终身会员
搜索
    上传资料 赚现金

    2022年江苏省无锡市和桥区、张渚区中考适应性考试数学试题含解析

    立即下载
    加入资料篮
    2022年江苏省无锡市和桥区、张渚区中考适应性考试数学试题含解析第1页
    2022年江苏省无锡市和桥区、张渚区中考适应性考试数学试题含解析第2页
    2022年江苏省无锡市和桥区、张渚区中考适应性考试数学试题含解析第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年江苏省无锡市和桥区、张渚区中考适应性考试数学试题含解析

    展开

    这是一份2022年江苏省无锡市和桥区、张渚区中考适应性考试数学试题含解析,共27页。试卷主要包含了答题时请按要求用笔,的绝对值是,下列式子成立的有个等内容,欢迎下载使用。


    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.一艘在南北航线上的测量船,于A点处测得海岛B在点A的南偏东30°方向,继续向南航行30海里到达C点时,测得海岛B在C点的北偏东15°方向,那么海岛B离此航线的最近距离是(  )(结果保留小数点后两位)(参考数据:≈1.732,≈1.414)
    A.4.64海里 B.5.49海里 C.6.12海里 D.6.21海里
    2.已知关于x的方程恰有一个实根,则满足条件的实数a的值的个数为(  )
    A.1 B.2 C.3 D.4
    3.△ABC在正方形网格中的位置如图所示,则cosB的值为( )

    A. B. C. D.2
    4.下列命题是真命题的是(  )
    A.如果a+b=0,那么a=b=0 B.的平方根是±4
    C.有公共顶点的两个角是对顶角 D.等腰三角形两底角相等
    5.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是(   )
    A.22x=16(27﹣x) B.16x=22(27﹣x) C.2×16x=22(27﹣x) D.2×22x=16(27﹣x)
    6.如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC,若AB=8,CD=2,则cos∠ECB为(  )

    A. B. C. D.
    7.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为( )
    A. B. C. D.
    8.的绝对值是(  )
    A.﹣4 B. C.4 D.0.4
    9.下列式子成立的有( )个
    ①﹣的倒数是﹣2
    ②(﹣2a2)3=﹣8a5
    ③()=﹣2
    ④方程x2﹣3x+1=0有两个不等的实数根
    A.1 B.2 C.3 D.4
    10.如图是由若干个小正方体块搭成的几何体的俯视图,小正方块中的数字表示在该位置的小正方体块的个数,那么这个几何体的主视图是( )

    A. B. C. D.
    11.如图,矩形ABCD中,AB=3,AD=4,连接BD,∠DBC的角平分线BE交DC于点E,现把△BCE绕点B逆时针旋转,记旋转后的△BCE为△BC′E′.当线段BE′和线段BC′都与线段AD相交时,设交点分别为F,G.若△BFD为等腰三角形,则线段DG长为(  )

    A. B. C. D.
    12.某校40名学生参加科普知识竞赛(竞赛分数都是整数),竞赛成绩的频数分布直方图如图所示,成绩的中位数落在( )

    A.50.5~60.5 分 B.60.5~70.5 分 C.70.5~80.5 分 D.80.5~90.5 分
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,在中,CM平分交AB于点M,过点M作交AC于点N,且MN平分,若,则BC的长为______.

    14.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长度为_____

    15.如图,已知抛物线和x轴交于两点A、B,和y轴交于点C,已知A、B两点的横坐标分别为﹣1,4,△ABC是直角三角形,∠ACB=90°,则此抛物线顶点的坐标为_____.

    16.如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为________.

    17.数据:2,5,4,2,2的中位数是_____,众数是_____,方差是_____.
    18.如图,某小型水库栏水坝的横断面是四边形ABCD,DC∥AB,测得迎水坡的坡角α=30°,已知背水坡的坡比为1.2:1,坝顶部DC宽为2m,坝高为6m,则坝底AB的长为_____m.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.

    20.(6分)如图,在边长为1的小正方形组成的方格纸上,将△ABC绕着点A顺时针旋转90°
    画出旋转之后的△AB′C′;求线段AC旋转过程中扫过的扇形的面积.
    21.(6分)如图,已知:正方形ABCD,点E在CB的延长线上,连接AE、DE,DE与边AB交于点F,FG∥BE交AE于点G.
    (1)求证:GF=BF;
    (2)若EB=1,BC=4,求AG的长;
    (3)在BC边上取点M,使得BM=BE,连接AM交DE于点O.求证:FO•ED=OD•EF.

