终身会员
搜索
    上传资料 赚现金
    2022年辽宁丹东市第二十九中学中考考前最后一卷数学试卷含解析
    立即下载
    加入资料篮
    2022年辽宁丹东市第二十九中学中考考前最后一卷数学试卷含解析01
    2022年辽宁丹东市第二十九中学中考考前最后一卷数学试卷含解析02
    2022年辽宁丹东市第二十九中学中考考前最后一卷数学试卷含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年辽宁丹东市第二十九中学中考考前最后一卷数学试卷含解析

    展开
    这是一份2022年辽宁丹东市第二十九中学中考考前最后一卷数学试卷含解析,共23页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.在以下三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是( )

    A.图2 B.图1与图2 C.图1与图3 D.图2与图3
    2.下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是(  )
    A.有两个不相等实数根 B.有两个相等实数根
    C.有且只有一个实数根 D.没有实数根
    3.如图,有一些点组成形如四边形的图案,每条“边”(包括顶点)有n(n>1)个点.当n=2018时,这个图形总的点数S为(  )

    A.8064 B.8067 C.8068 D.8072
    4.若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是(  )
    A.抛物线开口向下
    B.抛物线与x轴的交点为(﹣1,0),(3,0)
    C.当x=1时,y有最大值为0
    D.抛物线的对称轴是直线x=
    5.如图,已知点A、B、C、D在⊙O上,圆心O在∠D内部,四边形ABCO为平行四边形,则∠DAO与∠DCO的度数和是(  )

    A.60° B.45° C.35° D.30°
    6.如图,,且.、是上两点,,.若,,,则的长为( )

    A. B. C. D.
    7.下列二次根式中,的同类二次根式是(  )
    A. B. C. D.
    8.下列运算正确的是(  )
    A.5a+2b=5(a+b) B.a+a2=a3
    C.2a3•3a2=6a5 D.(a3)2=a5
    9.已知关于x的一元二次方程有两个相等的实根,则k的值为( )
    A. B. C.2或3 D.或
    10.如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于( )

    A.3.5 B.4 C.7 D.14
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,则旅客可携带的免费行李的最大质量为 kg
    12.如图,设△ABC的两边AC与BC之和为a,M是AB的中点,MC=MA=5,则a的取值范围是_____.

    13.如图,长方体的底面边长分别为1cm 和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要_____cm.

    14.某商场对今年端午节这天销售A、B、C三种品牌粽子的情况进行了统计,绘制了如图1和图2所示的统计图,则B品牌粽子在图2中所对应的扇形的心角的度数是_____.

    15.如图,在□ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是________.

    16.如图,△ABC中,过重心G的直线平行于BC,且交边AB于点D,交边AC于点E,如果设=,=,用,表示,那么=___.

    三、解答题(共8题,共72分)
    17.(8分)如图,已知一次函数y1=kx+b(k≠0)的图象与反比例函数的图象交于A、B两点,与坐标轴交于M、N两点.且点A的横坐标和点B的纵坐标都是﹣1.求一次函数的解析式;求△AOB的面积;观察图象,直接写出y1>y1时x的取值范围.

    18.(8分)“低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门抽样调查了某单位员工上下班的交通方式,绘制了如下统计图:

    (1)填空:样本中的总人数为 ;开私家车的人数m= ;扇形统计图中“骑自行车”所在扇形的圆心角为 度;
    (2)补全条形统计图;
    (3)该单位共有2000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车.若步行,坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?
    19.(8分)图1所示的遮阳伞,伞柄垂直于水平地面,其示意图如图2、当伞收紧时,点P与点A重合;当伞慢慢撑开时,动点P由A向B移动;当点P到达点B时,伞张得最开、已知伞在撑开的过程中,总有PM=PN=CM=CN=6.0分米,CE=CF=18.0分米,BC=2.0分米、设AP=x分米.
    (1)求x的取值范围;
    (2)若∠CPN=60°,求x的值;
    (3)设阳光直射下,伞下的阴影(假定为圆面)面积为y,求y关于x的关系式(结果保留π).

