搜索
    上传资料 赚现金
    英语朗读宝

    2022年江苏省镇江市句容二中片区合作共同体中考四模数学试题含解析

    2022年江苏省镇江市句容二中片区合作共同体中考四模数学试题含解析第1页
    2022年江苏省镇江市句容二中片区合作共同体中考四模数学试题含解析第2页
    2022年江苏省镇江市句容二中片区合作共同体中考四模数学试题含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年江苏省镇江市句容二中片区合作共同体中考四模数学试题含解析

    展开

    这是一份2022年江苏省镇江市句容二中片区合作共同体中考四模数学试题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.下列运算正确的是(  )
    A.﹣(a﹣1)=﹣a﹣1 B.(2a3)2=4a6 C.(a﹣b)2=a2﹣b2 D.a3+a2=2a5
    2.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为(  )

    A. B. C. D.
    3.已知代数式x+2y的值是5,则代数式2x+4y+1的值是(  )
    A.6  B.7 C.11 D.12
    4.如图,l1、l2、l3两两相交于A、B、C三点,它们与y轴正半轴分别交于点D、E、F,若A、B、C三点的横坐标分别为1、2、3,且OD=DE=1,则下列结论正确的个数是(  )
    ①,②S△ABC=1,③OF=5,④点B的坐标为(2,2.5)

    A.1个 B.2个 C.3个 D.4个
    5.下列运算正确的是(  )
    A.(﹣2a)3=﹣6a3 B.﹣3a2•4a3=﹣12a5
    C.﹣3a(2﹣a)=6a﹣3a2 D.2a3﹣a2=2a
    6.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是(  )

    A.主视图 B.俯视图 C.左视图 D.一样大
    7.一个几何体的三视图如图所示,则该几何体的形状可能是(  )

    A. B.
    C. D.
    8.下列运算正确的是(  )
    A.﹣3a+a=﹣4a B.3x2•2x=6x2
    C.4a2﹣5a2=a2 D.(2x3)2÷2x2=2x4
    9.△ABC在正方形网格中的位置如图所示,则cosB的值为( )

    A. B. C. D.2
    10.小丽只带2元和5元的两种面额的钞票(数量足够多),她要买27元的商品,而商店不找零钱,要她刚好付27元,她的付款方式有( )种.
    A.1 B.2 C.3 D.4
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,宽为的长方形图案由8个相同的小长方形拼成,若小长方形的边长为整数,则的值为__________.

    12.若使代数式有意义,则x的取值范围是_____.
    13.对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.1]=1,[3]=3,[﹣2.2]=﹣3,若[]=5,则x的取值范围是_____.
    14.不等式组的解集为________.
    15.我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为______.
    16.如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5cm, 且tan∠EFC=,那么矩形ABCD的周长_____________cm.

    17.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛,根据题意,可列方程为_____.
    三、解答题(共7小题,满分69分)
    18.(10分)在一个不透明的布袋中装两个红球和一个白球,这些球除颜色外均相同
    (1)搅匀后从袋中任意摸出1个球,摸出红球的概率是 .
    (2)甲、乙、丙三人依次从袋中摸出一个球,记录颜色后不放回,试求出乙摸到白球的概率
    19.(5分)如图,四边形ABCD中,∠C=90°,AD⊥DB,点E为AB的中点,DE∥BC.

    (1)求证:BD平分∠ABC;
    (2)连接EC,若∠A=30°,DC=,求EC的长.
    20.(8分)某中学为了解八年级学习体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A、B、C、D四个等级.请根据两幅统计图中的信息回答下列问题:

    (1)本次抽样调查共抽取了多少名学生?
    (2)求测试结果为C等级的学生数,并补全条形图;
    (3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名.
    21.(10分)如图是东方货站传送货物的平面示意图,为了提高安全性,工人师傅打算减小传送带与地面的夹角,由原来的45°改为36°,已知原传送带BC长为4米,求新传送带AC的长及新、原传送带触地点之间AB的长.(结果精确到0.1米)参考数据:sin36°≈0.59,cos36°≈0.1,tan36°≈0.73,取1.414

    22.(10分)问题情境:课堂上,同学们研究几何变量之间的函数关系问题:如图,菱形ABCD的对角线AC,BD相交于点O,AC=4,BD=1.点P是AC上的一个动点,过点P作MN⊥AC,垂足为点P(点M在边AD、DC上,点N在边AB、BC上).设AP的长为x(0≤x≤4),△AMN的面积为y.

