终身会员
搜索
    上传资料 赚现金
    2022年江苏省无锡市锡东片十校联考最后数学试题含解析
    立即下载
    加入资料篮
    2022年江苏省无锡市锡东片十校联考最后数学试题含解析01
    2022年江苏省无锡市锡东片十校联考最后数学试题含解析02
    2022年江苏省无锡市锡东片十校联考最后数学试题含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年江苏省无锡市锡东片十校联考最后数学试题含解析

    展开
    这是一份2022年江苏省无锡市锡东片十校联考最后数学试题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,下列图形是轴对称图形的有,﹣23的相反数是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.在如图所示的计算程序中,y与x之间的函数关系所对应的图象应为( )

    A. B. C. D.
    2.如图,平行四边形ABCD中,E,F分别在CD、BC的延长线上,AE∥BD,EF⊥BC,tan∠ABC=,EF=,则AB的长为(  )

    A. B. C.1 D.
    3.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为( )

    A.10 B.9 C.8 D.7
    4.下列博物院的标识中不是轴对称图形的是( )
    A. B.
    C. D.
    5.下列图形是轴对称图形的有(  )

    A.2个 B.3个 C.4个 D.5个
    6.如果t>0,那么a+t与a的大小关系是( )
    A.a+t>a B.a+t 7.如图,矩形ABCD中,E为DC的中点,AD:AB=:2,CP:BP=1:2,连接EP并延长,交AB的延长线于点F,AP、BE相交于点O.下列结论:①EP平分∠CEB;②=PB•EF;③PF•EF=2;④EF•EP=4AO•PO.其中正确的是(  )

    A.①②③ B.①②④ C.①③④ D.③④
    8.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价20%,现售价为a元,则原售价为(  )
    A.(a﹣20%)元 B.(a+20%)元 C.a元 D. a元
    9.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是(  )

    A.角的内部到角的两边的距离相等的点在角的平分线上
    B.角平分线上的点到这个角两边的距离相等
    C.三角形三条角平分线的交点到三条边的距离相等
    D.以上均不正确
    10.﹣23的相反数是(  )
    A.﹣8 B.8 C.﹣6 D.6
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,以点为圆心的两个同心圆中,大圆的弦是小圆的切线,点是切点,则劣弧AB 的长为 .(结果保留)

    12.在矩形ABCD中,AB=6CM,E为直线CD上一点,连接AC,BE,若AC与BE交与点F, DE=2,则EF:BE= ________ 。
    13.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于____度.

    14.分解因式:4a2﹣1=_____.
    15.圆锥的底面半径为2,母线长为6,则它的侧面积为_____.
    16.如图,小明想用图中所示的扇形纸片围成一个圆锥,已知扇形的半径为5cm,弧长是cm,那么围成的圆锥的高度是 cm.
    17.不等式组的整数解是_____.
    三、解答题(共7小题,满分69分)
    18.(10分)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中男生、女生的人数相同,利用所得数据绘制如下统计图表:

    组别
    身高
    A
    x<160
    B
    160≤x<165
    C
    165≤x<170
    D
    170≤x<175
    E
    x≥175
    根据图表提供的信息,回答下列问题:
    (1)样本中,男生的身高众数在 组,中位数在 组;
    (2)样本中,女生身高在E组的有 人,E组所在扇形的圆心角度数为 ;
    (3)已知该校共有男生600人,女生480人,请估让身高在165≤x<175之间的学生约有多少人?
    19.(5分)在中,,是边的中线,于,连结,点在射线上(与,不重合)

    (1)如果
    ①如图1,   
    ②如图2,点在线段上,连结,将线段绕点逆时针旋转,得到线段,连结,补全图2猜想、之间的数量关系,并证明你的结论;
    (2)如图3,若点在线段 的延长线上,且,连结,将线段绕点逆时针旋转得到线段,连结,请直接写出、、三者的数量关系(不需证明)
    20.(8分)如图,一次函数y=﹣x+6的图象分别交y轴、x轴交于点A、B,点P从点B出发,沿射线BA以每秒1个单位的速度出发,设点P的运动时间为t秒.
    (1)点P在运动过程中,若某一时刻,△OPA的面积为6,求此时P的坐标;
    (2)在整个运动过程中,当t为何值时,△AOP为等腰三角形?(只需写出t的值,无需解答过程)

    21.(10分)如图,直线y=x+2与双曲线y=相交于点A(m,3),与x轴交于点C.求双曲线的解析式;点P在x轴上,如果△ACP的面积为3,求点P的坐标.