    22.(8分)如图,矩形的两边、的长分别为3、8,是的中点,反比例函数的图象经过点,与交于点.
    若点坐标为,求的值及图象经过、两点的一次函数的表达式;若,求反比例函数的表达式.
    23.(8分)如图,在平面直角坐标系xOy中,已知点A(3,0),点B(0,3),点O为原点.动点C、D分别在直线AB、OB上,将△BCD沿着CD折叠,得△B'CD.

    (Ⅰ)如图1,若CD⊥AB,点B'恰好落在点A处,求此时点D的坐标;
    (Ⅱ)如图2,若BD=AC,点B'恰好落在y轴上,求此时点C的坐标;
    (Ⅲ)若点C的横坐标为2,点B'落在x轴上,求点B'的坐标(直接写出结果即可).
    24.(10分)如图,AB、CD是⊙O的直径,DF、BE是弦,且DF=BE,求证:∠D=∠B.

    25.(10分)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“舞蹈”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如图统计图:

    根据统计图所提供的倍息,解答下列问题:
    (1)本次抽样调查中的学生人数是多少人;
    (2 )补全条形统计图;
    (3)若该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数;
    (4)现有爱好舞蹈的两名男生两名女生想参加舞蹈社,但只能选两名学生,请你用列表或画树状图的方法,求出正好选到一男一女的概率.
    26.(12分)请你仅用无刻度的直尺在下面的图中作出△ABC 的边 AB 上的高 CD.如图①,以等边三角形 ABC 的边 AB 为直径的圆,与另两边 BC、AC 分别交于点 E、F.如图②,以钝角三角形 ABC 的一短边 AB 为直径的圆,与最长的边 AC 相交于点 E.

    27.(12分)有这样一个问题:探究函数的图象与性质.小怀根据学习函数的经验,对函数的图象与性质进行了探究.下面是小怀的探究过程,请补充完成:
    (1)函数的自变量x的取值范围是   ;
    (2)列出y与x的几组对应值.请直接写出m的值,m=   ;
    (3)请在平面直角坐标系xOy中,描出表中各对对应值为坐标的点,并画出该函数的图象;
    (4)结合函数的图象,写出函数的一条性质.





    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    根据题意画出图如图所示:作BD⊥AC,取BE=CE,根据三角形内角和和等腰三角形的性质得出BA=BE,AD=DE,设BD=x,Rt△ABD中,根据勾股定理得AD=DE= x,AB=BE=CE=2x,由AC=AD+DE+EC=2 x+2x=30,解之即可得出答案.
    【详解】
    根据题意画出图如图所示:作BD⊥AC,取BE=CE,

    ∵AC=30,∠CAB=30°∠ACB=15°,
    ∴∠ABC=135°,
    又∵BE=CE,
    ∴∠ACB=∠EBC=15°,
    ∴∠ABE=120°,
    又∵∠CAB=30°
    ∴BA=BE,AD=DE,
    设BD=x,
    在Rt△ABD中,
    ∴AD=DE= x,AB=BE=CE=2x,
    ∴AC=AD+DE+EC=2 x+2x=30,
    ∴x= = ≈5.49,
    故答案选:B.
    【点睛】
    本题考查了三角形内角和定理与等腰直角三角形的性质,解题的关键是熟练的掌握三角形内角和定理与等腰直角三角形的性质.
    2、C
    【解析】
    先将原方程变形,转化为整式方程后得2x2-3x+(3-a)=1①.由于原方程只有一个实数根,因此,方程①的根有两种情况:(1)方程①有两个相等的实数根,此二等根使x(x-2)≠1;(2)方程①有两个不等的实数根,而其中一根使x(x-2)=1,另外一根使x(x-2)≠1.针对每一种情况,分别求出a的值及对应的原方程的根.
    【详解】
    去分母,将原方程两边同乘x(x﹣2),整理得2x2﹣3x+(3﹣a)=1.①
    方程①的根的情况有两种:
    (1)方程①有两个相等的实数根,即△=9﹣3×2(3﹣a)=1.
    解得a=.
    当a=时,解方程2x2﹣3x+(﹣+3)=1,得x1=x2=.
    (2)方程①有两个不等的实数根,而其中一根使原方程分母为零,即方程①有一个根为1或2.
    (i)当x=1时,代入①式得3﹣a=1,即a=3.
    当a=3时,解方程2x2﹣3x=1,x(2x﹣3)=1,x1=1或x2=1.4.
    而x1=1是增根,即这时方程①的另一个根是x=1.4.它不使分母为零,确是原方程的唯一根.
    (ii)当x=2时,代入①式,得2×3﹣2×3+(3﹣a)=1,即a=5.
    当a=5时,解方程2x2﹣3x﹣2=1,x1=2,x2=﹣ .
    x1是增根,故x=﹣为方程的唯一实根;
    因此,若原分式方程只有一个实数根时,所求的a的值分别是,3,5共3个.
    故选C.
    【点睛】
    考查了分式方程的解法及增根问题.由于原分式方程去分母后,得到一个含有字母的一元二次方程,所以要分情况进行讨论.理解分式方程产生增根的原因及一元二次方程解的情况从而正确进行分类是解题的关键.
    3、A
    【解析】
    解:在直角△ABD中,BD=2,AD=4,则AB=,
    则cosB=.
    故选A.

