搜索
    上传资料 赚现金
    英语朗读宝

    2022年江苏省南通市八一中学中考数学全真模拟试卷含解析

    2022年江苏省南通市八一中学中考数学全真模拟试卷含解析第1页
    2022年江苏省南通市八一中学中考数学全真模拟试卷含解析第2页
    2022年江苏省南通市八一中学中考数学全真模拟试卷含解析第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年江苏省南通市八一中学中考数学全真模拟试卷含解析

    展开

    这是一份2022年江苏省南通市八一中学中考数学全真模拟试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,已知抛物线y=ax2﹣等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.下列汽车标志中,不是轴对称图形的是( )
    A. B. C. D.
    2.sin60°的值为(  )
    A. B. C. D.
    3.a的倒数是3,则a的值是(  )
    A. B.﹣ C.3 D.﹣3
    4.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( )
    A. B. C. D.
    5.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1,图2所示,图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1表示的算筹图用我们现在所熟悉的方程组形式表述出来,就是.类似地,图2所示的算筹图我们可以表述为(  )

    A. B. C. D.
    6.对于一组统计数据1,1,6,5,1.下列说法错误的是(  )
    A.众数是1 B.平均数是4 C.方差是1.6 D.中位数是6
    7.《九章算术》是中国古代数学的重要著作,方程术是它的最高成就,其中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两。问:牛、羊各直金几何?译文:“假设有 5 头牛、2 只羊,值金 10 两;2 头牛、5 只羊,值金 8 两。问:每头牛、每只羊各值金多少两?” 设每头牛值金 x 两,每只羊值金 y 两,则列方程组错误的是( )
    A. B. C. D.
    8.已知抛物线y=ax2﹣(2a+1)x+a﹣1与x轴交于A(x1,0),B(x2,0)两点,若x1<1,x2>2,则a的取值范围是(  )
    A.a<3 B.0<a<3 C.a>﹣3 D.﹣3<a<0
    9.如图,l1、l2、l3两两相交于A、B、C三点,它们与y轴正半轴分别交于点D、E、F,若A、B、C三点的横坐标分别为1、2、3,且OD=DE=1,则下列结论正确的个数是(  )
    ①,②S△ABC=1,③OF=5,④点B的坐标为(2,2.5)

    A.1个 B.2个 C.3个 D.4个
    10.一次函数的图象上有点和点,且,下列叙述正确的是  
    A.若该函数图象交y轴于正半轴,则
    B.该函数图象必经过点
    C.无论m为何值,该函数图象一定过第四象限
    D.该函数图象向上平移一个单位后,会与x轴正半轴有交点
    二、填空题(共7小题,每小题3分,满分21分)
    11.一个多边形的内角和比它的外角和的3倍少180°,则这个多边形的边数是______.
    12.如图,将边长为的正方形ABCD绕点A逆时针方向旋转30°后得到正方形A′B′C′D′,则图中阴影部分面积为_______平方单位.

    13.若关于x、y的二元一次方程组的解满足x+y>0,则m的取值范围是____.
    14.函数y=的自变量x的取值范围是_____.
    15.已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是______.
    16.分解因式:x2y﹣y=_____.
    17.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=________.

    三、解答题(共7小题,满分69分)
    18.(10分)如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D.过点D作EF⊥AC,垂足为E,且交AB的延长线于点F.求证:EF是⊙O的切线;已知AB=4,AE=1.求BF的长.

    19.(5分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE,求证:∠DAE=∠ECD.

    20.(8分)如图,AB为⊙O的直径,点D、E位于AB两侧的半圆上,射线DC切⊙O于点D,已知点E是半圆弧AB上的动点,点F是射线DC上的动点,连接DE、AE,DE与AB交于点P,再连接FP、FB,且∠AED=45°.求证:CD∥AB;填空:
    ①当∠DAE=   时,四边形ADFP是菱形;
    ②当∠DAE=   时,四边形BFDP是正方形.

