


2022年江苏省泰州医药高新区六校联考中考适应性考试数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.已知:如图,在平面直角坐标系xOy中,等边△AOB的边长为6,点C在边OA上,点D在边AB上,且OC=3BD,反比例函数y=(k≠0)的图象恰好经过点C和点D,则k的值为( )
A. B. C. D.
2.某运动会颁奖台如图所示,它的主视图是( )
A. B. C. D.
3.如图所示的几何体,它的左视图与俯视图都正确的是( )
A. B. C. D.
4.|–|的倒数是( )
A.–2 B.– C. D.2
5.如图,线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,则端点C的坐标分别为( )
A.(4,4) B.(3,3) C.(3,1) D.(4,1)
6.如图是由若干个相同的小正方体搭成的一个几何体的主视图和俯视图,则所需的小正方体的个数最少是( )
A. B. C. D.
7.某工程队开挖一条480米的隧道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖米,那么求时所列方程正确的是( )
A. B.
C. D.
8.如图,直线AB∥CD,则下列结论正确的是( )
A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180° D.∠3+∠4=180°
9.若关于x的不等式组无解,则m的取值范围( )
A.m>3 B.m<3 C.m≤3 D.m≥3
10.如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC上的一个动点,则PE+PD的最小值是( )
A. B. C.9 D.
11.如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为( )
A.25° B.50° C.60° D.30°
12.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A,B在围成的正方体中的距离是( )
A.0 B.1 C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.抛物线y=x2+2x+m﹣1与x轴有交点,则m的取值范围是_____.
14.如图,在梯形中,,,点、分别是边、的中点.设,,那么向量用向量表示是________.
15.如图,从一个直径为1m的圆形铁片中剪出一个圆心角为90°的扇形,再将剪下的扇形围成一个圆锥,则圆锥的底面半径为_____m.
16.直角三角形的两条直角边长为6,8,那么斜边上的中线长是____.
17.如图,在四边形ABCD中,对角线AC,BD交于点O,OA=OC,OB=OD,添加一个条件使四边形ABCD是菱形,那么所添加的条件可以是___________(写出一个即可).
18.计算的结果等于______________________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在平行四边形ABCD中,BD为对角线,AE⊥BD,CF⊥BD,垂足分别为E、F,连接AF、CE,求证:AF=CE.
20.(6分) “六一”儿童节前夕,某县教育局准备给留守儿童赠送一批学习用品,先对红星小学的留守儿童人数进行抽样统计,发现各班留守儿童人数分别为6名,7名,8名,10名,12名这五种情形,并绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:
(1)该校有_____个班级,补全条形统计图;
(2)求该校各班留守儿童人数数据的平均数,众数与中位数;
(3)若该镇所有小学共有60个教学班,请根据样本数据,估计该镇小学生中,共有多少名留守儿童.
21.(6分)如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣与x轴交于点A(1,0)和点B(﹣3,0).绕点A旋转的直线l:y=kx+b1交抛物线于另一点D,交y轴于点C.
(1)求抛物线的函数表达式;
(2)当点D在第二象限且满足CD=5AC时,求直线l的解析式;
(3)在(2)的条件下,点E为直线l下方抛物线上的一点,直接写出△ACE面积的最大值;
(4)如图2,在抛物线的对称轴上有一点P,其纵坐标为4,点Q在抛物线上,当直线l与y轴的交点C位于y轴负半轴时,是否存在以点A,D,P,Q为顶点的平行四边形?若存在,请直接写出点D的横坐标;若不存在,请说明理由.
22.(8分)如图,⊙O是Rt△ABC的外接圆,∠C=90°,tanB=,过点B的直线l是⊙O的切线,点D是直线l上一点,过点D作DE⊥CB交CB延长线于点E,连接AD,交⊙O于点F,连接BF、CD交于点G.
(1)求证:△ACB∽△BED;
(2)当AD⊥AC时,求 的值;
(3)若CD平分∠ACB,AC=2,连接CF,求线段CF的长.
23.(8分)计算:
(1)(2)2﹣|﹣4|+3﹣1×6+20;
(2).
