2022年廊坊市重点中学中考联考数学试卷含解析
展开
这是一份2022年廊坊市重点中学中考联考数学试卷含解析,共17页。试卷主要包含了规定,已知点P等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).以A为对称中心作点P(0,2)的对称点P1,以B为对称中心作点P1的对称点P2,以C为对称中心作点P2的对称点P3,以D为对称中心作点P3的对称点P4,…,重复操作依次得到点P1,P2,…,则点P2010的坐标是( )
A.(2010,2) B.(2010,﹣2) C.(2012,﹣2) D.(0,2)
2.△ABC在网络中的位置如图所示,则cos∠ACB的值为( )
A. B. C. D.
3.下列各式属于最简二次根式的有( )
A. B. C. D.
4.2018年我市财政计划安排社会保障和公共卫生等支出约1800000000元支持民生幸福工程,数1800000000用科学记数法表示为( )
A.18×108 B.1.8×108 C.1.8×109 D.0.18×1010
5.如图,Rt△ABC中,∠ACB=90°,AB=5,AC=4,CD⊥AB于D,则tan∠BCD的值为( )
A. B. C. D.
6.规定:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”.现有下列结论: ①方程x2+2x﹣8=0是倍根方程;
②若关于x的方程x2+ax+2=0是倍根方程,则a=±3;
③若关于x的方程ax2﹣6ax+c=0(a≠0)是倍根方程,则抛物线y=ax2﹣6ax+c与x轴的公共点的坐标是(2,0)和(4,0);
④若点(m,n)在反比例函数y=的图象上,则关于x的方程mx2+5x+n=0是倍根方程.
上述结论中正确的有( )
A.①② B.③④ C.②③ D.②④
7.已知a+b=4,c﹣d=﹣3,则(b+c)﹣(d﹣a)的值为( )
A.7 B.﹣7 C.1 D.﹣1
8.下列基本几何体中,三视图都是相同图形的是( )
A. B. C. D.
9.已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a<0<b,则下列结论一定正确的是( )
A.m+n<0 B.m+n>0 C.m<n D.m>n
10.如图1所示,甲、乙两车沿直路同向行驶,车速分别为20 m/s和v(m/s),起初甲车在乙 车前a (m)处,两车同时出发,当乙车追上甲车时,两车都停止行驶.设x(s)后两车相距y (m),y与x的函数关系如图2所示.有以下结论:
①图1中a的值为500;
②乙车的速度为35 m/s;
③图1中线段EF应表示为;
④图2中函数图象与x轴交点的横坐标为1.
其中所有的正确结论是( )
A.①④ B.②③
C.①②④ D.①③④
二、填空题(共7小题,每小题3分,满分21分)
11.如图,将一块含有30°角的直角三角板的两个顶点叠放在长方形的两条对边上,如果∠1=27°,那么∠2=______°
12.将多项式xy2﹣4xy+4y因式分解:_____.
13.圆锥体的底面周长为6π,侧面积为12π,则该圆锥体的高为 .
14.16的算术平方根是 .
15.在平面直角坐标系中,抛物线y=x2+x+2上有一动点P,直线y=﹣x﹣2上有一动线段AB,当P点坐标为_____时,△PAB的面积最小.
16.不等式组的解集为______.
17.已知点、都在反比例函数的图象上,若,则k的值可以取______写出一个符合条件的k值即可.
三、解答题(共7小题,满分69分)
18.(10分)先化简,再选择一个你喜欢的数(要合适哦!)代入求值:.
19.(5分)已知关于x的方程(a﹣1)x2+2x+a﹣1=1.若该方程有一根为2,求a的值及方程的另一根;当a为何值时,方程的根仅有唯一的值?求出此时a的值及方程的根.
20.(8分)某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.
(1)2014年这种礼盒的进价是多少元/盒?
(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?
21.(10分)如图,∠A=∠B=30°
(1)尺规作图:过点C作CD⊥AC交AB于点D;
(只要求作出图形,保留痕迹,不要求写作法)
(2)在(1)的条件下,求证:BC2=BD•AB.