    建立模型:(1)y与x的函数关系式为:,
    解决问题:(1)为进一步研究y随x变化的规律,小明想画出此函数的图象.请你补充列表,并在如图的坐标系中画出此函数的图象:
    x
    0

    1

    1

    3

    4
    y
    0

       

       

       

    0
    (3)观察所画的图象,写出该函数的两条性质:   .
    23.(12分)黄石市在创建国家级文明卫生城市中,绿化档次不断提升.某校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.
    (1)求A种,B种树木每棵各多少元;
    (2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.
    24.(14分)我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.
    (1)概念理解:
    如图1,在△ABC中,AC=6,BC=3,∠ACB=30°,试判断△ABC是否是”等高底”三角形,请说明理由.
    (1)问题探究:
    如图1,△ABC是“等高底”三角形,BC是”等底”,作△ABC关于BC所在直线的对称图形得到△A'BC,连结AA′交直线BC于点D.若点B是△AA′C的重心,求的值.
    (3)应用拓展:
    如图3,已知l1∥l1,l1与l1之间的距离为1.“等高底”△ABC的“等底”BC在直线l1上,点A在直线l1上,有一边的长是BC的倍.将△ABC绕点C按顺时针方向旋转45°得到△A'B'C,A′C所在直线交l1于点D.求CD的值.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    根据去括号法则,积的乘方的性质,完全平方公式,合并同类项法则,对各选项分析判断后利用排除法求解.
    【详解】
    解:A、因为﹣(a﹣1)=﹣a+1,故本选项错误;
    B、(﹣2a3)2=4a6,正确;
    C、因为(a﹣b)2=a2﹣2ab+b2,故本选项错误;
    D、因为a3与a2不是同类项,而且是加法,不能运算,故本选项错误.
    故选B.
    【点睛】
    本题考查了合并同类项,积的乘方,完全平方公式,理清指数的变化是解题的关键.
    2、B
    【解析】
    试题解析:选项折叠后都不符合题意,只有选项折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,与正方体三个剪去三角形交于一个顶点符合.
    故选B.
    3、C
    【解析】
    根据题意得出x+2y=5,将所求式子前两项提取2变形后,把x+2y=5代入计算即可求出值.
    【详解】
    ∵x+2y=5,
    ∴2x+4y=10,
    则2x+4y+1=10+1=1.
    故选C.
    【点睛】
    此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.
    4、C
    【解析】
    ①如图,由平行线等分线段定理(或分线段成比例定理)易得:;
    ②设过点B且与y轴平行的直线交AC于点G,则S△ABC=S△AGB+S△BCG,易得:S△AED=,△AED∽△AGB且相似比=1,所以,△AED≌△AGB,所以,S△AGB=,又易得G为AC中点,所以,S△AGB=S△BGC=,从而得结论;
    ③易知,BG=DE=1,又△BGC∽△FEC,列比例式可得结论;
    ④易知,点B的位置会随着点A在直线x=1上的位置变化而相应的发生变化,所以④错误.
    【详解】
    解:①如图,∵OE∥AA'∥CC',且OA'=1,OC'=1,
    ∴,
    故 ①正确;
    ②设过点B且与y轴平行的直线交AC于点G(如图),则S△ABC=S△AGB+S△BCG,
    ∵DE=1,OA'=1,
    ∴S△AED=×1×1=,

