终身会员
搜索
    上传资料 赚现金

    2022年江苏省泰州市泰兴市济川中学中考数学考试模拟冲刺卷含解析

    立即下载
    加入资料篮
    2022年江苏省泰州市泰兴市济川中学中考数学考试模拟冲刺卷含解析第1页
    2022年江苏省泰州市泰兴市济川中学中考数学考试模拟冲刺卷含解析第2页
    2022年江苏省泰州市泰兴市济川中学中考数学考试模拟冲刺卷含解析第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年江苏省泰州市泰兴市济川中学中考数学考试模拟冲刺卷含解析

    展开

    这是一份2022年江苏省泰州市泰兴市济川中学中考数学考试模拟冲刺卷含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁,关于的叙述正确的是,下列计算正确的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.关于▱ABCD的叙述,不正确的是(  )
    A.若AB⊥BC,则▱ABCD是矩形
    B.若AC⊥BD,则▱ABCD是正方形
    C.若AC=BD,则▱ABCD是矩形
    D.若AB=AD,则▱ABCD是菱形
    2.如图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有①、②、③、④的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是(  )

    A.① B.② C.③ D.④
    3.如图中任意画一个点,落在黑色区域的概率是(  )

    A. B. C.π D.50
    4.二次函数y=ax²+bx+c(a,b,c为常数)中的x与y的部分对应值如表所示:
    x
    -1
    0
    1
    3
    y

    3

    3
    下列结论:
    (1)abc<0
    (2)当x>1时,y的值随x值的增大而减小;
    (3)16a+4b+c<0
    (4)x=3是方程ax²+(b-1)x+c=0的一个根;其中正确的个数为( )
    A.4个 B.3个 C.2个 D.1个
    5.如图,在坐标系中放置一菱形OABC,已知∠ABC=60°,点B在y轴上,OA=1,先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2017次,点B的落点依次为B1,B2,B3,…,则B2017的坐标为(  )

    A.(1345,0) B.(1345.5,) C.(1345,) D.(1345.5,0)
    6.已知抛物线y=x2+bx+c的对称轴为x=2,若关于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范围内有两个相等的实数根,则c的取值范围是(   )
    A.c=4 B.﹣5<c≤4 C.﹣5<c<3或c=4 D.﹣5<c≤3或c=4
    7.关于的叙述正确的是(  )
    A.= B.在数轴上不存在表示的点
    C.=± D.与最接近的整数是3
    8.不等式2x﹣1<1的解集在数轴上表示正确的是(  )
    A. B.
    C. D.
    9.如图,在平行四边形ABCD中,都不一定 成立的是(  )
    ①AO=CO;②AC⊥BD;③AD∥BC;④∠CAB=∠CAD.

    A.①和④ B.②和③ C.③和④ D.②和④
    10.下列计算正确的是(  )
    A.(a)=a B.a+a=a
    C.(3a)•(2a)=6a D.3a﹣a=3
    二、填空题(共7小题,每小题3分,满分21分)
    11.点A(-2,1)在第_______象限.
    12.在一次射击比赛中,某运动员前7次射击共中62环,如果他要打破89环(10次射击)的记录,那么第8次射击他至少要打出_____环的成绩.
    13.有一组数据:2,3,5,5,x,它们的平均数是10,则这组数据的众数是   .
    14.二次函数y=ax2+bx+c(a≠0)的部分对应值如下表:
    x

    ﹣3
    ﹣2
    0
    1
    3
    5

    y

    7
    0
    ﹣8
    ﹣9
    ﹣5
    7

    则二次函数y=ax2+bx+c在x=2时,y=______.
    15.计算的结果为 .
    16.点A(1,2),B(n,2)都在抛物线y=x2﹣4x+m上,则n=_____.
    17.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B,C都不重合),现将△PCD沿直线PD折叠,使点C落到点F处;过点P作∠BPF的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是( )


