搜索
    上传资料 赚现金
    英语朗读宝

    2022年江西省寻乌县市级名校中考数学全真模拟试卷含解析

    2022年江西省寻乌县市级名校中考数学全真模拟试卷含解析第1页
    2022年江西省寻乌县市级名校中考数学全真模拟试卷含解析第2页
    2022年江西省寻乌县市级名校中考数学全真模拟试卷含解析第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年江西省寻乌县市级名校中考数学全真模拟试卷含解析

    展开

    这是一份2022年江西省寻乌县市级名校中考数学全真模拟试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.下列计算或化简正确的是(  )
    A. B.
    C. D.
    2.如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为(  )

    A.9cm B.13cm C.16cm D.10cm
    3.为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.5~6.5组别的频率是( )

    A.0.1 B.0.2
    C.0.3 D.0.4
    4.下列各点中,在二次函数的图象上的是( )
    A. B. C. D.
    5.在△ABC中,∠C=90°,,那么∠B的度数为( )
    A.60° B.45° C.30° D.30°或60°
    6.如图,在平面直角坐标系中Rt△ABC的斜边BC在x轴上,点B坐标为(1,0),AC=2,∠ABC=30°,把Rt△ABC先绕B点顺时针旋转180°,然后再向下平移2个单位,则A点的对应点A′的坐标为(  )

    A.(﹣4,﹣2﹣) B.(﹣4,﹣2+) C.(﹣2,﹣2+) D.(﹣2,﹣2﹣)
    7.如图,网格中的每个小正方形的边长是1,点M,N,O均为格点,点N在⊙O上,若过点M作⊙O的一条切线MK,切点为K,则MK=(  )

    A.3 B.2 C.5 D.
    8.如图,在△ABC中,∠C=90°,AC=BC=3cm.动点P从点A出发,以cm/s的速度沿AB方向运动到点B.动点Q同时从点A出发,以1cm/s的速度沿折线ACCB方向运动到点B.设△APQ的面积为y(cm2).运动时间为x(s),则下列图象能反映y与x之间关系的是 ( )

    A. B.
    C. D.
    9.已知点M (-2,3 )在双曲线上,则下列一定在该双曲线上的是( )
    A.(3,-2 ) B.(-2,-3 ) C.(2,3 ) D.(3,2)
    10.据史料记载,雎水太平桥建于清嘉庆年间,已有200余年历史.桥身为一巨型单孔圆弧,既没有用钢筋,也没有用水泥,全部由石块砌成,犹如一道彩虹横卧河面上,桥拱半径OC为13m,河面宽AB为24m,则桥高CD为( )

    A.15m B.17m C.18m D.20m
    二、填空题(共7小题,每小题3分,满分21分)
    11.在实数范围内分解因式: =_________
    12.两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于 ______ 度.

    13.在反比例函数图象的每一支上,y随x的增大而______用“增大”或“减小”填空.
    14.抛物线y=x2+2x+m﹣1与x轴有交点,则m的取值范围是_____.
    15.如图,已知一次函数y=ax+b和反比例函数的图象相交于A(﹣2,y1)、B(1,y2)两点,则不等式ax+b<的解集为 __________

    16.已知矩形ABCD,AD>AB,以矩形ABCD的一边为边画等腰三角形,使得它的第三个顶点在矩形ABCD的其他边上,则可以画出的不同的等腰三角形的个数为_______________.

    17.用换元法解方程,设y=,那么原方程化为关于y的整式方程是_____.
    三、解答题(共7小题,满分69分)
    18.(10分)在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.求证:△ABP≌△CAQ;请判断△APQ是什么形状的三角形?试说明你的结论.

    19.(5分)如图,点,在上,直线是的切线,.连接交于.