    22.(10分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?

    23.(12分)一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球.用树状图或列表等方法列出所有可能出现的结果;求两次摸到的球的颜色不同的概率.
    24.(14分)一个不透明的口袋中装有2个红球、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    先求出一次函数的关系式,再根据函数图象与坐标轴的交点及函数图象的性质解答即可.
    【详解】
    由题意知,函数关系为一次函数y=-1x+4,由k=-1<0可知,y随x的增大而减小,且当x=0时,y=4,
    当y=0时,x=1.
    故选D.
    【点睛】
    本题考查学生对计算程序及函数性质的理解.根据计算程序可知此计算程序所反映的函数关系为一次函数y=-1x+4,然后根据一次函数的图象的性质求解.
    2、B
    【解析】
    由平行四边形性质得出AB=CD,AB∥CD,证出四边形ABDE是平行四边形,得出DE=DC=AB,再由平行线得出∠ECF=∠ABC,由三角函数求出CF长,再用勾股定理CE,即可得出AB的长.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AB∥DC,AB=CD,
    ∵AE∥BD,
    ∴四边形ABDE是平行四边形,
    ∴AB=DE,
    ∴AB=DE=CD,即D为CE中点,
    ∵EF⊥BC,
    ∴∠EFC=90°,
    ∵AB∥CD,
    ∴∠ECF=∠ABC,
    ∴tan∠ECF=tan∠ABC=,
    在Rt△CFE中,EF=,tan∠ECF===,
    ∴CF=,
    根据勾股定理得,CE==,
    ∴AB=CE=,
    故选B.
    【点睛】
    本题考查了平行四边形的性质和判定、平行线的性质,三角函数的运用;熟练掌握平行四边形的性质,勾股定理,判断出AB=CE是解决问题的关键.
    3、D
    【解析】
    分析:先根据多边形的内角和公式(n﹣2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.
    详解:∵五边形的内角和为(5﹣2)•180°=540°,∴正五边形的每一个内角为540°÷5=18°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣18°×3=360°﹣324°=36°,360°÷36°=1.∵已经有3个五边形,∴1﹣3=7,即完成这一圆环还需7个五边形.
    故选D.

    点睛:本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.
    4、A
    【解析】
    如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,对题中选项进行分析即可.
    【详解】
    A、不是轴对称图形,符合题意;
    B、是轴对称图形,不合题意;
    C、是轴对称图形,不合题意;
    D、是轴对称图形,不合题意;
    故选:A.
    【点睛】
    此题考查轴对称图形的概念,解题的关键在于利用轴对称图形的概念判断选项正误
    5、C
    【解析】
    试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.
    解:图(1)有一条对称轴,是轴对称图形,符合题意;
    图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;
    图(3)有二条对称轴,是轴对称图形,符合题意;
    图(3)有五条对称轴,是轴对称图形,符合题意;
    图(3)有一条对称轴,是轴对称图形,符合题意.
    故轴对称图形有4个.
    故选C.
    考点:轴对称图形.
    6、A
    【解析】
    试题分析:根据不等式的基本性质即可得到结果.
    t>0,
    ∴a+t>a,
    故选A.
    考点:本题考查的是不等式的基本性质
    点评:解答本题的关键是熟练掌握不等式的基本性质1:不等式两边同时加或减去同一个整式,不等号方向不变.
    7、B
    【解析】
    由条件设AD=x,AB=2x,就可以表示出CP=x,BP=x,用三角函数值可以求出∠EBC的度数和∠CEP的度数,则∠CEP=∠BEP,运用勾股定理及三角函数值就可以求出就可以求出BF、EF的值,从而可以求出结论.
    【详解】
    解:设AD=x,AB=2x
    ∵四边形ABCD是矩形
    ∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB
    ∴BC=x,CD=2x
    ∵CP:BP=1:2
    ∴CP=x,BP=x
    ∵E为DC的中点,
    ∴CE=CD=x,
    ∴tan∠CEP==,tan∠EBC==
    ∴∠CEP=30°,∠EBC=30°
    ∴∠CEB=60°
    ∴∠PEB=30°
    ∴∠CEP=∠PEB
    ∴EP平分∠CEB,故①正确;
    ∵DC∥AB,
    ∴∠CEP=∠F=30°,
    ∴∠F=∠EBP=30°,∠F=∠BEF=30°,
    ∴△EBP∽△EFB,

