与翻转变换的相关知识.
相关试卷
这是一份2023年江苏省泰州市海陵区海军中学中考数学二模试卷(含解析),共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2021-2022学年江苏省泰州市泰兴实验中学中考数学模试卷含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,一元二次方程的根的情况是,在平面直角坐标系中,将点P等内容,欢迎下载使用。
这是一份2022年江苏省泰州市海陵区中考数学一模试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。