24.(10分)勾股定理神秘而美妙,它的证法多样,其中的“面积法”给了李明灵感,他惊喜地发现;当两个全等的直角三角形如图(1)摆放时可以利用面积法”来证明勾股定理,过程如下
如图(1)∠DAB=90°,求证:a2+b2=c2
证明:连接DB,过点D作DF⊥BC交BC的延长线于点F,则DF=b-a
S四边形ADCB=
S四边形ADCB=
∴化简得:a2+b2=c2
请参照上述证法,利用“面积法”完成如图(2)的勾股定理的证明,如图(2)中∠DAB=90°,求证:a2+b2=c2
25.(10分)学了统计知识后,小红就本班同学上学“喜欢的出行方式”进行了一次调查,图(1)和图(2)是她根据采集的数据绘制的两幅不完整的统计图,请根据图中提供的信息解答以下问题:
(1)补全条形统计图,并计算出“骑车”部分所对应的圆心角的度数.
(2)若由3名“喜欢乘车”的学生,1名“喜欢骑车”的学生组队参加一项活动,现欲从中选出2人担任组长(不分正副),求出2人都是“喜欢乘车”的学生的概率,(要求列表或画树状图)
26.(12分)当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.求七年级已“建档立卡”的贫困家庭的学生总人数;将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.
27.(12分)解不等式组:,并把解集在数轴上表示出来.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
试题分析:过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,如图所示.
设BD=a,则OC=3a.
∵△AOB为边长为1的等边三角形,∴∠COE=∠DBF=10°,OB=1.
在Rt△COE中,∠COE=10°,∠CEO=90°,OC=3a,∴∠OCE=30°,∴OE=a,CE= = a,∴点C(a, a).
同理,可求出点D的坐标为(1﹣a,a).
∵反比例函数(k≠0)的图象恰好经过点C和点D,∴k=a×a=(1﹣a)×a,∴a=,k=.故选A.
2、C
【解析】
从正面看到的图形如图所示:
,
故选C.
3、D
【解析】
试题分析:该几何体的左视图是边长分别为圆的半径和直径的矩形,俯视图是边长分别为圆的直径和半径的矩形,故答案选D.
考点:D.
4、D
【解析】
根据绝对值的性质,可化简绝对值,根据倒数的意义,可得答案.
【详解】
|−|=,的倒数是2;
∴|−|的倒数是2,
故选D.
【点睛】
本题考查了实数的性质,分子分母交换位置是求一个数倒数的关键.
5、A
【解析】
利用位似图形的性质结合对应点坐标与位似比的关系得出C点坐标.
【详解】
∵以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,
∴A点与C点是对应点,
∵C点的对应点A的坐标为(2,2),位似比为1:2,
∴点C的坐标为:(4,4)
故选A.
【点睛】
本题考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键.
6、B
【解析】
主视图、俯视图是分别从物体正面、上面看,所得到的图形.
【详解】
综合主视图和俯视图,底层最少有个小立方体,第二层最少有个小立方体,因此搭成这个几何体的小正方体的个数最少是个.
故选:B.
【点睛】
此题考查由三视图判断几何体,解题关键在于识别图形
7、C
【解析】
本题的关键描述语是:“提前1天完成任务”;等量关系为:原计划用时−实际用时=1.
【详解】
解:原计划用时为:,实际用时为:.
所列方程为:,
故选C.
【点睛】
本题考查列分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
8、D
【解析】
分析:依据AB∥CD,可得∠3+∠5=180°,再根据∠5=∠4,即可得出∠3+∠4=180°.
详解:如图,∵AB∥CD,
∴∠3+∠5=180°,
又∵∠5=∠4,
∴∠3+∠4=180°,
故选D.
点睛:本题考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.
9、C
【解析】
根据“大大小小找不着”可得不等式2+m≥2m-1,即可得出m的取值范围.
【详解】
,
由①得:x>2+m,
由②得:x<2m﹣1,
∵不等式组无解,
∴2+m≥2m﹣1,
∴m≤3,
故选C.
【点睛】
考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则得出是解题关键.
10、A
【解析】
解:如图,连接BE,设BE与AC交于点P′,∵四边形ABCD是正方形,∴点B与D关于AC对称,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最小.即P在AC与BE的交点上时,PD+PE最小,为BE的长度.∵直角△CBE中,∠BCE=90°,BC=9,CE=CD=3,∴BE==.故选A.