    ∴BE·BF=EF·BP
    ∵∠F=∠BEF,
    ∴BE=BF
    ∴=PB·EF,故②正确
    ∵∠F=30°,
    ∴PF=2PB=x,
    过点E作EG⊥AF于G,

    ∴∠EGF=90°,
    ∴EF=2EG=2x
    ∴PF·EF=x·2x=8x2
    2AD2=2×(x)2=6x2,
    ∴PF·EF≠2AD2,故③错误.
    在Rt△ECP中,
    ∵∠CEP=30°,
    ∴EP=2PC=x
    ∵tan∠PAB==
    ∴∠PAB=30°
    ∴∠APB=60°
    ∴∠AOB=90°
    在Rt△AOB和Rt△POB中,由勾股定理得,
    AO=x,PO=x
    ∴4AO·PO=4×x·x=4x2
    又EF·EP=2x·x=4x2
    ∴EF·EP=4AO·PO.故④正确.
    故选,B
    【点睛】
    本题考查了矩形的性质的运用,相似三角形的判定及性质的运用,特殊角的正切值的运用,勾股定理的运用及直角三角形的性质的运用,解答时根据比例关系设出未知数表示出线段的长度是关键.
    8、C
    【解析】
    根据题意列出代数式,化简即可得到结果.
    【详解】
    根据题意得:a÷(1−20%)=a÷= a(元),
    故答案选:C.
    【点睛】
    本题考查的知识点是列代数式,解题的关键是熟练的掌握列代数式.
    9、A
    【解析】
    过两把直尺的交点C作CF⊥BO与点F,由题意得CE⊥AO,因为是两把完全相同的长方形直尺,可得CE=CF,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP平分∠AOB
    【详解】
    如图所示:过两把直尺的交点C作CF⊥BO与点F,由题意得CE⊥AO,

    ∵两把完全相同的长方形直尺,
    ∴CE=CF,
    ∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),
    故选A.
    【点睛】
    本题主要考查了基本作图,关键是掌握角的内部到角的两边的距离相等的点在这个角的平分线上这一判定定理.
    10、B
    【解析】
    ∵=﹣8,﹣8的相反数是8,∴的相反数是8,
    故选B.

    二、填空题(共7小题,每小题3分,满分21分)
    11、8π.
    【解析】
    试题分析: 因为AB为切线,P为切点,

    劣弧AB所对圆心角

    考点: 勾股定理;垂径定理;弧长公式.
    12、4:7或2:5
    【解析】
    根据E在CD上和CD的延长线上,运用相似三角形分类讨论即可.
    【详解】
    解:当E在线段CD上如图:

    ∵矩形ABCD
    ∴AB∥CD
    ∴△ABF∽△CFE

    设,即EF=2k,BF=3k
    ∴BE=BF+EF=5k
    ∴EF:BE=2k∶5k=2∶5
    当当E在线段CD的延长线上如图:

    ∵矩形ABCD
    ∴AB∥CD
    ∴△ABF∽△CFE

    设,即EF=4k,BF=3k
    ∴BE=BF+EF=7k
    ∴EF:BE=4k∶7k=4∶7
    故答案为:4:7或2:5.
    【点睛】
    本题以矩形为载体,考查了相似三角形的性质,解题的关键在于根据图形分类讨论,即数形结合的灵活应用.
    13、30
    【解析】
    试题分析:根据直角三角形斜边上的中线等于斜边的一半可得:AE=CE,根据折叠可得:BC=CE,则BC=AE=BE=AB,则∠A=30°.
    考点:折叠图形的性质
    14、(2a+1)(2a﹣1)
    【解析】
    有两项,都能写成完全平方数的形式,并且符号相反,可用平方差公式展开.
    【详解】
    4a2﹣1=(2a+1)(2a﹣1).
    故答案为:(2a+1)(2a-1).
    【点睛】
    此题考查多项式因式分解,根据多项式的特点选择适合的分解方法是解题的关键.
    15、12π.
    【解析】
    试题分析:根据圆锥的底面半径为2,母线长为6,直接利用圆锥的侧面积公式求出它的侧面积.
    解:根据圆锥的侧面积公式:πrl=π×2×6=12π,
    故答案为12π.
    考点:圆锥的计算.
    16、4
    【解析】
    已知弧长即已知围成的圆锥的底面半径的长是6πcm,这样就求出底面圆的半径.扇形的半径为5cm就是圆锥的母线长是5cm.就可以根据勾股定理求出圆锥的高.
    【详解】
    设底面圆的半径是r,则2πr=6π,
    ∴r=3cm,
    ∴圆锥的高==4cm.
    故答案为4.
    17、﹣1、0、1
    【解析】
    求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,即可得出答案.
    【详解】