22.(10分)某市扶贫办在精准扶贫工作中,组织30辆汽车装运花椒、核桃、甘蓝向外地销售.按计划30辆车都要装运,每辆汽车只能装运同一种产品,且必须装满,根据下表提供的信息,解答以下问题:
产品名称
核桃
花椒
甘蓝
每辆汽车运载量(吨)
10
6
4
每吨土特产利润(万元)
0.7
0.8
0.5
若装运核桃的汽车为x辆,装运甘蓝的车辆数是装运核桃车辆数的2倍多1,假设30辆车装运的三种产品的总利润为y万元.
(1)求y与x之间的函数关系式;
(2)若装花椒的汽车不超过8辆,求总利润最大时,装运各种产品的车辆数及总利润最大值.
23.(12分)如图所示,在坡角为30°的山坡上有一竖立的旗杆AB,其正前方矗立一墙,当阳光与水平线成45°角时,测得旗杆AB落在坡上的影子BD的长为8米,落在墙上的影子CD的长为6米,求旗杆AB的高(结果保留根号).
24.(14分)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.求证:PD是⊙O的切线;求证:△ABD∽△DCP;当AB=5cm,AC=12cm时,求线段PC的长.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
分析:根据题意,以A为对称中心作点P(0,1)的对称点P1,即A是PP1的中点,结合中点坐标公式即可求得点P1的坐标;同理可求得其它各点的坐标,分析可得规律,进而可得答案.
详解:根据题意,以A为对称中心作点P(0,1)的对称点P1,即A是PP1的中点,
又∵A的坐标是(1,1),
结合中点坐标公式可得P1的坐标是(1,0);
同理P1的坐标是(1,﹣1),记P1(a1,b1),其中a1=1,b1=﹣1.
根据对称关系,依次可以求得:
P3(﹣4﹣a1,﹣1﹣b1),P4(1+a1,4+b1),P5(﹣a1,﹣1﹣b1),P6(4+a1,b1),
令P6(a6,b1),同样可以求得,点P10的坐标为(4+a6,b1),即P10(4×1+a1,b1),
∵1010=4×501+1,
∴点P1010的坐标是(1010,﹣1),
故选:B.
点睛:本题考查了对称的性质,坐标与图形的变化---旋转,根据条件求出前边几个点的坐标,得到规律是解题关键.
2、B
【解析】
作AD⊥BC的延长线于点D,如图所示:
在Rt△ADC中,BD=AD,则AB=BD.
cos∠ACB=,
故选B.
3、B
【解析】
先根据二次根式的性质化简,再根据最简二次根式的定义判断即可.
【详解】
A选项:,故不是最简二次根式,故A选项错误;
B选项:是最简二次根式,故B选项正确;
C选项:,故不是最简二次根式,故本选项错误;
D选项:,故不是最简二次根式,故D选项错误;
故选:B.
【点睛】
考查了对最简二次根式的定义的理解,能理解最简二次根式的定义是解此题的关键.
4、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:1800000000=1.8×109,
故选:C.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
5、D
【解析】
先求得∠A=∠BCD,然后根据锐角三角函数的概念求解即可.
【详解】
解:∵∠ACB=90°,AB=5,AC=4,
∴BC=3,
在Rt△ABC与Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°.
∴∠A=∠BCD.
∴tan∠BCD=tanA==,
故选D.
【点睛】
本题考查解直角三角形,三角函数值只与角的大小有关,因而求一个角的函数值,可以转化为求与它相等的其它角的三角函数值.
6、C
【解析】
分析:①通过解方程得到该方程的根,结合“倍根方程”的定义进行判断;②设=2,得到•=2=2,得到当=1时,=2,当=-1时,=-2,于是得到结论;③根据“倍根方程”的定义即可得到结论;④若点(m,n)在反比例函数y=的图象上,得到mn=4,然后解方程m+5x+n=0即可得到正确的结论;
详解:①由-2x-8=0,得:(x-4)(x+2)=0, 解得=4,=-2, ∵≠2,或≠2,
∴方程-2x-8=0不是倍根方程;故①错误;
②关于x的方程+ax+2=0是倍根方程, ∴设=2, ∴•=2=2, ∴=±1,
当=1时,=2, 当=-1时,=-2, ∴+=-a=±3, ∴a=±3,故②正确;
③关于x的方程a-6ax+c=0(a≠0)是倍根方程, ∴=2,
∵抛物线y=a-6ax+c的对称轴是直线x=3, ∴抛物线y=a-6ax+c与x轴的交点的坐标是(2,0)和(4,0), 故③正确;
④∵点(m,n)在反比例函数y=的图象上, ∴mn=4, 解m+5x+n=0得
=,=, ∴=4, ∴关于x的方程m+5x+n=0不是倍根方程;
故选C.