    21.(10分)二次函数y=x2﹣2mx+5m的图象经过点(1,﹣2).
    (1)求二次函数图象的对称轴;
    (2)当﹣4≤x≤1时,求y的取值范围.
    22.(10分)如图是东方货站传送货物的平面示意图,为了提高安全性,工人师傅打算减小传送带与地面的夹角,由原来的45°改为36°,已知原传送带BC长为4米,求新传送带AC的长及新、原传送带触地点之间AB的长.(结果精确到0.1米)参考数据:sin36°≈0.59,cos36°≈0.1,tan36°≈0.73,取1.414

    23.(12分)为了解某校九年级学生立定跳远水平,随机抽取该年级50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.
    学生立定跳远测试成绩的频数分布表
    分组
    频数
    1.2≤x<1.6
    a
    1.6≤x<2.0
    12
    2.0≤x<2.4
    b
    2.4≤x<2.8
    10
    请根据图表中所提供的信息,完成下列问题:表中a=   ,b=   ,样本成绩的中位数落在   范围内;请把频数分布直方图补充完整;该校九年级共有1000名学生,估计该年级学生立定跳远成绩在2.4≤x<2.8范围内的学生有多少人?

    24.(14分)已知抛物线y=x2﹣(2m+1)x+m2+m,其中m是常数.
    (1)求证:不论m为何值,该抛物线与z轴一定有两个公共点;
    (2)若该抛物线的对称轴为直线x=,请求出该抛物线的顶点坐标.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    根据轴对称图形的概念求解.
    【详解】
    A、是轴对称图形,故错误;
    B、是轴对称图形,故错误;
    C、不是轴对称图形,故正确;
    D、是轴对称图形,故错误.
    故选C.
    【点睛】
    本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.
    2、B
    【解析】
    解:sin60°=.故选B.
    3、A
    【解析】
    根据倒数的定义进行解答即可.
    【详解】
    ∵a的倒数是3,∴3a=1,解得:a=.
    故选A.
    【点睛】
    本题考查的是倒数的定义,即乘积为1的两个数叫互为倒数.
    4、B
    【解析】
    试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是.
    故选B.
    考点:概率.
    5、A
    【解析】
    根据图形,结合题目所给的运算法则列出方程组.
    【详解】
    图2所示的算筹图我们可以表述为:.
    故选A.
    【点睛】
    本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.
    6、D
    【解析】
    根据中位数、众数、方差等的概念计算即可得解.
    【详解】
    A、这组数据中1都出现了1次,出现的次数最多,所以这组数据的众数为1,此选项正确;
    B、由平均数公式求得这组数据的平均数为4,故此选项正确;
    C、S2= [(1﹣4)2+(1﹣4)2+(6﹣4)2+(5﹣4)2+(1﹣4)2]=1.6,故此选项正确;
    D、将这组数据按从大到校的顺序排列,第1个数是1,故中位数为1,故此选项错误;
    故选D.
    考点:1.众数;2.平均数;1.方差;4.中位数.
    7、D
    【解析】
    由5头牛、2只羊,值金10两可得:5x+2y=10,由2头牛、5只羊,值金8两可得2x+5y=8,则7头牛、7只羊,值金18两,据此可知7x+7y=18,据此可得答案.
    【详解】
    解:设每头牛值金x两,每只羊值金y两,
    由5头牛、2只羊,值金10两可得:5x+2y=10,
    由2头牛、5只羊,值金8两可得2x+5y=8,
    则7头牛、7只羊,值金18两,据此可知7x+7y=18,
    所以方程组错误,
    故选:D.
    【点睛】
    本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意找到相等关系及等式的基本性质.
    8、B
    【解析】
    由已知抛物线求出对称轴,
    解:抛物线:,对称轴,由判别式得出a的取值范围.
    ,,
    ∴,
    ①,.
    ②由①②得.
    故选B.
    9、C
    【解析】
    ①如图,由平行线等分线段定理(或分线段成比例定理)易得:;
    ②设过点B且与y轴平行的直线交AC于点G,则S△ABC=S△AGB+S△BCG,易得:S△AED=,△AED∽△AGB且相似比=1,所以,△AED≌△AGB,所以,S△AGB=,又易得G为AC中点,所以,S△AGB=S△BGC=,从而得结论;
    ③易知,BG=DE=1,又△BGC∽△FEC,列比例式可得结论;
    ④易知,点B的位置会随着点A在直线x=1上的位置变化而相应的发生变化,所以④错误.
    【详解】
    解:①如图,∵OE∥AA'∥CC',且OA'=1,OC'=1,
    ∴,
    故 ①正确;
    ②设过点B且与y轴平行的直线交AC于点G(如图),则S△ABC=S△AGB+S△BCG,
    ∵DE=1,OA'=1,
    ∴S△AED=×1×1=,