    解不等式得:,
    解不等式得:,
    不等式组的解集为,
    不等式组的整数解为-1,0,1.
    故答案为:-1,0,1.
    【点睛】
    本题考查的知识点是一元一次不等式组的整数解,解题关键是注意解集范围从而得出整数解.

    三、解答题(共7小题,满分69分)
    18、(1)B,C;(2)2;(3)该校身高在165≤x<175之间的学生约有462人.
    【解析】
    根据直方图即可求得男生的众数和中位数,求得男生的总人数,就是女生的总人数,然后乘以对应的百分比即可求解.
    【详解】
    解:(1)∵直方图中,B组的人数为12,最多,
    ∴男生的身高的众数在B组,
    男生总人数为:4+12+10+8+6=40,
    按照从低到高的顺序,第20、21两人都在C组,
    ∴男生的身高的中位数在C组,
    故答案为B,C;
    (2)女生身高在E组的百分比为:1﹣17.5%﹣37.5%﹣25%﹣15%=5%,
    ∵抽取的样本中,男生、女生的人数相同,
    ∴样本中,女生身高在E组的人数有:40×5%=2(人),
    故答案为2;
    (3)600×+480×(25%+15%)=270+192=462(人).
    答:该校身高在165≤x<175之间的学生约有462人.
    【点睛】
    考查频数(率)分布直方图, 频数(率)分布表, 扇形统计图, 中位数, 众数,比较基础,掌握计算方法是解题的关键.
    19、(1)①60;②.理由见解析;(2),理由见解析.
    【解析】
    (1)①根据直角三角形斜边中线的性质,结合,只要证明是等边三角形即可;
    ②根据全等三角形的判定推出,根据全等的性质得出,
    (2)如图2,求出,,求出,,根据全等三角形的判定得出,求出,推出,解直角三角形求出即可.
    【详解】
    解:(1)①∵,,
    ∴,
    ∵,
    ∴,
    ∴是等边三角形,
    ∴.
    故答案为60.
    ②如图1,结论:.理由如下:

    ∵,是的中点,,,
    ∴,,
    ∴,,,
    ∴,
    ∵,
    ∴,
    ∵线段绕点逆时针旋转得到线段,
    ∴,
    在和中

    ∴,
    ∴.
    (2)结论:.
    理由:∵,是的中点,,,
    ∴,,
    ∴,,,
    ∴,
    ∵,
    ∴,
    ∵线段绕点逆时针旋转得到线段,
    ∴,
    在和中

    ∴,
    ∴,
    而,
    ∴,
    在中,,
    ∴,
    ∴,
    ∴,
    即.
    【点睛】
    本题考查了三角形外角性质,全等三角形的性质和判定,直角三角形的性质,旋转的性质的应用,能推出是解此题的关键,综合性比较强,证明过程类似.
    20、(1)(2,4.5),(-2,7.5);(2)2.8,4,5,16
    【解析】
    (1)先求出△OPA的面积为6时BP的长,再求出点P的坐标;
    (2)分别讨论AO=AP,AP=OP和AO=OP三种情况.
    【详解】
    (1)在y=-x+6中,令x=0,得y=6,令y=0,得x=8,
    ∴A(0,6),B(8,0),
    ∴OA=6,OB=8,∴AB=10,
    ∴AB边上的高为6×8÷10=,
    ∵P点的运动时间为t,∴BP=t,则AP=,
    当△AOP面积为6时,则有AP×=6,即×=6,解得t=7.5或12.5,
    过P作PE⊥x轴,PF⊥y轴,垂足分别为E、F,
    则PE==4.5或7.5,BE==6或10,
    则点P坐标为(8-6,4.5)或(8-10,7.5),即(2,4.5)或(-2,7.5);
    (2)由题意可知BP=t,AP=,
    当△AOP为等腰三角形时,有AP=AO、AP=OP和AO=OP三种情况.
    ①当AP=AO时,则有=6,解得t=4或16;
    ②当AP=OP时,过P作PM⊥AO,垂足为M,如图1,
    则M为AO中点,故P为AB中点,此时t=5;