点睛:本题考查了反比例函数图象上点的坐标特征,根与系数的关系,正确的理解倍根方程的定义是解题的关键.
7、C
【解析】
试题分析:原式去括号可得b-c+d+a=(a+b)-(c-d)=4-(-3)=1.
故选A.
考点:代数式的求值;整体思想.
8、C
【解析】
根据主视图、左视图、俯视图的定义,可得答案.
【详解】
球的三视图都是圆,
故选C.
【点睛】
本题考查了简单几何体的三视图,熟记特殊几何体的三视图是解题关键.
9、D
【解析】
根据反比例函数的性质,可得答案.
【详解】
∵y=−的k=-2<1,图象位于二四象限,a<1,
∴P(a,m)在第二象限,
∴m>1;
∵b>1,
∴Q(b,n)在第四象限,
∴n<1.
∴n<1<m,
即m>n,
故D正确;
故选D.
【点睛】
本题考查了反比例函数的性质,利用反比例函数的性质:k<1时,图象位于二四象限是解题关键.
10、A
【解析】
分析:①根据图象2得出结论; ②根据(75,125)可知:75秒时,两车的距离为125m,列方程可得结论; ③根据图1,线段的和与差可表示EF的长;④利用待定系数法求直线的解析式,令y=0可得结论.
详解:①y是两车的距离,所以根据图2可知:图1中a的值为500,此选项正确;②由题意得:75×20+500-75y=125,v=25,则乙车的速度为25m/s,故此选项不正确;③图1中:EF=a+20x-vx=500+20x-25x=500-5x.故此选项不正确;④设图2的解析式为:y=kx+b,把(0,500)和(75,125)代入得: ,解得 ,∴y=-5x+500,
当y=0时,-5x+500=0,x=1,即图2中函数图象与x轴交点的横坐标为1,此选项正确;其中所有的正确结论是①④;故选A.
点睛:本题考查了一次函数的应用,根据函数图象,读懂题目信息,理解两车间的距离与时间的关系是解题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、57°.
【解析】
根据平行线的性质和三角形外角的性质即可求解.
【详解】
由平行线性质及外角定理,可得∠2=∠1+30°=27°+30°=57°.
【点睛】
本题考查平行线的性质及三角形外角的性质.
12、y(xy﹣4x+4)
【解析】
直接提公因式y即可解答.
【详解】
xy2﹣4xy+4y=y(xy﹣4x+4).
故答案为:y(xy﹣4x+4).
【点睛】
本题考查了因式分解——提公因式法,确定多项式xy2﹣4xy+4y的公因式为y是解决问题的关键.
13、
【解析】
试题分析:用周长除以2π即为圆锥的底面半径;根据圆锥的侧面积=×侧面展开图的弧长×母线长可得圆锥的母线长,利用勾股定理可得圆锥的高.
试题解析:∵圆锥的底面周长为6π,
∴圆锥的底面半径为 6π÷2π="3,"
∵圆锥的侧面积=×侧面展开图的弧长×母线长,
∴母线长=2×12π÷6π="4,"
∴这个圆锥的高是
考点:圆锥的计算.
14、4
【解析】
正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根
∵
∴16的平方根为4和-4
∴16的算术平方根为4
15、(-1,2)
【解析】
因为线段AB是定值,故抛物线上的点到直线的距离最短,则面积最小,平移直线与抛物线的切点即为P点,然后求得平移后的直线,联立方程,解方程即可.
【详解】
因为线段AB是定值,故抛物线上的点到直线的距离最短,则面积最小,
若直线向上平移与抛物线相切,切点即为P点,
设平移后的直线为y=-x-2+b,
∵直线y=-x-2+b与抛物线y=x2+x+2相切,
∴x2+x+2=-x-2+b,即x2+2x+4-b=0,
则△=4-4(4-b)=0,
∴b=3,
∴平移后的直线为y=-x+1,
解得x=-1,y=2,
∴P点坐标为(-1,2),
故答案为(-1,2).
【点睛】
本题主要考查了二次函数图象上点的坐标特征,三角形的面积以及解方程等,理解直线向上平移与抛物线相切,切点即为P点是解题的关键.