    ∵OE∥AA'∥GB',OA'=A'B',
    ∴AE=AG,
    ∴△AED∽△AGB且相似比=1,
    ∴△AED≌△AGB,
    ∴S△ABG=,
    同理得:G为AC中点,
    ∴S△ABG=S△BCG=,
    ∴S△ABC=1,
    故 ②正确;
    ③由②知:△AED≌△AGB,
    ∴BG=DE=1,
    ∵BG∥EF,
    ∴△BGC∽△FEC,
    ∴,
    ∴EF=1.即OF=5,
    故③正确;
    ④易知,点B的位置会随着点A在直线x=1上的位置变化而相应的发生变化,
    故④错误;
    故选C.
    【点睛】
    本题考查了图形与坐标的性质、三角形的面积求法、相似三角形的性质和判定、平行线等分线段定理、函数图象交点等知识及综合应用知识、解决问题的能力.考查学生数形结合的数学思想方法.
    10、B
    【解析】
    利用一次函数的性质逐一进行判断后即可得到正确的结论.
    【详解】
    解:一次函数的图象与y轴的交点在y轴的正半轴上,则,,若,则,故A错误;
    把代入得,,则该函数图象必经过点,故B正确;
    当时,,,函数图象过一二三象限,不过第四象限,故C错误;
    函数图象向上平移一个单位后,函数变为,所以当时,,故函数图象向上平移一个单位后,会与x轴负半轴有交点,故D错误,
    故选B.
    【点睛】
    本题考查了一次函数图象上点的坐标特征、一次函数图象与几何变换,解题的关键是熟练掌握一次函数的性质,灵活应用这些知识解决问题,属于中考常考题型.

    二、填空题(共7小题,每小题3分,满分21分)
    11、7
    【解析】
    根据多边形内角和公式得:(n-2) .得:

    12、6﹣2
    【解析】
    由旋转角∠BAB′=30°,可知∠DAB′=90°﹣30°=60°;设B′C′和CD的交点是O,连接OA,构造全等三角形,用S阴影部分=S正方形﹣S四边形AB′OD,计算面积即可.
    【详解】
    解:设B′C′和CD的交点是O,连接OA,
    ∵AD=AB′,AO=AO,∠D=∠B′=90°,
    ∴Rt△ADO≌Rt△AB′O,
    ∴∠OAD=∠OAB′=30°,
    ∴OD=OB′= ,
    S四边形AB′OD=2S△AOD=2××=2,
    ∴S阴影部分=S正方形﹣S四边形AB′OD=6﹣2.

    【点睛】
    此题的重点是能够计算出四边形的面积.注意发现全等三角形.
    13、m>-1
    【解析】
    首先解关于x和y的方程组,利用m表示出x+y,代入x+y>0即可得到关于m的不等式,求得m的范围.
    【详解】
    解:,
    ①+②得1x+1y=1m+4,
    则x+y=m+1,
    根据题意得m+1>0,
    解得m>﹣1.
    故答案是:m>﹣1.
    【点睛】
    本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m当作已知数表示出x+y的值,再得到关于m的不等式.
    14、x≥﹣且x≠1
    【解析】
    分析:根据被开方数大于等于0,分母不等于0列式求解即可.
    详解:根据题意得2x+1≥0,x-1≠0,
    解得x≥-且x≠1.
    故答案为x≥-且x≠1.
    点睛:本题主要考查了函数自变量的取值范围的确定,根据分母不等于0,被开方数大于等于0列式计算即可,是基础题,比较简单.
    15、1或2
    【解析】
    先根据非负数的性质列式求出x、y的值,再分x的值是腰长与底边两种情况讨论求解.
    【详解】
    根据题意得,x-5=0,y-7=0,
    解得x=5,y=7,
    ①5是腰长时,三角形的三边分别为5、5、7,三角形的周长为1.
    ②5是底边时,三角形的三边分别为5、7、7,
    能组成三角形,5+7+7=2;
    所以,三角形的周长为:1或2;
    故答案为1或2.
    【点睛】
    本题考查了等腰三角形的性质,绝对值与算术平方根的非负性,根据几个非负数的和等于0,则每一个算式都等于0求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.
    16、y(x+1)(x﹣1)
    【解析】
    观察原式x2y﹣y,找到公因式y后,提出公因式后发现x2-1符合平方差公式,利用平方差公式继续分解可得.
    【详解】
    解:x2y﹣y
    =y(x2﹣1)
    =y(x+1)(x﹣1).
    故答案为:y(x+1)(x﹣1).
    【点睛】
    本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
    17、1
    【解析】
    首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:1,在Rt△OBF中,即可求得tan∠BOF的值,继而求得答案.
    【详解】
    如图,连接BE,

    ∵四边形BCEK是正方形,
    ∴KF=CF=CK,BF=BE,CK=BE,BE⊥CK,
    ∴BF=CF,
    根据题意得:AC∥BK,
    ∴△ACO∽△BKO,
    ∴KO:CO=BK:AC=1:3,
    ∴KO:KF=1:1,
    ∴KO=OF=CF=BF,
    在Rt△PBF中,tan∠BOF==1,
    ∵∠AOD=∠BOF,
    ∴tan∠AOD=1.
    故答案为1
    【点睛】
    此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.