    4、D
    【解析】
    解:A、如果a+b=0,那么a=b=0,或a=﹣b,错误,为假命题;
    B、=4的平方根是±2,错误,为假命题;
    C、有公共顶点且相等的两个角是对顶角,错误,为假命题;
    D、等腰三角形两底角相等,正确,为真命题;
    故选D.
    5、D
    【解析】
    设分配x名工人生产螺栓,则(27-x)人生产螺母,根据一个螺栓要配两个螺母可得方程2×22x=16(27-x),故选D.
    6、D
    【解析】
    连接EB,设圆O半径为r,根据勾股定理可求出半径r=4,从而可求出EB的长度,最后勾股定理即可求出CE的长度.利用锐角三角函数的定义即可求出答案.
    【详解】
    解:连接EB,

    由圆周角定理可知:∠B=90°,
    设⊙O的半径为r,
    由垂径定理可知:AC=BC=4,
    ∵CD=2,
    ∴OC=r-2,
    ∴由勾股定理可知:r2=(r-2)2+42,
    ∴r=5,
    BCE中,由勾股定理可知:CE=2,
    ∴cos∠ECB==,
    故选D.
    【点睛】
    本题考查垂径定理,涉及勾股定理,垂直定理,解方程等知识,综合程度较高,属于中等题型.
    7、D
    【解析】
    分析:根据乘私家车平均速度是乘公交车平均速度的2.5倍,乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,利用时间得出等式方程即可.
    详解:设乘公交车平均每小时走x千米,根据题意可列方程为:

    故选D.
    点睛:此题主要考查了由实际问题抽象出分式方程,解题关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,列出方程即可.
    8、B
    【解析】
    分析:根据绝对值的性质,一个负数的绝对值等于其相反数,可有相反数的意义求解.
    详解:因为-的相反数为
    所以-的绝对值为.
    故选:B
    点睛:此题主要考查了求一个数的绝对值,关键是明确绝对值的性质,一个正数的绝对值等于本身,0的绝对值是0,一个负数的绝对值为其相反数.
    9、B
    【解析】
    根据倒数的定义,幂的乘方、二次根式的混合运算法则以及根的判别式进行判断.
    【详解】
    解:①﹣的倒数是﹣2,故正确;
    ②(﹣2a2)3=﹣8a6,故错误;
    ③(-)=﹣2,故错误;
    ④因为△=(﹣3)2﹣4×1×1=5>0,所以方程x2﹣3x+1=0有两个不等的实数根,故正确.
    故选B.
    【点睛】
    考查了倒数的定义,幂的乘方、二次根式的混合运算法则以及根的判别式,属于比较基础的题目,熟记计算法则即可解答.
    10、B
    【解析】
    根据俯视图可确定主视图的列数和每列小正方体的个数.
    【详解】
    由俯视图可得,主视图一共有两列,左边一列由两个小正方体组成,右边一列由3个小正方体组成.
    故答案选B.
    【点睛】
    由几何体的俯视图可确定该几何体的主视图和左视图.
    11、A
    【解析】
    先在Rt△ABD中利用勾股定理求出BD=5,在Rt△ABF中利用勾股定理求出BF=,则AF=4-=.再过G作GH∥BF,交BD于H,证明GH=GD,BH=GH,设DG=GH=BH=x,则FG=FD-GD=-x,HD=5-x,由GH∥FB,得出=,即可求解.
    【详解】
    解:在Rt△ABD中,∵∠A=90°,AB=3,AD=4,
    ∴BD=5,