    20.(8分)计算:﹣4cos45°+()﹣1+|﹣2|.
    21.(8分)学习了正多边形之后,小马同学发现利用对称、旋转等方法可以计算等分正多边形面积的方案.
    (1)请聪明的你将下面图①、图②、图③的等边三角形分别割成2个、3个、4个全等三角形;
    (2)如图④,等边△ABC边长AB=4,点O为它的外心,点M、N分别为边AB、BC上的动点(不与端点重合),且∠MON=120°,若四边形BMON的面积为s,它的周长记为l,求最小值;
    (3)如图⑤,等边△ABC的边长AB=4,点P为边CA延长线上一点,点Q为边AB延长线上一点,点D为BC边中点,且∠PDQ=120°,若PA=x,请用含x的代数式表示△BDQ的面积S△BDQ.

    22.(10分)如图,在平面直角坐标系中,将坐标原点O沿x轴向左平移2个单位长度得到点A,过点A作y轴的平行线交反比例函数的图象于点B,AB=.求反比例函数的解析式;若P(,)、Q(,)是该反比例函数图象上的两点,且时,,指出点P、Q各位于哪个象限?并简要说明理由.

    23.(12分)在中,,BD为AC边上的中线,过点C作于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取,连接BG,DF.
    求证:;
    求证:四边形BDFG为菱形;
    若,,求四边形BDFG的周长.

    24.由于雾霾天气趋于严重,我市某电器商城根据民众健康需求,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.完成下列表格,并直接写出月销售量y(台)与售价x(元/台)之间的函数关系式及售价x的取值范围;
    售价(元/台)
    月销售量(台)
    400
    200

    250
    x

    (2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    【分析】根据角平分线的作图方法可判断图1,根据图2的作图痕迹可知D为BC中点,不是角平分线,图3中根据作图痕迹可通过判断三角形全等推导得出AD是角平分线.
    【详解】图1中,根据作图痕迹可知AD是角平分线;
    图2中,根据作图痕迹可知作的是BC的垂直平分线,则D为BC边的中点,因此AD不是角平分线;
    图3:由作图方法可知AM=AE,AN=AF,∠BAC为公共角,∴△AMN≌△AEF,
    ∴∠3=∠4,
    ∵AM=AE,AN=AF,∴MF=EN,又∵∠MDF=∠EDN,∴△FDM≌△NDE,
    ∴DM=DE,
    又∵AD是公共边,∴△ADM≌△ADE,
    ∴∠1=∠2,即AD平分∠BAC,
    故选C.

    【点睛】本题考查了尺规作图,三角形全等的判定与性质等,熟知角平分的尺规作图方法、全等三角形的判定与性质是解题的关键.
    2、A
    【解析】
    【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x2+x﹣3=0有两个不相等的实数根.
    【详解】∵a=1,b=1,c=﹣3,
    ∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,
    ∴方程x2+x﹣3=0有两个不相等的实数根,
    故选A.
    【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
    3、C
    【解析】
    分析:本题重点注意各个顶点同时在两条边上,计算点的个数时,不要把顶点重复计算了.
    详解:此题中要计算点的个数,可以类似周长的计算方法进行,但应注意各个顶点重复了一次.
    如当n=2时,共有S2=4×2﹣4=4;当n=3时,共有S3=4×3﹣4,…,依此类推,即Sn=4n﹣4,当n=2018时,S2018=4×2018﹣4=1.
    故选C.
    点睛:本题考查了图形的变化类问题,关键是通过归纳与总结,得到其中的规律.
    4、D
    【解析】
    A、由a=1>0,可得出抛物线开口向上,A选项错误;
    B、由抛物线与y轴的交点坐标可得出c值,进而可得出抛物线的解析式,令y=0求出x值,由此可得出抛物线与x轴的交点为(1,0)、(1,0),B选项错误;
    C、由抛物线开口向上,可得出y无最大值,C选项错误;
    D、由抛物线的解析式利用二次函数的性质,即可求出抛物线的对称轴为直线x=-,D选项正确.
    综上即可得出结论.
    【详解】
    解:A、∵a=1>0,
    ∴抛物线开口向上,A选项错误;
    B、∵抛物线y=x1-3x+c与y轴的交点为(0,1),
    ∴c=1,
    ∴抛物线的解析式为y=x1-3x+1.
    当y=0时,有x1-3x+1=0,
    解得:x1=1,x1=1,
    ∴抛物线与x轴的交点为(1,0)、(1,0),B选项错误;
    C、∵抛物线开口向上,
    ∴y无最大值,C选项错误;
    D、∵抛物线的解析式为y=x1-3x+1,
    ∴抛物线的对称轴为直线x=-=-=,D选项正确.
    故选D.
    【点睛】
    本题考查了抛物线与x轴的交点、二次函数的性质、二次函数的最值以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征逐一分析四个选项的正误是解题的关键.
    5、A
    【解析】
    试题解析:连接OD,