点睛:此题考查了轴对称﹣﹣最短路线问题,正方形的性质,要灵活运用对称性解决此类问题.找出P点位置是解题的关键.
11、A
【解析】
如图,∵∠BOC=50°,
∴∠BAC=25°,
∵AC∥OB,
∴∠OBA=∠BAC=25°,
∵OA=OB,
∴∠OAB=∠OBA=25°.
故选A.
12、C
【解析】
试题分析: 本题考查了勾股定理、展开图折叠成几何体、正方形的性质;熟练掌握正方形的性质和勾股定理,并能进行推理计算是解决问题的关键.由正方形的性质和勾股定理求出AB的长,即可得出结果.
解:连接AB,如图所示:
根据题意得:∠ACB=90°,
由勾股定理得:AB==;
故选C.
考点:1.勾股定理;2.展开图折叠成几何体.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、m≤1.
【解析】
由抛物线与x轴有交点可得出方程x1+1x+m-1=0有解,利用根的判别式△≥0,即可得出关于m的一元一次不等式,解之即可得出结论.
【详解】
∴关于x的一元二次方程x1+1x+m−1=0有解,
∴△=11−4(m−1)=8−4m≥0,
解得:m≤1.
故答案为:m≤1.
【点睛】
本题考查的知识点是抛物线与坐标轴的交点,解题的关键是熟练的掌握抛物线与坐标轴的交点.
14、
【解析】
分析:根据梯形的中位线等于上底与下底和的一半表示出EF,然后根据向量的三角形法则解答即可.
详解:∵点E、F分别是边AB、CD的中点,∴EF是梯形ABCD的中位线,FC=DC,∴EF=(AD+BC).∵BC=3AD,∴EF=(AD+3AD)=2AD,由三角形法则得,=+=2+===2+.
故答案为:2+.
点睛:本题考查了平面向量,平面向量的问题,熟练掌握三角形法则和平行四边形法则是解题的关键,本题还考查了梯形的中位线等于上底与下底和的一半.
15、m.
【解析】
利用勾股定理易得扇形的半径,那么就能求得扇形的弧长,除以2π即为圆锥的底面半径.
【详解】
解:易得扇形的圆心角所对的弦是直径,
∴扇形的半径为: m,
∴扇形的弧长为: =πm,
∴圆锥的底面半径为:π÷2π=m.
【点睛】
本题考查:90度的圆周角所对的弦是直径;圆锥的侧面展开图的弧长等于圆锥的底面周长,解题关键是弧长公式.
16、1.
【解析】
试题分析:∵直角三角形的两条直角边长为6,8,∴由勾股定理得,斜边=10.
∴斜边上的中线长=×10=1.
考点:1.勾股定理;2. 直角三角形斜边上的中线性质.
17、AB=AD(答案不唯一).
【解析】
已知OA=OC,OB=OD,可得四边形ABCD是平行四边形,再根据菱形的判定定理添加邻边相等或对角线垂直即可判定该四边形是菱形.所以添加条件AB=AD或BC=CD或AC⊥BD,本题答案不唯一,符合条件即可.
18、
【解析】
根据完全平方式可求解,完全平方式为
【详解】
【点睛】
此题主要考查二次根式的运算,完全平方式的正确运用是解题关键
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、见解析
【解析】
易证△ABE≌△CDF,得AE=CF,即可证得△AEF≌△CFE,即可得证.
【详解】
在平行四边形ABCD中,AB∥CD,AB=CD
∴∠ABE=∠CDF,
又AE⊥BD,CF⊥BD
∴△ABE≌△CDF(AAS),
∴AE=CF
又∠AEF=∠CFE,EF=FE,
∴△AEF≌△CFE(SAS)
∴AF=CE.
【点睛】
此题主要考查平行四边形的性质与全等三角形的判定与性质,解题的关键是熟知平行四边形的性质定理.
20、(1)16;(2)平均数是3,众数是10,中位数是3;(3)1.
【解析】
(1)根据有7名留守儿童班级有2个,所占的百分比是2.5%,即可求得班级的总个数,再求出有8名留守儿童班级的个数,进而补全条形统计图;
(2)将这组数据按照从小到大排列即可求得统计的这组留守儿童人数数据的平均数、众数和中位数;
(3)利用班级数60乘以(2)中求得的平均数即可.