    在Rt△ABF中,∵∠A=90°,AB=3,AF=4-DF=4-BF,
    ∴BF2=32+(4-BF)2,
    解得BF=,
    ∴AF=4-=.
    过G作GH∥BF,交BD于H,
    ∴∠FBD=∠GHD,∠BGH=∠FBG,
    ∵FB=FD,
    ∴∠FBD=∠FDB,
    ∴∠FDB=∠GHD,
    ∴GH=GD,
    ∵∠FBG=∠EBC=∠DBC=∠ADB=∠FBD,
    又∵∠FBG=∠BGH,∠FBG=∠GBH,
    ∴BH=GH,
    设DG=GH=BH=x,则FG=FD-GD=-x,HD=5-x,
    ∵GH∥FB,
    ∴ =,即=,
    解得x=.
    故选A.
    【点睛】
    本题考查了旋转的性质,矩形的性质,等腰三角形的性质,勾股定理,平行线分线段成比例定理,准确作出辅助线是解题关键.
    12、C
    【解析】
    分析:由频数分布直方图知这组数据共有40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,据此可得.
    详解:由频数分布直方图知,这组数据共有3+6+8+8+9+6=40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,所以中位数落在70.5~80.5分.故选C.
    点睛:本题主要考查了频数(率)分布直方图和中位数,解题的关键是掌握将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1
    【解析】
    根据题意,可以求得∠B的度数,然后根据解直角三角形的知识可以求得NC的长,从而可以求得BC的长.
    【详解】
    ∵在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,
    ∴∠AMN=∠NMC=∠B,∠NCM=∠BCM=∠NMC,
    ∴∠ACB=2∠B,NM=NC,
    ∴∠B=30°,
    ∵AN=1,
    ∴MN=2,
    ∴AC=AN+NC=3,
    ∴BC=1,
    故答案为1.
    【点睛】
    本题考查含30°角的直角三角形、平行线的性质、等腰三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    14、
    【解析】
    分析题意,如图所示,连接BF,由翻折变换可知,BF⊥AE,BE=EF,由点E是BC的中点可知BE=3,根据勾股定理即可求得AE;根据三角形的面积公式可求得BH,进而可得到BF的长度;结合题意可知FE=BE=EC,进而可得∠BFC=90°,至此,在Rt△BFC中,利用勾股定理求出CF的长度即可
    【详解】
    如图,连接BF.

    ∵△AEF是由△ABE沿AE折叠得到的,
    ∴BF⊥AE,BE=EF.
    ∵BC=6,点E为BC的中点,
    ∴BE=EC=EF=3
    根据勾股定理有AE=AB+BE
    代入数据求得AE=5
    根据三角形的面积公式
    得BH=
    即可得BF=
    由FE=BE=EC,
    可得∠BFC=90°
    再由勾股定理有BC-BF=CF
    代入数据求得CF=
    故答案为
    【点睛】
    此题考查矩形的性质和折叠问题,解题关键在于利用好折叠的性质
    15、( , )
    【解析】
    连接AC,根据题意易证△AOC∽△COB,则,求得OC=2,即点C的坐标为(0,2),可设抛物线解析式为y=a(x+1)(x﹣4),然后将C点坐标代入求解,最后将解析式化为顶点式即可.
    【详解】
    解:连接AC,
    ∵A、B两点的横坐标分别为﹣1,4,
    ∴OA=1,OB=4,
    ∵∠ACB=90°,
    ∴∠CAB+∠ABC=90°,
    ∵CO⊥AB,
    ∴∠ABC+∠BCO=90°,
    ∴∠CAB=∠BCO,
    又∵∠AOC=∠BOC=90°,
    ∴△AOC∽△COB,
    ∴,
    即=,
    解得OC=2,
    ∴点C的坐标为(0,2),
    ∵A、B两点的横坐标分别为﹣1,4,
    ∴设抛物线解析式为y=a(x+1)(x﹣4),
    把点C的坐标代入得,a(0+1)(0﹣4)=2,
    解得a=﹣,
    ∴y=﹣(x+1)(x﹣4)=﹣(x2﹣3x﹣4)=﹣(x﹣)2+,
    ∴此抛物线顶点的坐标为( , ).
    故答案为:( , ).