    ∵四边形ABCO为平行四边形,
    ∴∠B=∠AOC,
    ∵点A. B. C.D在⊙O上,

    由圆周角定理得,

    解得,
    ∵OA=OD,OD=OC,
    ∴∠DAO=∠ODA,∠ODC=∠DCO,

    故选A.
    点睛:在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半.
    6、D
    【解析】
    分析:
    详解:如图,

    ∵AB⊥CD,CE⊥AD,
    ∴∠1=∠2,
    又∵∠3=∠4,
    ∴180°-∠1-∠4=180°-∠2-∠3,
    即∠A=∠C.
    ∵BF⊥AD,
    ∴∠CED=∠BFD=90°,
    ∵AB=CD,
    ∴△ABF≌△CDE,
    ∴AF=CE=a,ED=BF=b,
    又∵EF=c,
    ∴AD=a+b-c.
    故选:D.
    点睛:本题主要考查全等三角形的判定与性质,证明△ABF≌△CDE是关键.
    7、C
    【解析】
    先将每个选项的二次根式化简后再判断.
    【详解】
    解:A:,与不是同类二次根式;
    B:被开方数是2x,故与不是同类二次根式;
    C:=,与是同类二次根式;
    D:=2,与不是同类二次根式.
    故选C.
    【点睛】
    本题考查了同类二次根式的概念.
    8、C
    【解析】
    直接利用合并同类项法则以及单项式乘以单项式、幂的乘方运算法则分别化简得出答案.
    【详解】
    A、5a+2b,无法计算,故此选项错误;
    B、a+a2,无法计算,故此选项错误;
    C、2a3•3a2=6a5,故此选项正确;
    D、(a3)2=a6,故此选项错误.
    故选C.
    【点睛】
    此题主要考查了合并同类项以及单项式乘以单项式、幂的乘方运算,正确掌握运算法则是解题关键.
    9、A
    【解析】
    根据方程有两个相等的实数根结合根的判别式即可得出关于k的方程,解之即可得出结论.
    【详解】
    ∵方程有两个相等的实根,
    ∴△=k2-4×2×3=k2-24=0,
    解得:k=.
    故选A.
    【点睛】
    本题考查了根的判别式,熟练掌握“当△=0时,方程有两个相等的两个实数根”是解题的关键.
    10、A
    【解析】
    根据菱形的四条边都相等求出AB,再根据菱形的对角线互相平分可得OB=OD,然后判断出OE是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解即可.
    【详解】
    解:∵菱形ABCD的周长为28,
    ∴AB=28÷4=7,OB=OD,
    ∵E为AD边中点,
    ∴OE是△ABD的中位线,
    ∴OE=AB=×7=3.1.
    故选:A.
    【点睛】
    本题考查了菱形的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、20
    【解析】
    设函数表达式为y=kx+b把(30,300)、(50、900)代入可得:y=30x-600当y=0时x=20所以免费行李的最大质量为20kg
    12、10<a≤10.
    【解析】
    根据题设知三角形ABC是直角三角形,由勾股定理求得AB的长度及由三角形的三边关系求得a的取值范围;然后根据题意列出二元二次方程组,通过方程组求得xy的值,再把该值依据根与系数的关系置于一元二次方程z2-az+=0中,最后由根的判别式求得a的取值范围.
    【详解】
    ∵M是AB的中点,MC=MA=5,
    ∴△ABC为直角三角形,AB=10;
    ∴a=AC+BC>AB=10;
    令AC=x、BC=y.
    ∴,
    ∴xy=,
    ∴x、y是一元二次方程z2-az+=0的两个实根,
    ∴△=a2-4×≥0,即a≤10.综上所述,a的取值范围是10<a≤10.
    故答案为10<a≤10.
    【点睛】
    本题综合考查了勾股定理、直角三角形斜边上的中线及根的判别式.此题的综合性比较强,解题时,还利用了一元二次方程的根与系数的关系、根的判别式的知识点.
    13、1
    【解析】
    要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.
    【详解】
    解:将长方体展开,连接A、B′,
    ∵AA′=1+3+1+3=8(cm),A′B′=6cm,
    根据两点之间线段最短,AB′==1cm.
    故答案为1.