【详解】
解:(1)该校的班级数是:2÷2.5%=16(个).
则人数是8名的班级数是:16﹣1﹣2﹣6﹣2=5(个).
条形统计图补充如下图所示:
故答案为16;
(2)每班的留守儿童的平均数是:(1×6+2×7+5×8+6×10+2×2)÷16=3
将这组数据按照从小到大排列是:6,7,7,8,8,8,8,8,10,10,10,10,10,10,2,2.
故这组数据的众数是10,中位数是(8+10)÷2=3.
即统计的这组留守儿童人数数据的平均数是3,众数是10,中位数是3;
(3)该镇小学生中,共有留守儿童60×3=1(名).
答:该镇小学生中共有留守儿童1名.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了平均数、中位数和众数以及用样本估计总体.
21、(1)y=x2+x﹣;(2)y=﹣x+1;(3)当x=﹣2时,最大值为;(4)存在,点D的横坐标为﹣3或或﹣.
【解析】
(1)设二次函数的表达式为:y=a(x+3)(x﹣1)=ax2+2ax﹣3a,即可求解;
(2)OC∥DF,则 即可求解;
(3)由S△ACE=S△AME﹣S△CME即可求解;
(4)分当AP为平行四边形的一条边、对角线两种情况,分别求解即可.
【详解】
(1)设二次函数的表达式为:y=a(x+3)(x﹣1)=ax2+2ax﹣3a,
即: 解得:
故函数的表达式为: ①;
(2)过点D作DF⊥x轴交于点F,过点E作y轴的平行线交直线AD于点M,
∵OC∥DF,∴OF=5OA=5,
故点D的坐标为(﹣5,6),
将点A、D的坐标代入一次函数表达式:y=mx+n得:,解得:
即直线AD的表达式为:y=﹣x+1,
(3)设点E坐标为 则点M坐标为
则
∵故S△ACE有最大值,
当x=﹣2时,最大值为;
(4)存在,理由:
①当AP为平行四边形的一条边时,如下图,
设点D的坐标为
将点A向左平移2个单位、向上平移4个单位到达点P的位置,
同样把点D左平移2个单位、向上平移4个单位到达点Q的位置,
则点Q的坐标为
将点Q的坐标代入①式并解得:
②当AP为平行四边形的对角线时,如下图,
设点Q坐标为点D的坐标为(m,n),
AP中点的坐标为(0,2),该点也是DQ的中点,
则: 即:
将点D坐标代入①式并解得:
故点D的横坐标为:或或.
【点睛】
本题考查的是二次函数综合运用,涉及到图形平移、平行四边形的性质等,关键是(4)中,用图形平移的方法求解点的坐标,本题难度大.
22、(1)详见解析;(2) ;(3).
【解析】
(1)只要证明∠ACB=∠E,∠ABC=∠BDE即可;
(2)首先证明BE:DE:BC=1:2:4,由△GCB∽△GDF,可得=;
(3)想办法证明AB垂直平分CF即可解决问题.
【详解】
(1)证明:如图1中,
∵DE⊥CB,
∴∠ACB=∠E=90°,
∵BD是切线,
∴AB⊥BD,
∴∠ABD=90°,
∴∠ABC+∠DBE=90°,∠BDE+∠DBE=90°,
∴∠ABC=∠BDE,
∴△ACB∽△BED;
(2)解:如图2中,
∵△ACB∽△BED;四边形ACED是矩形,
∴BE:DE:BC=1:2:4,
∵DF∥BC,
∴△GCB∽△GDF,
∴=;
(3)解:如图3中,
∵tan∠ABC==,AC=2,
∴BC=4,BE=4,DE=8,AB=2,BD=4,
易证△DBE≌△DBF,可得BF=4=BC,
∴AC=AF=2,
∴CF⊥AB,设CF交AB于H,
则CF=2CH=2×.
【点睛】
本题考查相似三角形的判定和性质、圆周角定理、切线的性质、解直角三角形、线段的垂直平分线的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,所以中考常考题型.
23、(1)1;(2).
【解析】
(1)先计算乘方、绝对值、负整数指数幂和零指数幂,再计算乘法,最后计算加减运算可得;
(2)先将分子、分母因式分解,再计算乘法,最后计算减法即可得.
【详解】
(1)原式=8-4+×6+1
=8-4+2+1
=1.