    【点睛】
    本题主要考查相似三角形的判定与性质,抛物线的顶点式,解此题的关键在于熟练掌握其知识点,利用相似三角形的性质求得关键点的坐标.
    16、
    【解析】
    试题分析:因为OC=OA,所以∠ACO=,所以∠AOC=45°,又直径垂直于弦,,所以CE=,所以CD=2CE=.
    考点:1.解直角三角形、2.垂径定理.
    17、2 2 1.1.
    【解析】
    先将这组数据从小到大排列,再找出最中间的数,即可得出中位数;找出这组数据中最多的数则是众数;先求出这组数据的平均数,再根据方差公式S2=[(x1-)2+(x2-)2+…+(xn-)2]进行计算即可.
    【详解】
    解:把这组数据从小到大排列为:2,2,2,4,5,最中间的数是2,
    则中位数是2;
    众数为2;
    ∵这组数据的平均数是(2+2+2+4+5)÷5=3,
    ∴方差是: [(2−3)2+(2−3)2+(2−3)2+(4−3)2+(5−3)2]=1.1.
    故答案为2,2,1.1.
    【点睛】
    本题考查了中位数、众数与方差的定义,解题的关键是熟练的掌握中位数、众数与方差的定义.
    18、(7+6)
    【解析】
    过点C作CE⊥AB,DF⊥AB,垂足分别为:E,F,得到两个直角三角形和一个矩形,在Rt△AEF中利用DF的长,求得线段AF的长;在Rt△BCE中利用CE的长求得线段BE的长,然后与AF、EF相加即可求得AB的长.
    【详解】
    解:如图所示:过点C作CE⊥AB,DF⊥AB,垂足分别为:E,F,

    ∵坝顶部宽为2m,坝高为6m,
    ∴DC=EF=2m,EC=DF=6m,
    ∵α=30°,
    ∴BE= (m),
    ∵背水坡的坡比为1.2:1,
    ∴,
    解得:AF=5(m),
    则AB=AF+EF+BE=5+2+6=(7+6)m,
    故答案为(7+6)m.
    【点睛】
    本题考查了解直角三角形的应用,解题的关键是利用锐角三角函数的概念和坡度的概念求解.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、有触礁危险,理由见解析.
    【解析】
    试题分析:过点P作PD⊥AC于D,在Rt△PBD和Rt△PAD中,根据三角函数AD,BD就可以用PD表示出来,根据AB=12海里,就得到一个关于PD的方程,求得PD.从而可以判断如果渔船不改变航线继续向东航行,有没有触礁危险.
    试题解析:有触礁危险.理由:过点P作PD⊥AC于D.

    设PD为x,
    在Rt△PBD中,∠PBD=90°-45°=45°.
    ∴BD=PD=x.
    在Rt△PAD中,
    ∵∠PAD=90°-60°=30°
    ∴AD=
    ∵AD=AB+BD
    ∴x=12+x
    ∴x=
    ∵6(+1)<18
    ∴渔船不改变航线继续向东航行,有触礁危险.
    【点睛】本题主要考查解直角三角形在实际问题中的应用,构造直角三角形是解题的前提和关键.
    20、.(1)见解析(2)
    【解析】
    (1)根据网格结构找出点B、C旋转后的对应点B′、C′的位置,然后顺次连接即可.
    (2)先求出AC的长,再根据扇形的面积公式列式进行计算即可得解.
    【详解】
    解:(1)△AB′C′如图所示:

    (2)由图可知,AC=2,
    ∴线段AC旋转过程中扫过的扇形的面积.
    21、(1)证明见解析;(2)AG=;(3)证明见解析.
    【解析】
    (1)根据正方形的性质得到AD∥BC,AB∥CD,AD=CD,根据相似三角形的性质列出比例式,等量代换即可;
    (2)根据勾股定理求出AE,根据相似三角形的性质计算即可;
    (3)延长GF交AM于H,根据平行线分线段成比例定理得到,由于BM=BE,得到GF=FH,由GF∥AD,得到,等量代换得到,即,于是得到结论.
    【详解】
    解:(1)∵四边形ABCD是正方形,
    ∴AD∥BC,AB∥CD,AD=CD,
    ∵GF∥BE,
    ∴GF∥BC,
    ∴GF∥AD,
    ∴,
    ∵AB∥CD,