    (1)求证:
    (2)若,的半径为,求的长.
    20.(8分)为了加强学生的安全意识,某校组织了学生参加安全知识竞赛.从中抽取了部分学生成绩(得分数取正整数,满分为100分)进行统计,绘制统计频数分布直方图(未完成)和扇形图如下,请解答下列问题:
    (1)A组的频数a比B组的频数b小24,样本容量   ,a为   :
    (2)n为   °,E组所占比例为   %:
    (3)补全频数分布直方图;
    (4)若成绩在80分以上优秀,全校共有2000名学生,估计成绩优秀学生有   名.

    21.(10分)阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:,善于思考的小明进行了以下探索:
    设(其中均为整数),则有.
    ∴.这样小明就找到了一种把部分的式子化为平方式的方法.
    请你仿照小明的方法探索并解决下列问题:
    当均为正整数时,若,用含m、n的式子分别表示,得=   ,=   ;
    (2)利用所探索的结论,找一组正整数,填空: +   =(   +   )2;
    (3)若,且均为正整数,求的值.
    22.(10分)如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.求∠CDE的度数;求证:DF是⊙O的切线;若AC=DE,求tan∠ABD的值.

    23.(12分)八年级(1)班学生在完成课题学习“体质健康测试中的数据分析”后,利用课外活动时间积极参加体育锻炼,每位同学从篮球、跳绳、立定跳远、长跑、铅球中选一项进行训练,训练后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图.

    请你根据上面提供的信息回答下列问题:扇形图中跳绳部分的扇形圆心角为 度,该班共有学生 人, 训练后篮球定时定点投篮平均每个人的进球数是 .老师决定从选择铅球训练的3名男生和1名女生中任选两名学生先进行测试,请用列表或画树形图的方法求恰好选中两名男生的概率.
    24.(14分)解方程:=1.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    解:A.不是同类二次根式,不能合并,故A错误;
    B. ,故B错误;
    C.,故C错误;
    D.,正确.
    故选D.
    2、A
    【解析】
    试题分析:由折叠的性质知,CD=DE,BC=BE.
    易求AE及△AED的周长.
    解:由折叠的性质知,CD=DE,BC=BE=7cm.
    ∵AB=10cm,BC=7cm,∴AE=AB﹣BE=3cm.
    △AED的周长=AD+DE+AE=AC+AE=6+3=9(cm).
    故选A.
    点评:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
    3、B
    【解析】
    ∵在5.5~6.5组别的频数是8,总数是40,
    ∴=0.1.
    故选B.
    4、D
    【解析】
    将各选项的点逐一代入即可判断.
    【详解】
    解:当x=1时,y=-1,故点不在二次函数的图象;
    当x=2时,y=-4,故点和点不在二次函数的图象;
    当x=-2时,y=-4,故点在二次函数的图象;
    故答案为:D.
    【点睛】
    本题考查了判断一个点是否在二次函数图象上,解题的关键是将点代入函数解析式.
    5、C
    【解析】
    根据特殊角的三角函数值可知∠A=60°,再根据直角三角形中两锐角互余求出∠B的值即可.
    【详解】
    解:∵,
    ∴∠A=60°.
    ∵∠C=90°,
    ∴∠B=90°-60°=30°.
    点睛:本题考查了特殊角的三角函数值和直角三角形中两锐角互余的性质,熟记特殊角的三角函数值是解答本题的突破点.
    6、D
    【解析】
    解:作AD⊥BC,并作出把Rt△ABC先绕B点顺时针旋转180°后所得△A1BC1,如图所示.∵AC=2,∠ABC=10°,∴BC=4,∴AB=2,∴AD===,∴BD===1.∵点B坐标为(1,0),∴A点的坐标为(4,).∵BD=1,∴BD1=1,∴D1坐标为(﹣2,0),∴A1坐标为(﹣2,﹣).∵再向下平移2个单位,∴A′的坐标为(﹣2,﹣﹣2).故选D.