(2)原式=
=
=.
【点睛】
本题主要考查实数和分式的混合运算,解题的关键是掌握绝对值性质、负整数指数幂、零指数幂及分式混合运算顺序和运算法则.
24、见解析.
【解析】
首先连结BD,过点B作DE边上的高BF,则BF=b-a,表示出S五边形ACBED,两者相等,整理即可得证.
【详解】
证明:连结BD,过点B作DE边上的高BF,则BF=b-a,
∵S五边形ACBED=S△ACB+S△ABE+S△ADE=ab+b1+ab,
又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=ab+c1+a(b-a),
∴ab+b1+ab=ab+c1+a(b-a),
∴a1+b1=c1.
【点睛】
此题考查了勾股定理的证明,用两种方法表示出五边形ACBED的面积是解本题的关键.
25、(1)补全条形统计图见解析;“骑车”部分所对应的圆心角的度数为108°;(2)2人都是“喜欢乘车”的学生的概率为.
【解析】
(1)从两图中可以看出乘车的有25人,占了50%,即可得共有学生50人;总人数减乘车的和骑车的人数就是步行的人数,根据数据补全直方图即可;要求扇形的度数就要先求出骑车的占的百分比,然后再求度数;(2)列出从这4人中选两人的所有等可能结果数,2人都是“喜欢乘车”的学生的情况有3种,然后根据概率公式即可求得.
【详解】
(1)被调查的总人数为25÷50%=50人;
则步行的人数为50﹣25﹣15=10人;
如图所示条形图,
“骑车”部分所对应的圆心角的度数=×360°=108°;
(2)设3名“喜欢乘车”的学生表示为A、B、C,1名“喜欢骑车”的学生表示为D,
则有AB、AC、AD、BC、BD、CD这6种等可能的情况,
其中2人都是“喜欢乘车”的学生有3种结果,
所以2人都是“喜欢乘车”的学生的概率为.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
26、(1)15人;(2)补图见解析.(3).
【解析】
(1)根据三班有6人,占的百分比是40%,用6除以所占的百分比即可得总人数;
(2)用总人数减去一、三、四班的人数得到二班的人数即可补全条形图,用一班所占的比例乘以360°即可得A1所在扇形的圆心角的度数;
(3)根据题意画出树状图,得出所有可能,进而求恰好选出一名男生和一名女生的概率.
【详解】
解:(1)七年级已“建档立卡”的贫困家庭的学生总人数:6÷40%=15人;
(2)A2的人数为15﹣2﹣6﹣4=3(人)
补全图形,如图所示,
A1所在圆心角度数为:×360°=48°;
(3)画出树状图如下:
共6种等可能结果,符合题意的有3种
∴选出一名男生一名女生的概率为:P=.
【点睛】
本题考查了条形图与扇形统计图,概率等知识,准确识图,从图中发现有用的信息,正确根据已知画出树状图得出所有可能是解题关键.
27、x≥
【解析】
分析:分别求解两个不等式,然后按照不等式的确定方法求解出不等式组的解集,然后表示在数轴上即可.
详解:,
由①得,x>﹣2;
由②得,x≥,
故此不等式组的解集为:x≥.
在数轴上表示为:.
点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
江苏省泰州医药高新区六校联考2023-2024学年九上数学期末复习检测试题含答案: 这是一份江苏省泰州医药高新区六校联考2023-2024学年九上数学期末复习检测试题含答案,共9页。试卷主要包含了考生要认真填写考场号和座位序号,关于x的一元二次方程x2+等内容,欢迎下载使用。
2023-2024学年江苏省泰州医药高新区六校联考八上数学期末学业水平测试试题含答案: 这是一份2023-2024学年江苏省泰州医药高新区六校联考八上数学期末学业水平测试试题含答案,共8页。试卷主要包含了答题时请按要求用笔,已知=6,=3,则的值为等内容,欢迎下载使用。
江苏省泰州医药高新区六校联考2021-2022学年中考数学模拟预测试卷含解析: 这是一份江苏省泰州医药高新区六校联考2021-2022学年中考数学模拟预测试卷含解析,共20页。试卷主要包含了下列二次根式,最简二次根式是,已知抛物线y=x2-2mx-4,下列各组数中,互为相反数的是等内容,欢迎下载使用。