    考点:平面展开-最短路径问题.
    14、120°
    【解析】
    根据图1中C品牌粽子1200个,在图2中占50%,求出三种品牌粽子的总个数,再求出B品牌粽子的个数,从而计算出B品牌粽子占粽子总数的比例,从而求出B品牌粽子在图2中所对应的圆心角的度数.
    【详解】
    解:∵三种品牌的粽子总数为1200÷50%=2400个,
    又∵A、C品牌的粽子分别有400个、1200个,
    ∴B品牌的粽子有2400-400-1200=800个,
    则B品牌粽子在图2中所对应的圆心角的度数为360×.
    故答案为120°.
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    15、2
    【解析】
    试题解析:连接EG,

    ∵由作图可知AD=AE,AG是∠BAD的平分线,
    ∴∠1=∠2,
    ∴AG⊥DE,OD=DE=1.
    ∵四边形ABCD是平行四边形,
    ∴CD∥AB,
    ∴∠2=∠1,
    ∴∠1=∠1,
    ∴AD=DG.
    ∵AG⊥DE,
    ∴OA=AG.
    在Rt△AOD中,OA==4,
    ∴AG=2AO=2.
    故答案为2.
    16、
    【解析】
    连接AG,延长AG交BC于F.首先证明DG=GE,再利用三角形法则求出即可解决问题.
    【详解】
    连接AG,延长AG交BC于F.

    ∵G是△ABC的重心,DE∥BC,
    ∴BF=CF,

    ∵,,
    ∴,
    ∵BF=CF,
    ∴DG=GE,
    ∵,,
    ∴,
    ∴,
    故答案为.
    【点睛】
    本题考查三角形的重心,平行线的性质,平面向量等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.

    三、解答题(共8题,共72分)
    17、(1)y1=﹣x+1,(1)6;(3)x<﹣1或0<x<4
    【解析】
    试题分析:(1)先根据反比例函数解析式求得两个交点坐标,再根据待定系数法求得一次函数解析式;
    (1)将两条坐标轴作为△AOB的分割线,求得△AOB的面积;
    (3)根据两个函数图象交点的坐标,写出一次函数图象在反比例函数图象上方时所有点的横坐标的集合即可.
    试题解析:(1)设点A坐标为(﹣1,m),点B坐标为(n,﹣1)
    ∵一次函数y1=kx+b(k≠0)的图象与反比例函数y1=﹣的图象交于A、B两点
    ∴将A(﹣1,m)B(n,﹣1)代入反比例函数y1=﹣可得,m=4,n=4
    ∴将A(﹣1,4)、B(4,﹣1)代入一次函数y1=kx+b,可得
    ,解得
    ∴一次函数的解析式为y1=﹣x+1;,
    (1)在一次函数y1=﹣x+1中,
    当x=0时,y=1,即N(0,1);当y=0时,x=1,即M(1,0)
    ∴=×1×1+×1×1+×1×1=1+1+1=6;
    (3)根据图象可得,当y1>y1时,x的取值范围为:x<﹣1或0<x<4

    考点:1、一次函数,1、反比例函数,3、三角形的面积
    18、(1)80,20,72;(2)16,补图见解析;(3)原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数.
    【解析】
    试题分析:(1)用乘公交车的人数除以所占的百分比,计算即可求出总人数,再用总人数乘以开私家车的所占的百分比求出m,用360°乘以骑自行车的所占的百分比计算即可得解:
    样本中的总人数为:36÷45%=80人;
    开私家车的人数m=80×25%=20;
    扇形统计图中“骑自行车”的圆心角为.
    (2)求出骑自行车的人数,然后补全统计图即可.
    (3)设原来开私家车的人中有x人改为骑自行车,表示出改后骑自行车的人数和开私家车的人数,列式不等式,求解即可.
    试题解析:解:(1)80,20,72.
    (2)骑自行车的人数为:80×20%=16人,
    补全统计图如图所示;

    (3)设原来开私家车的人中有x人改为骑自行车,
    由题意得,,解得x≥50.
    答:原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数.
    考点:1.条形统计图;2.扇形统计图;3.频数、频率和总量的关系;4.一元一次不等式的应用.
    19、(1)0≤x≤10;(1)x=6;(3)y=﹣πx1+54πx.
    【解析】
    (1)根据题意,得AC=CN+PN,进一步求得AB的长,即可求得x的取值范围;
    (1)根据等边三角形的判定和性质即可求解;
    (3)连接MN、EF,分别交AC于B、H.此题根据菱形CMPN的性质求得MB的长,再根据相似三角形的对应边的比相等,求得圆的半径即可.
    【详解】
    (1)∵BC=1分米,AC=CN+PN=11分米,
    ∴AB=AC﹣BC=10分米,
    ∴x的取值范围是:0≤x≤10;
    (1)∵CN=PN,∠CPN=60°,
    ∴△PCN是等边三角形,
    ∴CP=6分米,
    ∴AP=AC﹣PC=6分米,
    即当∠CPN=60°时,x=6;
    (3)连接MN、EF,分别交AC于B、H,