    ∵OE∥AA'∥GB',OA'=A'B',
    ∴AE=AG,
    ∴△AED∽△AGB且相似比=1,
    ∴△AED≌△AGB,
    ∴S△ABG=,
    同理得:G为AC中点,
    ∴S△ABG=S△BCG=,
    ∴S△ABC=1,
    故 ②正确;
    ③由②知:△AED≌△AGB,
    ∴BG=DE=1,
    ∵BG∥EF,
    ∴△BGC∽△FEC,
    ∴,
    ∴EF=1.即OF=5,
    故③正确;
    ④易知,点B的位置会随着点A在直线x=1上的位置变化而相应的发生变化,
    故④错误;
    故选C.
    【点睛】
    本题考查了图形与坐标的性质、三角形的面积求法、相似三角形的性质和判定、平行线等分线段定理、函数图象交点等知识及综合应用知识、解决问题的能力.考查学生数形结合的数学思想方法.
    5、B
    【解析】
    先根据同底数幂的乘法法则进行运算即可。
    【详解】
    A.;故本选项错误;
    B. ﹣3a2•4a3=﹣12a5; 故本选项正确;
    C.;故本选项错误;
    D. 不是同类项不能合并; 故本选项错误;
    故选B.
    【点睛】
    先根据同底数幂的乘法法则, 幂的乘方, 积的乘方, 合并同类项分别求出每个式子的值, 再判断即可.
    6、C
    【解析】
    如图,该几何体主视图是由5个小正方形组成,
    左视图是由3个小正方形组成,
    俯视图是由5个小正方形组成,
    故三种视图面积最小的是左视图,
    故选C.

    7、D
    【解析】试题分析:由主视图和左视图可得此几何体上面为台,下面为柱体,由俯视图为圆环可得几何体为.故选D.
    考点:由三视图判断几何体.
    视频
    8、D
    【解析】
    根据合并同类项、单项式的乘法、积的乘方和单项式的乘法逐项计算,结合排除法即可得出答案.
    【详解】
    A. ﹣3a+a=﹣2a,故不正确;
    B. 3x2•2x=6x3,故不正确;
    C. 4a2﹣5a2=-a2 ,故不正确;
    D. (2x3)2÷2x2=4x6÷2x2=2x4,故正确;
    故选D.
    【点睛】
    本题考查了合并同类项、单项式的乘法、积的乘方和单项式的乘法,熟练掌握它们的运算法则是解答本题的关键.
    9、A
    【解析】
    解:在直角△ABD中,BD=2,AD=4,则AB=,
    则cosB=.
    故选A.

    10、C
    【解析】
    分析:先根据题意列出二元一次方程,再根据x,y都是非负整数可求得x,y的值.
    详解:解:设2元的共有x张,5元的共有y张,
    由题意,2x+5y=27
    ∴x=(27-5y)
    ∵x,y是非负整数,
    ∴或或,
    ∴付款的方式共有3种.
    故选C.
    点睛:本题考查二元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再根据实际意义求解.

    二、填空题(共7小题,每小题3分,满分21分)
    11、16
    【解析】
    设小长方形的宽为a,长为b,根据大长方形的性质可得5a=3b,m=a+b= a+=,再根据m的取值范围即可求出a的取值范围,又因为小长方形的边长为整数即可解答.
    【详解】
    解:设小长方形的宽为a,长为b,由题意得:5a=3b,所以b=,m=a+b= a+=,因为,所以101,
    故答案为:x>1.
    【点睛】
    本题考查一元一次不等式组的解法,属于基础题.求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
    15、4.4×1
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    4400000000的小数点向左移动9位得到4.4,
    所以4400000000用科学记数法可表示为:4.4×1,
    故答案为4.4×1.
    【点睛】
    本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    16、36.
    【解析】
    试题分析:∵△AFE和△ADE关于AE对称,∴∠AFE=∠D=90°,AF=AD,EF=DE.∵tan∠EFC==,∴可设EC=3x,CF=4x,那么EF=5x,∴DE=EF=5x.∴DC=DE+CE=3x+5x=8x.∴AB=DC=8x.
    ∵∠EFC+∠AFB=90°, ∠BAF+∠AFB=90°,∴∠EFC=∠BAF.∴tan∠BAF=tan∠EFC=,∴=.∴AB=8x,∴BF=6x.∴BC=BF+CF=10x.∴AD=10x.在Rt△ADE中,由勾股定理,得AD2+DE2=AE2.∴(10x)2+(5x)2=(5)2.解得x=1.∴AB=8x=8,AD=10x=10.∴矩形ABCD的周长=8×2+10×2=36.
    考点:折叠的性质;矩形的性质;锐角三角函数;勾股定理.
    17、x(x﹣1)=1
    【解析】
    【分析】赛制为单循环形式(每两队之间都赛一场),x个球队比赛总场数为x(x﹣1),即可列方程.
    【详解】有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:
    x(x﹣1)=1,
    故答案为x(x﹣1)=1.
    【点睛】本题考查了一元二次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.