    三、解答题(共7小题,满分69分)
    18.(10分)抛物线y=x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,﹣3).
    求抛物线的解析式;如图1,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.如图2,将抛物线平移,使其顶点E与原点O重合,直线y=kx+2(k>0)与抛物线相交于点P、Q(点P在左边),过点P作x轴平行线交抛物线于点H,当k发生改变时,请说明直线QH过定点,并求定点坐标.
    19.(5分)(1)计算:()﹣1+﹣(π﹣2018)0﹣4cos30°
    (2)解不等式组:,并把它的解集在数轴上表示出来.
    20.(8分)在星期一的第八节课,我校体育老师随机抽取了九年级的总分学生进行体育中考的模拟测试,并对成绩进行统计分析,绘制了频数分布表和统计图,按得分划分成A、B、C、D、E、F六个等级,并绘制成如下两幅不完整的统计图表.

     等级
     得分x(分)
     频数(人)
     A
     95<x≤100
     4
     B
     90<x≤95
     m
     C
     85<x≤90
     n
     D
     80<x≤85
     24
     E
     75<x≤80
     8
     F
     70<x≤75
     4
    请你根据图表中的信息完成下列问题:
    (1)本次抽样调查的样本容量是   .其中m=   ,n=  .
    (2)扇形统计图中,求E等级对应扇形的圆心角α的度数;
    (3)我校九年级共有700名学生,估计体育测试成绩在A、B两个等级的人数共有多少人?
    (4)我校决定从本次抽取的A等级学生(记为甲、乙、丙、丁)中,随机选择2名成为学校代表参加全市体能竞赛,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.
    21.(10分)计算
    22.(10分)如图,AB为⊙O的直径,点D、E位于AB两侧的半圆上,射线DC切⊙O于点D,已知点E是半圆弧AB上的动点,点F是射线DC上的动点,连接DE、AE,DE与AB交于点P,再连接FP、FB,且∠AED=45°.
    (1)求证:CD∥AB;
    (2)填空:
    ①当∠DAE=   时,四边形ADFP是菱形;
    ②当∠DAE=   时,四边形BFDP是正方形.

    23.(12分)在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,且α+β=110°,连接AD,求∠ADB的度数.(不必解答)
    小聪先从特殊问题开始研究,当α=90°,β=30°时,利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图1),然后利用α=90°,β=30°以及等边三角形等相关知识便可解决这个问题.
    请结合小聪研究问题的过程和思路,在这种特殊情况下填空:△D′BC的形状是   三角形;∠ADB的度数为   .在原问题中,当∠DBC<∠ABC(如图1)时,请计算∠ADB的度数;在原问题中,过点A作直线AE⊥BD,交直线BD于E,其他条件不变若BC=7,AD=1.请直接写出线段BE的长为   .
    24.(14分)如图1,四边形ABCD中,,,点P为DC上一点,且,分别过点A和点C作直线BP的垂线,垂足为点E和点F.
    证明:∽;
    若,求的值;
    如图2,若,设的平分线AG交直线BP于当,时,求线段AG的长.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    由矩形和菱形的判定方法得出A、C、D正确,B不正确;即可得出结论.
    【详解】
    解:A、若AB⊥BC,则是矩形,正确;
    B、若,则是正方形,不正确;
    C、若,则是矩形,正确;
    D、若,则是菱形,正确;
    故选B.
    【点睛】
    本题考查了正方形的判定、矩形的判定、菱形的判定;熟练掌握正方形的判定、矩形的判定、菱形的判定是解题的关键.
    2、A
    【解析】
    根据题意得到原几何体的主视图,结合主视图选择.
    【详解】
    解:原几何体的主视图是:

    视图中每一个闭合的线框都表示物体上的一个平面,左侧的图形只需要两个正方体叠加即可.
    故取走的正方体是①.
    故选A.
    【点睛】
    本题考查了简单组合体的三视图,中等难度,作出几何体的主视图是解题关键.
    3、B
    【解析】
    抓住黑白面积相等,根据概率公式可求出概率.
    【详解】
    因为,黑白区域面积相等,
    所以,点落在黑色区域的概率是.
    故选B
    【点睛】
    本题考核知识点:几何概率.解题关键点:分清黑白区域面积关系.
    4、B
    【解析】
    (1)利用待定系数法求出二次函数解析式为y=-x2+x+3,即可判定正确;
    (2)求得对称轴,即可判定此结论错误;
    (3)由当x=4和x=-1时对应的函数值相同,即可判定结论正确;
    (4)当x=3时,二次函数y=ax2+bx+c=3,即可判定正确.
    【详解】
    (1)∵x=-1时y=-,x=0时,y=3,x=1时,y=,
    ∴,
    解得
    ∴abc<0,故正确;
    (2)∵y=-x2+x+3,
    ∴对称轴为直线x=-=,
    所以,当x>时,y的值随x值的增大而减小,故错误;
    (3)∵对称轴为直线x=,
    ∴当x=4和x=-1时对应的函数值相同,
    ∴16a+4b+c<0,故正确;
    (4)当x=3时,二次函数y=ax2+bx+c=3,
    ∴x=3是方程ax2+(b-1)x+c=0的一个根,故正确;
    综上所述,结论正确的是(1)(3)(4).
    故选:B.
    【点睛】
    本题考查了二次函数的性质,主要利用了待定系数法求二次函数解析式,二次函数的增减性,二次函数与不等式,根据表中数据求出二次函数解析式是解题的关键.
    5、B
    【解析】
    连接AC,如图所示.
    ∵四边形OABC是菱形,
    ∴OA=AB=BC=OC.
    ∵∠ABC=60°,
    ∴△ABC是等边三角形.
    ∴AC=AB.
    ∴AC=OA.
    ∵OA=1,
    ∴AC=1.
    画出第5次、第6次、第7次翻转后的图形,如图所示.
    由图可知:每翻转6次,图形向右平移2.
    ∵3=336×6+1,
    ∴点B1向右平移1322(即336×2)到点B3.
    ∵B1的坐标为(1.5, ),
    ∴B3的坐标为(1.5+1322,),
    故选B.

    点睛:本题是规律题,能正确地寻找规律 “每翻转6次,图形向右平移2”是解题的关键.
    6、D
    【解析】
    解:由对称轴x=2可知:b=﹣4,
    ∴抛物线y=x2﹣4x+c,
    令x=﹣1时,y=c+5,
    x=3时,y=c﹣3,
    关于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范围有实数根,
    当△=0时,
    即c=4,
    此时x=2,满足题意.
    当△>0时,
    (c+5)(c﹣3)≤0,
    ∴﹣5≤c≤3,
    当c=﹣5时,
    此时方程为:﹣x2+4x+5=0,
    解得:x=﹣1或x=5不满足题意,
    当c=3时,
    此时方程为:﹣x2+4x﹣3=0,
    解得:x=1或x=3此时满足题意,
    故﹣5<c≤3或c=4,
    故选D.
    点睛:本题主要考查二次函数与一元二次方程的关系.理解二次函数与一元二次方程之间的关系是解题的关键.
    7、D
    【解析】
    根据二次根式的加法法则、实数与数轴上的点是一一对应的关系、二次根式的化简及无理数的估算对各项依次分析,即可解答.
    【详解】
    选项A,+无法计算;选项B,在数轴上存在表示的点;选项C,;
    选项D,与最接近的整数是=1.
    故选D.
    【点睛】
    本题考查了二次根式的加法法则、实数与数轴上的点是一一对应的关系、二次根式的化简及无理数的估算等知识点,熟记这些知识点是解题的关键.
    8、D
    【解析】
    先求出不等式的解集,再在数轴上表示出来即可.
    【详解】
    移项得,2x<1+1,
    合并同类项得,2x<2,
    x的系数化为1得,x<1.
    在数轴上表示为:

    故选D.
    【点睛】
    本题考查了解一元一次不等式,熟练掌握运算法则是解题的关键.
    9、D
    【解析】
    ∵四边形ABCD是平行四边形,
    ∴AO=CO,故①成立;
    AD∥BC,故③成立;
    利用排除法可得②与④不一定成立,
    ∵当四边形是菱形时,②和④成立.
    故选D.
    10、A
    【解析】
    根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解.
    【详解】
    A.(a2)3=a2×3=a6,故本选项正确;
    B.a2+a2=2a2,故本选项错误;
    C.(3a)•(2a)2=(3a)•(4a2)=12a1+2=12a3,故本选项错误;
    D.3a﹣a=2a,故本选项错误.
    故选A.
    【点睛】
    本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方和单项式乘法,理清指数的变化是解题的关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、二
    【解析】
    根据点在第二象限的坐标特点解答即可.
    【详解】
    ∵点A的横坐标-2<0,纵坐标1>0,
    ∴点A在第二象限内.
    故答案为:二.
    【点睛】
    本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    12、8
    【解析】
    为了使第8次的环数最少,可使后面的2次射击都达到最高环数,即10环.
    设第8次射击环数为x环,根据题意列出一元一次不等式
    62+x+2×10>89
    解之,得
    x>7
    x表示环数,故x为正整数且x>7,则
    x的最小值为8
    即第8次至少应打8环.
    点睛:本题考查的是一元一次不等式的应用.解决此类问题的关键是在理解题意的基础上,建立与之相应的解决问题的“数学模型”——不等式,再由不等式的相关知识确定问题的答案.
    13、1
    【解析】
    根据平均数为10求出x的值,再由众数的定义可得出答案.
    解:由题意得,(2+3+1+1+x)=10,
    解得:x=31,
    这组数据中1出现的次数最多,则这组数据的众数为1.
    故答案为1.
    14、﹣1
    【解析】
    试题分析:观察表中的对应值得到x=﹣3和x=5时,函数值都是7,则根据抛物线的对称性得到对称轴为直线x=1,所以x=0和x=2时的函数值相等,
    解:∵x=﹣3时,y=7;x=5时,y=7,
    ∴二次函数图象的对称轴为直线x=1,
    ∴x=0和x=2时的函数值相等,
    ∴x=2时,y=﹣1.
    故答案为﹣1.
    15、
    【解析】
    直接把分子相加减即可.
    【详解】
    =,故答案为:.
    【点睛】
    本题考查了分式的加减法,关键是要注意通分及约分的灵活应用.
    16、1
    【解析】
    根据题意可以求得m的值和n的值,由A的坐标,可确定B的坐标,进而可以得到n的值.
    【详解】
    :∵点A(1,2),B(n,2)都在抛物线y=x2-4x+m上,
    ∴ ,
    解得 或 ,
    ∴点B为(1,2)或(1,2),
    ∵点A(1,2),
    ∴点B只能为(1,2),
    故n的值为1,
    故答案为:1.
    【点睛】
    本题考查了二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的性质求解.
    17、C
    【解析】
    先证明△BPE∽△CDP,再根据相似三角形对应边成比例列出式子变形可得.
    【详解】
    由已知可知∠EPD=90°,
    ∴∠BPE+∠DPC=90°,
    ∵∠DPC+∠PDC=90°,
    ∴∠CDP=∠BPE,
    ∵∠B=∠C=90°,
    ∴△BPE∽△CDP,
    ∴BP:CD=BE:CP,即x:3=y:(5-x),
    ∴y=(0<x<5);
    故选C.
    考点:1.折叠问题;2.相似三角形的判定和性质;3.二次函数的图象.