    点睛:本题主要考查了直角三角形的性质,勾股定理,旋转的性质和平移的性质,作出图形利用旋转的性质和平移的性质是解答此题的关键.
    7、B
    【解析】
    以OM为直径作圆交⊙O于K,利用圆周角定理得到∠MKO=90°.从而得到KM⊥OK,进而利用勾股定理求解.
    【详解】
    如图所示:

    MK=.
    故选:B.
    【点睛】
    考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.
    8、D
    【解析】
    在△ABC中,∠C=90°,AC=BC=3cm,可得AB=,∠A=∠B=45°,分当0<x≤3(点Q在AC上运动,点P在AB上运动)和当3≤x≤6时(点P与点B重合,点Q在CB上运动)两种情况求出y与x的函数关系式,再结合图象即可解答.
    【详解】
    在△ABC中,∠C=90°,AC=BC=3cm,可得AB=,∠A=∠B=45°,当0<x≤3时,点Q在AC上运动,点P在AB上运动(如图1), 由题意可得AP=x,AQ=x,过点Q作QN⊥AB于点N,在等腰直角三角形AQN中,求得QN=x,所以y==(0<x≤3),即当0<x≤3时,y随x的变化关系是二次函数关系,且当x=3时,y=4.5;当3≤x≤6时,点P与点B重合,点Q在CB上运动(如图2),由题意可得PQ=6-x,AP=3,过点Q作QN⊥BC于点N,在等腰直角三角形PQN中,求得QN=(6-x),所以y==(3≤x≤6),即当3≤x≤6时,y随x的变化关系是一次函数,且当x=6时,y=0.由此可得,只有选项D符合要求,故选D.

    【点睛】
    本题考查了动点函数图象,解决本题要正确分析动线运动过程,然后再正确计算其对应的函数解析式,由函数的解析式对应其图象,由此即可解答.
    9、A
    【解析】
    因为点M(-2,3)在双曲线上,所以xy=(-2)×3=-6,四个答案中只有A符合条件.故选A
    10、C
    【解析】
    连结OA,如图所示:

    ∵CD⊥AB,
    ∴AD=BD=AB=12m.
    在Rt△OAD中,OA=13,OD=,
    所以CD=OC+OD=13+5=18m.
    故选C.

    二、填空题(共7小题,每小题3分,满分21分)
    11、2(x+)(x-).
    【解析】
    先提取公因式2后,再把剩下的式子写成x2-()2,符合平方差公式的特点,可以继续分解.
    【详解】
    2x2-6=2(x2-3)=2(x+)(x-).
    故答案为2(x+)(x-).
    【点睛】
    本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.
    12、108°
    【解析】
    如图,易得△OCD为等腰三角形,根据正五边形内角度数可求出∠OCD,然后求出顶角∠COD,再用360°减去∠AOC、∠BOD、∠COD即可

    【详解】
    ∵五边形是正五边形,
    ∴每一个内角都是108°,
    ∴∠OCD=∠ODC=180°-108°=72°,
    ∴∠COD=36°,
    ∴∠AOB=360°-108°-108°-36°=108°.
    故答案为108°
    【点睛】
    本题考查正多边形的内角计算,分析出△OCD是等腰三角形,然后求出顶角是关键.
    13、减小
    【解析】
    根据反比例函数的性质,依据比例系数k的符号即可确定.
    【详解】
    ∵k=2>0,
    ∴y随x的增大而减小.
    故答案是:减小.
    【点睛】
    本题考查了反比例函数的性质,反比例函数y=(k≠0)的图象是双曲线,当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.
    14、m≤1.
    【解析】
    由抛物线与x轴有交点可得出方程x1+1x+m-1=0有解,利用根的判别式△≥0,即可得出关于m的一元一次不等式,解之即可得出结论.
    【详解】
    ∴关于x的一元二次方程x1+1x+m−1=0有解,
    ∴△=11−4(m−1)=8−4m≥0,
    解得:m≤1.
    故答案为:m≤1.
    【点睛】
    本题考查的知识点是抛物线与坐标轴的交点,解题的关键是熟练的掌握抛物线与坐标轴的交点.
    15、﹣2<x<0或x>1
    【解析】
    根据一次函数图象与反比例函数图象的上下位置关系结合交点坐标,即可得出不等式的解集.
    【详解】
    观察函数图象,发现:当﹣2<x<0或x>1时,一次函数图象在反比例函数图象的下方,
    ∴不等式ax+b<的解集是﹣2<x<0或x>1.
    【点睛】
    本题主要考查一次函数图象与反比例函数图象,数形结合思想是关键.
    16、8
    【解析】
    根据题意作出图形即可得出答案,
    【详解】
    如图,AD>AB,△CDE1,△ABE2,△ABE3,△BCE4,△CDE5,△ABE6,△ADE7,△CDE8,为等腰三角形,故有8个满足题意得点.