    ∵PM=PN=CM=CN,
    ∴四边形PNCM是菱形,
    ∴MN与PC互相垂直平分,AC是∠ECF的平分线,
    PB==6-,
    在Rt△MBP中,PM=6分米,
    ∴MB1=PM1﹣PB1=61﹣(6﹣x)1=6x﹣x1.
    ∵CE=CF,AC是∠ECF的平分线,
    ∴EH=HF,EF⊥AC,
    ∵∠ECH=∠MCB,∠EHC=∠MBC=90°,
    ∴△CMB∽△CEH,
    ∴=,
    ∴,
    ∴EH1=9•MB1=9•(6x﹣x1),
    ∴y=π•EH1=9π(6x﹣x1),
    即y=﹣πx1+54πx.
    【点睛】
    此题主要考查了相似三角形的应用以及菱形的性质和二次函数的应用,难点是第(3)问,熟练运用菱形的性质、相似三角形的性质和二次函数的实际应用.
    20、4
    【解析】
    分析:
    代入45°角的余弦函数值,结合“负整数指数幂的意义”和“二次根式的相关运算法则”进行计算即可.
    详解:
    原式=.
    点睛:熟记“特殊角的三角函数值、负整数指数幂的意义:(为正整数)”是正确解答本题的关键.
    21、(1)详见解析;(2)2+2;(3)S△BDQx+.
    【解析】
    (1)根据要求利用全等三角形的判定和性质画出图形即可.
    (2)如图④中,作OE⊥AB于E,OF⊥BC于F,连接OB.证明△OEM≌△OFN(ASA),推出EM=FN,ON=OM,S△EOM=S△NOF,推出S四边形BMON=S四边形BEOF=定值,证明Rt△OBE≌Rt△OBF(HL),推出BM+BN=BE+EM+BF﹣FN=2BE=定值,推出欲求最小值,只要求出l的最小值,因为l=BM+BN+ON+OM=定值+ON+OM所以欲求最小值,只要求出ON+OM的最小值,因为OM=ON,根据垂线段最短可知,当OM与OE重合时,OM定值最小,由此即可解决问题.
    (3)如图⑤中,连接AD,作DE⊥AB于E,DF⊥AC于F.证明△PDF≌△QDE(ASA),即可解决问题.
    【详解】
    解:(1)如图1,作一边上的中线可分割成2个全等三角形,
    如图2,连接外心和各顶点的线段可分割成3个全等三角形,
    如图3,连接各边的中点可分割成4个全等三角形,

    (2)如图④中,作OE⊥AB于E,OF⊥BC于F,连接OB.

    ∵△ABC是等边三角形,O是外心,
    ∴OB平分∠ABC,∠ABC=60°∵OE⊥AB,OF⊥BC,
    ∴OE=OF,
    ∵∠OEB=∠OFB=90°,
    ∴∠EOF+∠EBF=180°,
    ∴∠EOF=∠NOM=120°,
    ∴∠EOM=∠FON,
    ∴△OEM≌△OFN(ASA),
    ∴EM=FN,ON=OM,S△EOM=S△NOF,
    ∴S四边形BMON=S四边形BEOF=定值,
    ∵OB=OB,OE=OF,∠OEB=∠OFB=90°,
    ∴Rt△OBE≌Rt△OBF(HL),
    ∴BE=BF,
    ∴BM+BN=BE+EM+BF﹣FN=2BE=定值,
    ∴欲求最小值,只要求出l的最小值,
    ∵l=BM+BN+ON+OM=定值+ON+OM,
    欲求最小值,只要求出ON+OM的最小值,
    ∵OM=ON,根据垂线段最短可知,当OM与OE重合时,OM定值最小,
    此时定值最小,s=×2×=,l=2+2++=4+,
    ∴的最小值==2+2.
    (3)如图⑤中,连接AD,作DE⊥AB于E,DF⊥AC于F.