    三、解答题(共7小题,满分69分)
    18、(1)y=x2﹣2x﹣3;(2);(3)当k发生改变时,直线QH过定点,定点坐标为(0,﹣2)
    【解析】
    (1)把点A(﹣1,0),C(0,﹣3)代入抛物线表达式求得b,c,即可得出抛物线的解析式;
    (2)作CH⊥EF于H,设N的坐标为(1,n),证明Rt△NCH∽△MNF,可得m=n2+3n+1,因为﹣4≤n≤0,即可得出m的取值范围;
    (3)设点P(x1,y1),Q(x2,y2),则点H(﹣x1,y1),设直线HQ表达式为y=ax+t,用待定系数法和韦达定理可求得a=x2﹣x1,t=﹣2,即可得出直线QH过定点(0,﹣2).
    【详解】
    解:(1)∵抛物线y=x2+bx+c经过点A、C,
    把点A(﹣1,0),C(0,﹣3)代入,得:,
    解得,
    ∴抛物线的解析式为y=x2﹣2x﹣3;
    (2)如图,作CH⊥EF于H,
    ∵y=x2﹣2x﹣3=(x﹣1)2﹣4,
    ∴抛物线的顶点坐标E(1,﹣4),
    设N的坐标为(1,n),﹣4≤n≤0
    ∵∠MNC=90°,
    ∴∠CNH+∠MNF=90°,
    又∵∠CNH+∠NCH=90°,
    ∴∠NCH=∠MNF,
    又∵∠NHC=∠MFN=90°,
    ∴Rt△NCH∽△MNF,
    ∴,即
    解得:m=n2+3n+1=,
    ∴当时,m最小值为;
    当n=﹣4时,m有最大值,m的最大值=16﹣12+1=1.
    ∴m的取值范围是.
    (3)设点P(x1,y1),Q(x2,y2),
    ∵过点P作x轴平行线交抛物线于点H,
    ∴H(﹣x1,y1),
    ∵y=kx+2,y=x2,
    消去y得,x2﹣kx﹣2=0,
    x1+x2=k,x1x2=﹣2,
    设直线HQ表达式为y=ax+t,
    将点Q(x2,y2),H(﹣x1,y1)代入,得,
    ∴y2﹣y1=a(x1+x2),即k(x2﹣x1)=ka,
    ∴a=x2﹣x1,
    ∵=( x2﹣x1)x2+t,
    ∴t=﹣2,
    ∴直线HQ表达式为y=( x2﹣x1)x﹣2,
    ∴当k发生改变时,直线QH过定点,定点坐标为(0,﹣2).


    【点睛】
    本题主要考查的是二次函数的综合应用,解答本题主要应用了配方法求二次函数的最值、待定系数法求一次函数的解析式、(2)问通过相似三角形建立m与n的函数关系式是解题的关键.
    19、 (1)-3;(2).
    【解析】
    分析:
    (1)代入30°角的余弦函数值,结合零指数幂、负整数指数幂的意义及二次根式的相关运算法则计算即可;
    (2)按照解一元一次不等式组的一般步骤解答,并把解集规范的表示到数轴上即可.
    (1)原式=
    =
    = -3.
    (2)
    解不等式①得: ,
    解不等式②得:,
    ∴不等式组的解集为:
    不等式组的解集在数轴上表示:

    点睛:熟记零指数幂的意义:,(,为正整数)即30°角的余弦函数值是本题解题的关键.
    20、(1)80,12,28;(2)36°;(3)140人;(4)
    【解析】
    (1)用D组的频数除以它所占的百分比得到样本容量;用样本容量乘以B组所占的百分比得到m的值,然后用样本容量分别减去其它各组的频数即可得到n的值;
    (2)用E组所占的百分比乘以360°得到α的值;
    (3)利用样本估计整体,用700乘以A、B两组的频率和可估计体育测试成绩在A、B两个等级的人数;
    (4)画树状图展示所有12种等可能的结果数,再找出恰好抽到甲和乙的结果数,然后根据概率公式求解.
    【详解】
    (1)24÷30%=80,
    所以样本容量为80;
    m=80×15%=12,n=80﹣12﹣4﹣24﹣8﹣4=28;
    故答案为80,12,28;
    (2)E等级对应扇形的圆心角α的度数=×360°=36°;
    (3)700×=140,
    所以估计体育测试成绩在A、B两个等级的人数共有140人;
    (4)画树状图如下:

    共12种等可能的结果数,其中恰好抽到甲和乙的结果数为2,
    所以恰好抽到甲和乙的概率=.
    【点睛】
    本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了统计图.
    21、
    【解析】
    先把括号内通分,再把除法运算化为乘法运算,然后把分子分母因式分解后约分即可.
    【详解】
    原式=,
    =,
    =,
    =.
    【点睛】
    本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.
    22、(1)详见解析;(2)①67.5°;②90°.
    【解析】
    (1)要证明CD∥AB,只要证明∠ODF=∠AOD即可,根据题目中的条件可以证明∠ODF=∠AOD,从而可以解答本题;
    (2)①根据四边形ADFP是菱形和菱形的性质,可以求得∠DAE的度数;
    ②根据四边形BFDP是正方形,可以求得∠DAE的度数.
    【详解】
    (1)证明:连接OD,如图所示,

    ∵射线DC切⊙O于点D,
    ∴OD⊥CD,
    即∠ODF=90°,
    ∵∠AED=45°,
    ∴∠AOD=2∠AED=90°,
    ∴∠ODF=∠AOD,
    ∴CD∥AB;
    (2)①连接AF与DP交于点G,如图所示,

    ∵四边形ADFP是菱形,∠AED=45°,OA=OD,
    ∴AF⊥DP,∠AOD=90°,∠DAG=∠PAG,
    ∴∠AGE=90°,∠DAO=45°,
    ∴∠EAG=45°,∠DAG=∠PEG=22.5°,
    ∴∠EAD=∠DAG+∠EAG=22.5°+45°=67.5°,
    故答案为:67.5°;
    ②∵四边形BFDP是正方形,
    ∴BF=FD=DP=PB,
    ∠DPB=∠PBF=∠BFD=∠FDP=90°,
    ∴此时点P与点O重合,
    ∴此时DE是直径,
    ∴∠EAD=90°,
    故答案为:90°.
    【点睛】
    本题考查菱形的判定与性质、切线的性质、正方形的判定,解答本题的关键是明确题意,找出所求问题需要的条件,利用菱形的性质和正方形的性质解答.
    23、(1)①△D′BC是等边三角形,②∠ADB=30°(1)∠ADB=30°;(3)7+或7﹣
    【解析】
    (1)①如图1中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,由△ABD≌△ABD′,推出△D′BC是等边三角形;
    ②借助①的结论,再判断出△AD′B≌△AD′C,得∠AD′B=∠AD′C,由此即可解决问题.
    (1)当60°<α≤110°时,如图3中,作∠AB D′=∠ABD,B D′=BD,连接CD′,AD′,证明方法类似(1).
    (3)第①种情况:当60°<α≤110°时,如图3中,作∠AB D′=∠ABD,B D′=BD,连接CD′,AD′,证明方法类似(1),最后利用含30度角的直角三角形求出DE,即可得出结论;第②种情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.证明方法类似(1),最后利用含30度角的直角三角形的性质即可得出结论.
    【详解】
    (1)①如图1中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,

    ∵AB=AC,∠BAC=90°,
    ∴∠ABC=45°,
    ∵∠DBC=30°,
    ∴∠ABD=∠ABC﹣∠DBC=15°,
    在△ABD和△ABD′中,
    ∴△ABD≌△ABD′,
    ∴∠ABD=∠ABD′=15°,∠ADB=∠AD′B,
    ∴∠D′BC=∠ABD′+∠ABC=60°,
    ∵BD=BD′,BD=BC,
    ∴BD′=BC,
    ∴△D′BC是等边三角形,
    ②∵△D′BC是等边三角形,
    ∴D′B=D′C,∠BD′C=60°,
    在△AD′B和△AD′C中,
    ∴△AD′B≌△AD′C,
    ∴∠AD′B=∠AD′C,
    ∴∠AD′B=∠BD′C=30°,
    ∴∠ADB=30°.
    (1)∵∠DBC<∠ABC,
    ∴60°<α≤110°,
    如图3中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,