    【点睛】
    此题主要考查矩形的对称性,解题的关键是根据题意作出图形.
    17、6y2-5y+2=0
    【解析】
    根据y=,将方程变形即可.
    【详解】
    根据题意得:3y+,
    得到6y2-5y+2=0
    故答案为6y2-5y+2=0
    【点睛】
    此题考查了换元法解分式方程,利用了整体的思想,将方程进行适当的变形是解本题的关键.

    三、解答题(共7小题,满分69分)
    18、 (1)证明见解析;(2) △APQ是等边三角形.
    【解析】
    (1)根据等边三角形的性质可得AB=AC,再根据SAS证明△ABP≌△ACQ;
    (2)根据全等三角形的性质得到AP=AQ ,再证∠PAQ = 60°,从而得出△APQ是等边三角形.
    【详解】
    证明:(1)∵△ABC为等边三角形, ∴AB=AC,∠BAC=60°,
    在△ABP和△ACQ中, ∴△ABP≌△ACQ(SAS),
    (2)∵△ABP≌△ACQ, ∴∠BAP=∠CAQ,AP=AQ,
    ∵∠BAP+∠CAP=60°, ∴∠PAQ=∠CAQ+∠CAP=60°,
    ∴△APQ是等边三角形.
    【点睛】
    本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了正三角形的判定,本题中求证,△ABP≌△ACQ是解题的关键.
    19、(1)证明见解析;(2)1.
    【解析】
    (1)连结OA,由AC为圆的切线,利用切线的性质得到∠OAC为直角,再由,得到∠BOC为直角,由OA=OB得到,再利用对顶角相等及等角的余角相等得到,利用等角对等边即可得证;
    (2)在中,利用勾股定理即可求出OC,由OC=OD+DC,DC=AC,即可求得OD的长.
    【详解】
    (1)如图,连接,
    ∵切于,
    ∴,

    又∵,
    ∴在中:
    ∵,
    ∴,
    ∴,
    又∵,
    ∴,
    ∴;

    (2)∵在中:, ,
    由勾股定理得:,
    由(1)得:,
    ∴.
    【点睛】
    此题考查了切线的性质、勾股定理、等腰三角形的判定与性质,熟练掌握切线的性质是解本题的关键.
    20、(1)200;16(2)126;12%(3)见解析(4)940
    【解析】
    分析:(1)由于A组的频数比B组小24,而A组的频率比B组小12%,则可计算出调查的总人数,然后计算a和b的值;(2)用360度乘以D组的频率可得到n的值,根据百分比之和为1可得E组百分比;(3)计算出C和E组的频数后补全频数分布直方图;(4)利用样本估计总体,用2000乘以D组和E组的频率和即可.
    本题解析:
    ()调查的总人数为,
    ∴,

    ()部分所对的圆心角,即,
    组所占比例为:,
    ()组的频数为,组的频数为,
    补全频数分布直方图为:

    (),
    ∴估计成绩优秀的学生有人.
    点睛:本题考查了频数(率)分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,要认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查了用样本估计总体.
    21、(1),;(2)2,2,1,1(答案不唯一);(3)=7或=1.
    【解析】
    (1)∵,
    ∴,
    ∴a=m2+3n2,b=2mn.
    故答案为m2+3n2,2mn.
    (2)设m=1,n=2,∴a=m2+3n2=1,b=2mn=2.
    故答案为1,2,1,2(答案不唯一).
    (3)由题意,得a=m2+3n2,b=2mn.
    ∵2=2mn,且m、n为正整数,
    ∴m=2,n=1或m=1,n=2,
    ∴a=22+3×12=7,或a=12+3×22=1.
    22、(1)90°;(1)证明见解析;(3)1.
    【解析】
    (1)根据圆周角定理即可得∠CDE的度数;(1)连接DO,根据直角三角形的性质和等腰三角形的性质易证∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,即可判定DF是⊙O的切线;(3)根据已知条件易证△CDE∽△ADC,利用相似三角形的性质结合勾股定理表示出AD,DC的长,再利用圆周角定理得出tan∠ABD的值即可.
    【详解】
    解:(1)解:∵对角线AC为⊙O的直径,
    ∴∠ADC=90°,
    ∴∠EDC=90°;
    (1)证明:连接DO,
    ∵∠EDC=90°,F是EC的中点,
    ∴DF=FC,
    ∴∠FDC=∠FCD,
    ∵OD=OC,
    ∴∠OCD=∠ODC,
    ∵∠OCF=90°,
    ∴∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,
    ∴DF是⊙O的切线;
    (3)解:如图所示:可得∠ABD=∠ACD,
    ∵∠E+∠DCE=90°,∠DCA+∠DCE=90°,
    ∴∠DCA=∠E,
    又∵∠ADC=∠CDE=90°,
    ∴△CDE∽△ADC,
    ∴,
    ∴DC1=AD•DE
    ∵AC=1DE,
    ∴设DE=x,则AC=1x,
    则AC1﹣AD1=AD•DE,
    期(1x)1﹣AD1=AD•x,
    整理得:AD1+AD•x﹣10x1=0,
    解得:AD=4x或﹣4.5x(负数舍去),
    则DC=,
    故tan∠ABD=tan∠ACD=.

    23、(1)36 , 40, 1;(2).
    【解析】
    (1)先求出跳绳所占比例,再用比例乘以360°即可,用篮球的人数除以所占比例即可;根据加权平均数的概念计算训练后篮球定时定点投篮人均进球数.
    (2)画出树状图,根据概率公式求解即可.
    【详解】
    (1)扇形图中跳绳部分的扇形圆心角为360°×(1-10%-20%-10%-10%)=36度;
    该班共有学生(2+1+7+4+1+1)÷10%=40人;
    训练后篮球定时定点投篮平均每个人的进球数是=1,
    故答案为:36,40,1.
    (2)三名男生分别用A1,A2,A3表示,一名女生用B表示.根据题意,可画树形图如下:

    由上图可知,共有12种等可能的结果,选中两名学生恰好是两名男生(记为事件M)
    的结果有6种,
    ∴P(M)==.
    24、
    【解析】
    先把分式方程化为整式方程,解整式方程求得x的值,检验即可得分式方程的解.
    【详解】
    原方程变形为,
    方程两边同乘以(2x﹣1),得2x﹣5=1(2x﹣1),
    解得 .
    检验:把代入(2x﹣1),(2x﹣1)≠0,
    ∴是原方程的解,
    ∴原方程的.
    【点睛】
    本题考查了分式方程的解法,把分式方程化为整式方程是解决问题的关键,解分式方程时,要注意验根.

    相关试卷

    黄埔区广附市级名校2023届中考数学全真模拟试卷含解析:

    这是一份黄埔区广附市级名校2023届中考数学全真模拟试卷含解析,共21页。

    北京丰台市级名校2021-2022学年中考数学全真模拟试卷含解析:

    这是一份北京丰台市级名校2021-2022学年中考数学全真模拟试卷含解析,共19页。试卷主要包含了按一定规律排列的一列数依次为,估计﹣1的值在,下列各数中,比﹣1大1的是等内容,欢迎下载使用。

    2022年山东滨州阳信县市级名校中考数学全真模拟试题含解析:

    这是一份2022年山东滨州阳信县市级名校中考数学全真模拟试题含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是,下列各数等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map