    ③当AO=OP时,过O作ON⊥AB,垂足为N,过P作PH⊥OB,垂足为H,如图2,
    则AN=AP=(10-t),
    ∵PH∥AO,∴△AOB∽△PHB,
    ∴=,即=,∴PH=t,
    又∠OAN+∠AON=∠OAN+PBH=90°,
    ∴∠AON=∠PBH,又∠ANO=∠PHB,
    ∴△ANO∽△PHB,
    ∴=,即=,解得t=;
    综上可知当t的值为、4、5和16时,△AOP为等腰三角形.
    21、(1)(2)(-6,0)或(-2,0).
    【解析】
    分析:(1)把A点坐标代入直线解析式可求得m的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;
    (2)设P(t,0),则可表示出PC的长,进一步表示出△ACP的面积,可得到关于t的方程,则可求得P点坐标.
    详解:(1)把A点坐标代入y=x+2,可得:3=m+2,解得:m=2,∴A(2,3).∵A点也在双曲线上,∴k=2×3=6,∴双曲线解析式为y=;
    (2)在y=x+2中,令y=0可求得:x=﹣4,∴C(﹣4,0).∵点P在x轴上,∴可设P点坐标为(t,0),∴CP=|t+4|,且A(2,3),∴S△ACP=×3|t+4|.∵△ACP的面积为3,∴×3|t+4|=3,解得:t=﹣6或t=﹣2,∴P点坐标为(﹣6,0)或(﹣2,0).
    点睛:本题主要考查函数图象的交点,掌握函数图象的交点坐标满足每个函数解析式是解题的关键.
    22、羊圈的边长AB,BC分别是20米、20米.
    【解析】
    试题分析:设AB的长度为x米,则BC的长度为(100﹣4x)米;然后根据矩形的面积公式列出方程.
    试题解析:设AB的长度为x米,则BC的长度为(100﹣4x)米. 根据题意得 (100﹣4x)x=400,
    解得 x1=20,x2=1. 则100﹣4x=20或100﹣4x=2. ∵2>21, ∴x2=1舍去. 即AB=20,BC=20
    考点:一元二次方程的应用.
    23、(1)详见解析;(2).
    【解析】
    试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;
    (2)由(1)中树状图可求得两次摸到的球的颜色不同的情况有4种,再利用概率公式求解即可求得答案.
    试题解析:(1)如图:

    所有可能的结果为(白1,白2)、(白1,红)、(白2,白1)、(白2,红)、(红,白1)、(红,白2);
    (2)共有6种情况,两次摸到的球的颜色不同的情况有4种,概率为.
    24、
    【解析】
    分析:列表得出所有等可能的情况数,找出两次都摸到红球的情况数,即可求出所求的概率.
    详解:列表如下:






    ﹣﹣﹣
    (红,红)
    (白,红)
    (黑,红)

    (红,红)
    ﹣﹣﹣
    (白,红)
    (黑,红)

    (红,白)
    (红,白)
    ﹣﹣﹣
    (黑,白)

    (红,黑)
    (红,黑)
    (白,黑)
    ﹣﹣﹣
    所有等可能的情况有12种,其中两次都摸到红球有2种可能,
    则P(两次摸到红球)==.
    点睛:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.

    相关试卷

    江苏省无锡市锡东片2023年初中中考一模数学试题: 这是一份江苏省无锡市锡东片2023年初中中考一模数学试题,共15页。

    江苏省无锡市刘潭实验学校2022年十校联考最后数学试题含解析: 这是一份江苏省无锡市刘潭实验学校2022年十校联考最后数学试题含解析,共21页。

    2022届江苏省无锡市刘潭实验校十校联考最后数学试题含解析: 这是一份2022届江苏省无锡市刘潭实验校十校联考最后数学试题含解析,共21页。试卷主要包含了估计的值在,计算-5+1的结果为等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map