    ∵AD=CD,
    ∴GF=BF;
    (2)∵EB=1,BC=4,
    ∴=4,AE=,
    ∴=4,
    ∴AG=;
    (3)延长GF交AM于H,

    ∵GF∥BC,
    ∴FH∥BC,
    ∴,
    ∴,
    ∵BM=BE,
    ∴GF=FH,
    ∵GF∥AD,
    ∴,,
    ∴,
    ∴,
    ∴FO•ED=OD•EF.
    【点睛】
    本题主要考查平行线分线段成比例及正方形的性质,掌握平行线分线段中的线段对应成比例是解题的关键,注意利用比例相等也可以证明线段相等.
    22、(1),;(2).
    【解析】
    分析:(1)由已知求出A、E的坐标,即可得出m的值和一次函数函数的解析式;
    (2)由,得到,由,得到.设点坐标为,则点坐标为,代入反比例函数解析式即可得到结论.
    详解:(1)∵为的中点,
    ∴.
    ∵反比例函数图象过点,
    ∴.
    设图象经过、两点的一次函数表达式为:,
    ∴,
    解得,
    ∴.
    (2)∵,
    ∴.
    ∵,
    ∴,
    ∴.
    设点坐标为,则点坐标为.
    ∵两点在图象上,
    ∴,
    解得:,
    ∴,
    ∴,
    ∴.

    点睛:本题考查了矩形的性质以及反比例函数一次函数的解析式.解题的关键是求出点A、E、F的坐标.
    23、(1)D(0,);(1)C(11﹣6,11﹣18);(3)B'(1+,0),(1﹣,0).
    【解析】
    (1)设OD为x,则BD=AD=3,在RT△ODA中应用勾股定理即可求解;
    (1)由题意易证△BDC∽△BOA,再利用A、B坐标及BD=AC可求解出BD长度,再由特殊角的三角函数即可求解;
    (3)过点C作CE⊥AO于E,由A、B坐标及C的横坐标为1,利用相似可求解出BC、CE、OC等长度;分点B’在A点右边和左边两种情况进行讨论,由翻折的对称性可知BC=B’C,再利用特殊角的三角函数可逐一求解.
    【详解】
    (Ⅰ)设OD为x,
    ∵点A(3,0),点B(0,),
    ∴AO=3,BO=
    ∴AB=6
    ∵折叠
    ∴BD=DA
    在Rt△ADO中,OA1+OD1=DA1.
    ∴9+OD1=(﹣OD)1.
    ∴OD=
    ∴D(0,)
    (Ⅱ)∵折叠
    ∴∠BDC=∠CDO=90°
    ∴CD∥OA
    ∴且BD=AC,

    ∴BD=﹣18
    ∴OD=﹣(﹣18)=18﹣
    ∵tan∠ABO=,
    ∴∠ABC=30°,即∠BAO=60°
    ∵tan∠ABO=,
    ∴CD=11﹣6
    ∴D(11﹣6,11﹣18)
    (Ⅲ)如图:过点C作CE⊥AO于E

    ∵CE⊥AO
    ∴OE=1,且AO=3
    ∴AE=1,
    ∵CE⊥AO,∠CAE=60°
    ∴∠ACE=30°且CE⊥AO
    ∴AC=1,CE=
    ∵BC=AB﹣AC
    ∴BC=6﹣1=4
    若点B'落在A点右边,
    ∵折叠
    ∴BC=B'C=4,CE=,CE⊥OA
    ∴B'E=
    ∴OB'=1+
    ∴B'(1+,0)
    若点B'落在A点左边,
    ∵折叠
    ∴BC=B'C=4,CE=,CE⊥OA
    ∴B'E=
    ∴OB'=﹣1
    ∴B'(1﹣,0)
    综上所述:B'(1+,0),(1﹣,0)
    【点睛】
    本题结合翻折综合考查了三角形相似和特殊角的三角函数,第3问中理解B’点的两种情况是解题关键.
    24、证明见解析.
    【解析】
    根据在同圆中等弦对的弧相等,AB、CD是⊙O的直径,则,由FD=EB,得,,由等量减去等量仍是等量得:,即,由等弧对的圆周角相等,得∠D=∠B.
    【详解】
    解:方法(一)
    证明:∵AB、CD是⊙O的直径,
    ∴.
    ∵FD=EB,
    ∴.
    ∴.
    即.
    ∴∠D=∠B.
    方法(二)
    证明:如图,连接CF,AE.
    ∵AB、CD是⊙O的直径,
    ∴∠F=∠E=90°(直径所对的圆周角是直角).
    ∵AB=CD,DF=BE,
    ∴Rt△DFC≌Rt△BEA(HL).
    ∴∠D=∠B.