    三、解答题(共7小题,满分69分)
    18、 (1);(2).
    【解析】
    (1)直接利用概率公式求解;
    (2)画树状图展示所有6种等可能的结果数,再找出乙摸到白球的结果数,然后根据概率公式求解.
    【详解】
    解:(1)搅匀后从袋中任意摸出1个球,摸出红球的概率是;
    故答案为:;
    (2)画树状图为:

    共有6种等可能的结果数,其中乙摸到白球的结果数为2,
    所以乙摸到白球的概率==.
    【点睛】
    本题考查列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.
    19、(1)见解析;(2).
    【解析】
    (1)直接利用直角三角形的性质得出,再利用DE∥BC,得出∠2=∠3,进而得出答案;
    (2)利用已知得出在Rt△BCD中,∠3=60°,,得出DB的长,进而得出EC的长.
    【详解】
    (1)证明:∵AD⊥DB,点E为AB的中点,
    ∴.
    ∴∠1=∠2.
    ∵DE∥BC,
    ∴∠2=∠3.
    ∴∠1=∠3.
    ∴BD平分∠ABC.
    (2)解:∵AD⊥DB,∠A=30°,
    ∴∠1=60°.
    ∴∠3=∠2=60°.
    ∵∠BCD=90°,
    ∴∠4=30°.
    ∴∠CDE=∠2+∠4=90°.
    在Rt△BCD中,∠3=60°,,
    ∴DB=2.
    ∵DE=BE,∠1=60°,
    ∴DE=DB=2.
    ∴.

    【点睛】
    此题主要考查了直角三角形斜边上的中线与斜边的关系,正确得出DB,DE的长是解题关键.
    20、(1)50名;(2)16名;见解析;(3)56名.
    【解析】
    试题分析:根据A等级的人数和百分比求出总人数;根据总人数和A、B、D三个等级的人数求出C等级的人数;利用总人数乘以D等级人数的百分比得出答案.
    试题解析:(1)10÷20%=50(名)答:本次抽样共抽取了50名学生.
    (2)50-10-20-4=16(名)答:测试结果为C等级的学生有16名.
    补全图形如图所示:

    (3)700×(4÷50)=56(名)
    答:估计该中学八年级700名学生中体能测试为D等级的学生有56名.
    考点:统计图.
    21、新传送带AC的长为1.8m,新、原传送带触地点之间AB的长约为1.2m.
    【解析】
    根据题意得出:∠A=36°,∠CBD=15°,BC=1,即可得出BD的长,再表示出AD的长,进而求出AB的长.
    【详解】
    解:如图,作CD⊥AB于点D,由题意可得:∠A=36°,∠CBD=15°,BC=1.
    在Rt△BCD中,sin∠CBD=,∴CD=BCsin∠CBD=2.
    ∵∠CBD=15°,∴BD=CD=2.
    在Rt△ACD中,sinA=,tanA=,∴AC=≈≈1.8,AD==,∴AB=AD﹣BD=﹣2=﹣2×1.111≈3.87﹣2.83=1.21≈1.2.

    答:新传送带AC的长为1.8m,新、原传送带触地点之间AB的长约为1.2m.
    【点睛】
    本题考查了坡度坡角问题,正确构建直角三角形再求出BD的长是解题的关键.
    22、 (1) ①y=;②;(1)见解析;(3)见解析
    【解析】
    (1)根据线段相似的关系得出函数关系式(1)代入①中函数表达式即可填表(3)画图像,分析即可.
    【详解】
    (1)设AP=x
    ①当0≤x≤1时
    ∵MN∥BD
    ∴△APM∽△AOD

    ∴MP=
    ∵AC垂直平分MN
    ∴PN=PM=x
    ∴MN=x
    ∴y=AP•MN=
    ②当1<x≤4时,P在线段OC上,
    ∴CP=4﹣x
    ∴△CPM∽△COD

    ∴PM=
    ∴MN=1PM=4﹣x
    ∴y==﹣
    ∴y=
    (1)由(1)
    当x=1时,y=
    当x=1时,y=1
    当x=3时,y=