    ∵△ABC是等边三角形,BD=DC,
    ∴AD平分∠BAC,
    ∵DE⊥AB,DF⊥AC,
    ∴DE=DF,
    ∵∠DEA=∠DEQ=∠AFD=90°,
    ∴∠EAF+∠EDF=180°,
    ∵∠EAF=60°,
    ∴∠EDF=∠PDQ=120°,
    ∴∠PDF=∠QDE,
    ∴△PDF≌△QDE(ASA),
    ∴PF=EQ,
    在Rt△DCF中,∵DC=2,∠C=60°,∠DFC=90°,
    ∴CF=CD=1,DF=,
    同法可得:BE=1,DE=DF=,
    ∵AF=AC﹣CF=4﹣1=3,PA=x,
    ∴PF=EQ=3+x,
    ∴BQ=EQ﹣BE=2+x,
    ∴S△BDQ=•BQ•DE=×(2+x)×=x+.
    【点睛】
    本题主要考查多边形的综合题,主要涉及的知识点:全等三角形的判定和性质、多边形内角和、角平分线的性质、等量代换、三角形的面积等,牢记并熟练运用这些知识点是解此类综合题的关键。
    22、(1);(2)P在第二象限,Q在第三象限.
    【解析】
    试题分析:(1)求出点B坐标即可解决问题;
    (2)结论:P在第二象限,Q在第三象限.利用反比例函数的性质即可解决问题;
    试题解析:解:(1)由题意B(﹣2,),把B(﹣2,)代入中,得到k=﹣3,∴反比例函数的解析式为.
    (2)结论:P在第二象限,Q在第三象限.理由:∵k=﹣3<0,∴反比例函数y在每个象限y随x的增大而增大,∵P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,∴P、Q在不同的象限,∴P在第二象限,Q在第三象限.
    点睛:此题考查待定系数法、反比例函数的性质、坐标与图形的变化等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    23、(1)证明见解析(2)证明见解析(3)1
    【解析】
    利用平行线的性质得到,再利用直角三角形斜边上的中线等于斜边的一半即可得证,
    利用平行四边形的判定定理判定四边形BDFG为平行四边形,再利用得结论即可得证,
    设,则,利用菱形的性质和勾股定理得到CF、AF和AC之间的关系,解出x即可.
    【详解】
    证明:,,

    又为AC的中点,

    又,

    证明:,,
    四边形BDFG为平行四边形,
    又,
    四边形BDFG为菱形,
    解:设,则,,
    在中,,
    解得:,舍去,

    菱形BDFG的周长为1.
    【点睛】
    本题考查了菱形的判定与性质直角三角形斜边上的中线,勾股定理等知识,正确掌握这些定义性质及判定并结合图形作答是解决本题的关键.
    24、 (1)390,1-5x,y=-5x+1(300≤x≤2);(2)售价定位320元时,利润最大,为3元.
    【解析】
    (1)根据题中条件可得390,1-5x,若销售价每降低10元,月销售量就可多售出50千克,即可列出函数关系式;根据供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售即可求出x的取值.
    (2)用x表示y,然后再用x来表示出w,根据函数关系式,即可求出最大w.
    【详解】
    (1)依题意得:
    y=200+50×.
    化简得:y=-5x+1.
    (2)依题意有:
    ∵,
    解得300≤x≤2.
    (3)由(1)得:w=(-5x+1)(x-200)
    =-5x2+3200x-440000=-5(x-320)2+3.
    ∵x=320在300≤x≤2内,∴当x=320时,w最大=3.
    即售价定为320元/台时,可获得最大利润为3元.
    【点睛】
    本题考查了利润率问题的数量关系的运用,一次函数的解析式的运用,二次函数的解析式的运用,一元二次方程的解法的运用,解答时求出二次函数的解析式时关键.

    相关试卷

    辽宁省抚顺五十中学2022年中考考前最后一卷数学试卷含解析: 这是一份辽宁省抚顺五十中学2022年中考考前最后一卷数学试卷含解析,共23页。试卷主要包含了如图,将函数y=等内容,欢迎下载使用。

    2022年林芝中考考前最后一卷数学试卷含解析: 这是一份2022年林芝中考考前最后一卷数学试卷含解析,共19页。试卷主要包含了答题时请按要求用笔,点A等内容,欢迎下载使用。

    2022届重庆八中学中考考前最后一卷数学试卷含解析: 这是一份2022届重庆八中学中考考前最后一卷数学试卷含解析,共17页。试卷主要包含了如图,点P,化简÷的结果是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map