    【点睛】
    本题利用了在同圆中等弦对的弧相等,等弧对的弦,圆周角相等,等量减去等量仍是等量求解.
    25、(1)本次抽样调查中的学生人数为100人;(2)补全条形统计图见解析;(3)估计该校课余兴趣爱好为“打球”的学生人数为800人;(4).
    【解析】
    (1)用选“阅读”的人数除以它所占的百分比即可得到调查的总人数;
    (2)先计算出选“舞蹈”的人数,再计算出选“打球”的人数,然后补全条形统计图;
    (3)用2000乘以样本中选“打球”的人数所占的百分比可估计该校课余兴趣爱好为“打球”的学生人数;
    (4)画树状图展示所有12种等可能的结果数,再找出选到一男一女的结果数,然后根据概率公式求解.
    【详解】
    (1)30÷30%=100,
    所以本次抽样调查中的学生人数为100人;
    (2)选”舞蹈”的人数为100×10%=10(人),
    选“打球”的人数为100﹣30﹣10﹣20=40(人),
    补全条形统计图为:

    (3)2000×=800,
    所以估计该校课余兴趣爱好为“打球”的学生人数为800人;
    (4)画树状图为:

    共有12种等可能的结果数,其中选到一男一女的结果数为8,
    所以选到一男一女的概率=.
    【点睛】
    本题考查了条形统计图与扇形统计图,列表法与树状图法求概率,读懂统计图,从中找到有用的信息是解题的关键.本题中还用到了知识点为:概率=所求情况数与总情况数之比.
    26、(1)详见解析;(2)详见解析.
    【解析】
    (1)连接AE、BF,找到△ABC的高线的交点,据此可得CD;
    (2)延长CB交圆于点F,延长AF、EB交于点G,连接CG,延长AB交CG于点D,据此可得.
    【详解】
    (1)如图所示,CD 即为所求;

    (2)如图,CD 即为所求.
    【点睛】
    本题主要考查作图-基本作图,解题的关键熟练掌握圆周角定理和三角形的三条高线交于一点的性质.
    27、(1)x≠﹣1;(2)2;(2)见解析;(4)在x<﹣1和x>﹣1上均单调递增;
    【解析】
    (1)根据分母非零即可得出x+1≠0,解之即可得出自变量x的取值范围;
    (2)将y=代入函数解析式中求出x值即可;
    (2)描点、连线画出函数图象;
    (4)观察函数图象,写出函数的一条性质即可.
    【详解】
    解:(1)∵x+1≠0,∴x≠﹣1.
    故答案为x≠﹣1.
    (2)当y==时,解得:x=2.
    故答案为2.
    (2)描点、连线画出图象如图所示.
    (4)观察函数图象,发现:函数在x<﹣1和x>﹣1上均单调递增.

    【点睛】
    本题考查了反比例函数的性质以及函数图象,根据给定数据描点、连线画出函数图象是解题的关键.

    相关试卷

    2023-2024学年江苏省无锡市和桥区、张渚区九上数学期末达标测试试题含答案:

    这是一份2023-2024学年江苏省无锡市和桥区、张渚区九上数学期末达标测试试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    江苏省无锡市和桥区、张渚区2023-2024学年八上数学期末检测模拟试题含答案:

    这是一份江苏省无锡市和桥区、张渚区2023-2024学年八上数学期末检测模拟试题含答案,共6页。试卷主要包含了下列六个数,计算 的结果是,下列各式中正确的是,直线,如果,那么代数式的值是.等内容,欢迎下载使用。

    2022-2023学年江苏省无锡市和桥区、张渚区七下数学期末考试模拟试题含答案:

    这是一份2022-2023学年江苏省无锡市和桥区、张渚区七下数学期末考试模拟试题含答案,共6页。试卷主要包含了下列运算结果正确的是,在中,,则的值是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map