    (3)根据(1)画出函数图象示意图可知
    1、当0≤x≤1时,y随x的增大而增大
    1、当1<x≤4时,y随x的增大而减小
    【点睛】
    本题考查函数,解题的关键是数形结合思想.
    23、 (1) A种树每棵2元,B种树每棵80元;(2) 当购买A种树木1棵,B种树木25棵时,所需费用最少,最少为8550元.
    【解析】
    (1)设A种树每棵x元,B种树每棵y元,根据“购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元”列出方程组并解答;
    (2)设购买A种树木为x棵,则购买B种树木为(2-x)棵,根据“购买A种树木的数量不少于B种树木数量的3倍”列出不等式并求得x的取值范围,结合实际付款总金额=0.9(A种树的金额+B种树的金额)进行解答.
    【详解】
    解:(1)设A种树木每棵x元,B种树木每棵y元,根据题意,得
    ,解得 ,
    答:A种树木每棵2元,B种树木每棵80元.
    (2)设购买A种树木x棵,则B种树木(2-x)棵,则x≥3(2-x).解得x≥1.
    又2-x≥0,解得x≤2.∴1≤x≤2.
    设实际付款总额是y元,则y=0.9[2x+80(2-x)].
    即y=18x+7 3.
    ∵18>0,y随x增大而增大,∴当x=1时,y最小为18×1+7 3=8 550(元).
    答:当购买A种树木1棵,B种树木25棵时,所需费用最少,为8 550元.
    24、(1)△ABC是“等高底”三角形;(1);(3)CD的值为,1,1.
    【解析】
    (1)过A作AD⊥BC于D,则△ADC是直角三角形,∠ADC=90°,根据30°所对的直角边等于斜边的一半可得:根据“等高底”三角形的概念即可判断.
    (1)点B是的重心,得到设 则
    根据勾股定理可得即可求出它们的比值.
    (3)分两种情况进行讨论:①当时和②当时.
    【详解】
    (1)△ABC是“等高底”三角形;
    理由:如图1,过A作AD⊥BC于D,则△ADC是直角三角形,∠ADC=90°,

    ∵∠ACB=30°,AC=6,

    ∴AD=BC=3,
    即△ABC是“等高底”三角形;
    (1)如图1,∵△ABC是“等高底”三角形,BC是“等底”,


    ∵△ABC关于BC所在直线的对称图形是 ,
    ∴∠ADC=90°,
    ∵点B是的重心,

    设 则
    由勾股定理得

    (3)①当时,
    Ⅰ.如图3,作AE⊥BC于E,DF⊥AC于F,

    ∵“等高底”△ABC的“等底”为BC,l1∥l1,l1与l1之间的距离为1,.

    ∴BE=1,即EC=4,

    ∵△ABC绕点C按顺时针方向旋转45°得到△A'B'C,
    ∴∠DCF=45°,

    ∵l1∥l1,

    ∴ 即


    Ⅱ.如图4,此时△ABC等腰直角三角形,

    ∵△ABC绕点C按顺时针方向旋转45°得到,
    ∴是等腰直角三角形,

    ②当时,
    Ⅰ.如图5,此时△ABC是等腰直角三角形,

    ∵△ABC绕点C按顺时针方向旋转45°得到△A'B'C,


    Ⅱ.如图6,作于E,则



    ∴△ABC绕点C按顺时针方向旋转45°,得到时,点A'在直线l1上,
    ∴∥l1,即直线与l1无交点,
    综上所述,CD的值为
    【点睛】
    属于新定义问题,考查对与等底高三角形概念的理解,勾股定理,等腰直角三角形的性质等,掌握等底高三角形的性质是解题的关键.

    相关试卷

    江苏省句容市二中学片区合作共同体达标名校2021-2022学年中考数学五模试卷含解析:

    这是一份江苏省句容市二中学片区合作共同体达标名校2021-2022学年中考数学五模试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,关于的方程有实数根,则满足,如图所示的工件,其俯视图是等内容,欢迎下载使用。

    2022届江苏省句容市二中学片区合作共同体达标名校中考冲刺卷数学试题含解析:

    这是一份2022届江苏省句容市二中学片区合作共同体达标名校中考冲刺卷数学试题含解析,共24页。试卷主要包含了答题时请按要求用笔,将一副三角尺等内容,欢迎下载使用。

    2021-2022学年江苏省镇江市句容市第二中学中考四模数学试题含解析:

    这是一份2021-2022学年江苏省镇江市句容市第二中学中考四模数学试题含解析,共22页。试卷主要包含了若二元一次方程组的解为则的值为等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map