    三、解答题(共7小题,满分69分)
    18、(1)证明见解析;(2)2.
    【解析】
    (1)作辅助线,根据等腰三角形三线合一得BD=CD,根据三角形的中位线可得OD∥AC,所以得OD⊥EF,从而得结论;
    (2)证明△ODF∽△AEF,列比例式可得结论.
    【详解】
    (1)证明:连接OD,AD,
    ∵AB是⊙O的直径,
    ∴AD⊥BC,
    ∵AB=AC,
    ∴BD=CD,
    ∵OA=OB,
    ∴OD∥AC,
    ∵EF⊥AC,
    ∴OD⊥EF,
    ∴EF是⊙O的切线;

    (2)解:∵OD∥AE,
    ∴△ODF∽△AEF,
    ∴,
    ∵AB=4,AE=1,
    ∴,
    ∴BF=2.
    【点睛】
    本题主要考查的是圆的综合应用,解答本题主要应用了圆周角定理、相似三角形的性质和判定,圆的切线的判定,掌握本题的辅助线的作法是解题的关键.
    19、见解析,
    【解析】
    要证∠DAE=∠ECD.需先证△ADF≌△CEF,由折叠得BC=EC,∠B=∠AEC,由矩形得BC=AD,∠B=∠ADC=90°,再根据等量代换和对顶角相等可以证出,得出结论.
    【详解】
    证明:由折叠得:BC=EC,∠B=∠AEC,
    ∵矩形ABCD,
    ∴BC=AD,∠B=∠ADC=90°,
    ∴EC=DA,∠AEC=∠ADC=90°,
    又∵∠AFD=∠CFE,
    ∴△ADF≌△CEF (AAS)
    ∴∠DAE=∠ECD.
    【点睛】
    本题考查折叠的性质、矩形的性质、全等三角形的性质和判定等知识,借助于三角形全等证明线段相等和角相等是常用的方法.
    20、(1)详见解析;(2)①67.5°;②90°.
    【解析】
    (1)要证明CD∥AB,只要证明∠ODF=∠AOD即可,根据题目中的条件可以证明∠ODF=∠AOD,从而可以解答本题;
    (2)①根据四边形ADFP是菱形和菱形的性质,可以求得∠DAE的度数;
    ②根据四边形BFDP是正方形,可以求得∠DAE的度数.
    【详解】
    (1)证明:连接OD,如图所示,

    ∵射线DC切⊙O于点D,
    ∴OD⊥CD,
    即∠ODF=90°,
    ∵∠AED=45°,
    ∴∠AOD=2∠AED=90°,
    ∴∠ODF=∠AOD,
    ∴CD∥AB;
    (2)①连接AF与DP交于点G,如图所示,