    ∵AB=AC,
    ∴∠ABC=∠ACB,
    ∵∠BAC=α,
    ∴∠ABC=(180°﹣α)=90°﹣α,
    ∴∠ABD=∠ABC﹣∠DBC=90°﹣α﹣β,
    同(1)①可证△ABD≌△ABD′,
    ∴∠ABD=∠ABD′=90°﹣α﹣β,BD=BD′,∠ADB=∠AD′B
    ∴∠D′BC=∠ABD′+∠ABC=90°﹣α﹣β+90°﹣α=180°﹣(α+β),
    ∵α+β=110°,
    ∴∠D′BC=60°,
    由(1)②可知,△AD′B≌△AD′C,
    ∴∠AD′B=∠AD′C,
    ∴∠AD′B=∠BD′C=30°,
    ∴∠ADB=30°.
    (3)第①情况:当60°<α<110°时,如图3﹣1,

    由(1)知,∠ADB=30°,
    作AE⊥BD,
    在Rt△ADE中,∠ADB=30°,AD=1,
    ∴DE=,
    ∵△BCD'是等边三角形,
    ∴BD'=BC=7,
    ∴BD=BD'=7,
    ∴BE=BD﹣DE=7﹣;
    第②情况:当0°<α<60°时,
    如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.

    同理可得:∠ABC=(180°﹣α)=90°﹣α,
    ∴∠ABD=∠DBC﹣∠ABC=β﹣(90°﹣α),
    同(1)①可证△ABD≌△ABD′,
    ∴∠ABD=∠ABD′=β﹣(90°﹣α),BD=BD′,∠ADB=∠AD′B,
    ∴∠D′BC=∠ABC﹣∠ABD′=90°﹣α﹣[β﹣(90°﹣α)]=180°﹣(α+β),
    ∴D′B=D′C,∠BD′C=60°.
    同(1)②可证△AD′B≌△AD′C,
    ∴∠AD′B=∠AD′C,
    ∵∠AD′B+∠AD′C+∠BD′C=360°,
    ∴∠ADB=∠AD′B=150°,
    在Rt△ADE中,∠ADE=30°,AD=1,
    ∴DE=,
    ∴BE=BD+DE=7+,
    故答案为:7+或7﹣.
    【点睛】
    此题是三角形综合题,主要考查全等三角形的判定和性质.等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
    24、(1)证明见解析;(2);(3).
    【解析】
    由余角的性质可得,即可证∽;
    由相似三角形的性质可得,由等腰三角形的性质可得,即可求的值;
    由题意可证∽,可得,可求,由等腰三角形的性质可得AE平分,可证,可得是等腰直角三角形,即可求AG的长.
    【详解】
    证明:,

    又,


    又,

    ∽,

    又,,


    如图,延长AD与BG的延长线交于H点




    ,由可知≌


    代入上式可得,
    ∽,
    ,,

    ,,
    平分
    又平分,

    是等腰直角三角形.
    ∴.
    【点睛】
    本题考查的知识点是全等三角形的判定和性质,相似三角形的判定和性质,解题关键是添加恰当辅助线构造相似三角形.

    相关试卷

    2023-2024学年江苏省泰州市泰兴市济川中学九年级(上)月考数学试卷(10月份)(含解析):

    这是一份2023-2024学年江苏省泰州市泰兴市济川中学九年级(上)月考数学试卷(10月份)(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省泰州市泰兴市西城中学2022年中考数学最后冲刺模拟试卷含解析:

    这是一份江苏省泰州市泰兴市西城中学2022年中考数学最后冲刺模拟试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,方程的解是,下列运算正确的是等内容,欢迎下载使用。

    江苏省泰兴市济川实验初中2021-2022学年中考数学模拟预测题含解析:

    这是一份江苏省泰兴市济川实验初中2021-2022学年中考数学模拟预测题含解析,共25页。试卷主要包含了考生要认真填写考场号和座位序号,下列计算正确的是,-的立方根是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map