    ∵四边形ADFP是菱形,∠AED=45°,OA=OD,
    ∴AF⊥DP,∠AOD=90°,∠DAG=∠PAG,
    ∴∠AGE=90°,∠DAO=45°,
    ∴∠EAG=45°,∠DAG=∠PEG=22.5°,
    ∴∠EAD=∠DAG+∠EAG=22.5°+45°=67.5°,
    故答案为:67.5°;
    ②∵四边形BFDP是正方形,
    ∴BF=FD=DP=PB,
    ∠DPB=∠PBF=∠BFD=∠FDP=90°,
    ∴此时点P与点O重合,
    ∴此时DE是直径,
    ∴∠EAD=90°,
    故答案为:90°.
    【点睛】
    本题考查菱形的判定与性质、切线的性质、正方形的判定,解答本题的关键是明确题意,找出所求问题需要的条件,利用菱形的性质和正方形的性质解答.
    21、(1)x=-1;(2)﹣6≤y≤1;
    【解析】
    (1)根据抛物线的对称性和待定系数法求解即可;
    (2)根据二次函数的性质可得.
    【详解】
    (1)把点(1,﹣2)代入y=x2﹣2mx+5m中,
    可得:1﹣2m+5m=﹣2,
    解得:m=﹣1,
    所以二次函数y=x2﹣2mx+5m的对称轴是x=,
    (2)∵y=x2+2x﹣5=(x+1)2﹣6,
    ∴当x=﹣1时,y取得最小值﹣6,
    由表可知当x=﹣4时y=1,当x=﹣1时y=﹣6,
    ∴当﹣4≤x≤1时,﹣6≤y≤1.
    【点睛】
    本题考查了二次函数图象与性质及待定系数法求函数解析式,熟练掌握二次函数的图象与性质是解题的关键.
    22、新传送带AC的长为1.8m,新、原传送带触地点之间AB的长约为1.2m.
    【解析】
    根据题意得出:∠A=36°,∠CBD=15°,BC=1,即可得出BD的长,再表示出AD的长,进而求出AB的长.
    【详解】
    解:如图,作CD⊥AB于点D,由题意可得:∠A=36°,∠CBD=15°,BC=1.
    在Rt△BCD中,sin∠CBD=,∴CD=BCsin∠CBD=2.
    ∵∠CBD=15°,∴BD=CD=2.
    在Rt△ACD中,sinA=,tanA=,∴AC=≈≈1.8,AD==,∴AB=AD﹣BD=﹣2=﹣2×1.111≈3.87﹣2.83=1.21≈1.2.

    答:新传送带AC的长为1.8m,新、原传送带触地点之间AB的长约为1.2m.
    【点睛】
    本题考查了坡度坡角问题,正确构建直角三角形再求出BD的长是解题的关键.
    23、(1)8,20,2.0≤x<2.4;(2)补图见解析;(3)该年级学生立定跳远成绩在2.4≤x<2.8范围内的学生有200人.
    【解析】
    【分析】(1)根据题意和统计图可以求得a、b的值,并得到样本成绩的中位数所在的取值范围;
    (2)根据b的值可以将频数分布直方图补充完整;
    (3)用1000乘以样本中该年级学生立定跳远成绩在2.4≤x<2.8范围内的学生比例即可得.
    【详解】(1)由统计图可得,
    a=8,b=50﹣8﹣12﹣10=20,
    样本成绩的中位数落在:2.0≤x<2.4范围内,
    故答案为:8,20,2.0≤x<2.4;
    (2)由(1)知,b=20,
    补全的频数分布直方图如图所示;

    (3)1000×=200(人),
    答:该年级学生立定跳远成绩在2.4≤x<2.8范围内的学生有200人.
    【点睛】本题考查了频数分布表、频数分布直方图、中位数等,读懂统计图与统计表,从中找到必要的信息是解题的关键.
    24、 (1)见解析;(2)顶点为(,﹣)
    【解析】
    (1)根据题意,由根的判别式△=b2﹣4ac>0得到答案;
    (2)结合题意,根据对称轴x=﹣得到m=2,即可得到抛物线解析式为y=x2﹣5x+6,再将抛物线解析式为y=x2﹣5x+6变形为y=x2﹣5x+6=(x﹣)2﹣,即可得到答案.
    【详解】
    (1)证明:a=1,b=﹣(2m+1),c=m2+m,
    ∴△=b2﹣4ac=[﹣(2m+1)]2﹣4×1×(m2+m)=1>0,
    ∴抛物线与x轴有两个不相同的交点.
    (2)解:∵y=x2﹣(2m+1)x+m2+m,
    ∴对称轴x=﹣==,
    ∵对称轴为直线x=,
    ∴=,
    解得m=2,
    ∴抛物线解析式为y=x2﹣5x+6,
    ∵y=x2﹣5x+6=(x﹣)2﹣,
    ∴顶点为(,﹣ ).
    【点睛】
    本题考查根的判别式、对称轴和顶点,解题的关键是掌握根的判别式、对称轴和顶点的计算和使用.

    相关试卷

    2023届南通市启秀中学中考数学全真模拟试题含解析:

    这是一份2023届南通市启秀中学中考数学全真模拟试题含解析,共16页。

    江苏省南通市崇川区八一中学2021-2022学年中考押题数学预测卷含解析:

    这是一份江苏省南通市崇川区八一中学2021-2022学年中考押题数学预测卷含解析,共25页。试卷主要包含了若x>y,则下列式子错误的是等内容,欢迎下载使用。

    江苏省南通市八一中学2021-2022学年中考数学猜题卷含解析:

    这是一份江苏省南通市八一中学2021-2022学年中考数学猜题卷含解析,共19页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map