16、1<x≤1
【解析】
解不等式x﹣3(x﹣2)<1,得:x>1,
解不等式,得:x≤1,
所以不等式组解集为:1<x≤1,
故答案为1<x≤1.
17、-1
【解析】
利用反比例函数的性质,即可得到反比例函数图象在第一、三象限,进而得出,据此可得k的取值.
【详解】
解:点、都在反比例函数的图象上,,
在每个象限内,y随着x的增大而增大,
反比例函数图象在第一、三象限,
,
的值可以取等,答案不唯一
故答案为:.
【点睛】
本题考查反比例函数图象上的点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.
三、解答题(共7小题,满分69分)
18、1
【解析】解:
取时,原式.
19、(3)a=,方程的另一根为;(2)答案见解析.
【解析】
(3)把x=2代入方程,求出a的值,再把a代入原方程,进一步解方程即可;
(2)分两种情况探讨:①当a=3时,为一元一次方程;②当a≠3时,利用b2-4ac=3求出a的值,再代入解方程即可.
【详解】
(3)将x=2代入方程,得,解得:a=.
将a=代入原方程得,解得:x3=,x2=2.
∴a=,方程的另一根为;
(2)①当a=3时,方程为2x=3,解得:x=3.
②当a≠3时,由b2-4ac=3得4-4(a-3)2=3,解得:a=2或3.
当a=2时, 原方程为:x2+2x+3=3,解得:x3=x2=-3;
当a=3时, 原方程为:-x2+2x-3=3,解得:x3=x2=3.
综上所述,当a=3,3,2时,方程仅有一个根,分别为3,3,-3.
考点:3.一元二次方程根的判别式;2.解一元二次方程;3.分类思想的应用.
20、(1)35元/盒;(2)20%.
【解析】
试题分析:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x﹣11)元/盒,根据2014年花3500元与2016年花2400元购进的礼盒数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)设年增长率为m,根据数量=总价÷单价求出2014年的购进数量,再根据2014年的销售利润×(1+增长率)2=2016年的销售利润,即可得出关于m的一元二次方程,解之即可得出结论.
试题解析:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x﹣11)元/盒,根据题意得:,解得:x=35,经检验,x=35是原方程的解.
答:2014年这种礼盒的进价是35元/盒.
(2)设年增长率为m,2014年的销售数量为3500÷35=100(盒).
根据题意得:(60﹣35)×100(1+a)2=(60﹣35+11)×100,解得:a=0.2=20%或a=﹣2.2(不合题意,舍去).
答:年增长率为20%.
考点:一元二次方程的应用;分式方程的应用;增长率问题.
21、见解析
【解析】
(1)利用过直线上一点作直线的垂线确定D点即可得;
(2)根据圆周角定理,由∠ACD=90°,根据三角形的内角和和等腰三角形的性质得到∠DCB=∠A=30°,推出△CDB∽△ACB,根据相似三角形的性质即可得到结论.
【详解】
(1)如图所示,CD即为所求;
(2)∵CD⊥AC,
∴∠ACD=90°
∵∠A=∠B=30°,
∴∠ACB=120°
∴∠DCB=∠A=30°,
∵∠B=∠B,
∴△CDB∽△ACB,
∴,
∴BC2=BD•AB.
【点睛】
考查了等腰三角形的性质和相似三角形的判定和性质和作图:在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
22、 (1)y=﹣3.4x+141.1;(1)当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花椒的汽车为1辆时,总利润最大,最大利润为117.4万元.
【解析】
(1)根据题意可以得装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30﹣x﹣(1x+1)=(12﹣3x)辆,从而可以得到y与x的函数关系式;
(1)根据装花椒的汽车不超过8辆,可以求得x的取值范围,从而可以得到y的最大值,从而可以得到总利润最大时,装运各种产品的车辆数.
【详解】
(1)若装运核桃的汽车为x辆,则装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30﹣x﹣(1x+1)=(12﹣3x)辆,
根据题意得:y=10×0.7x+4×0.5(1x+1)+6×0.8(12﹣3x)=﹣3.4x+141.1.
(1)根据题意得:,
解得:7≤x≤,
∵x为整数,
∴7≤x≤2.
∵10.6>0,
∴y随x增大而减小,
∴当x=7时,y取最大值,最大值=﹣3.4×7+141.1=117.4,此时:1x+1=12,12﹣3x=1.
答:当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花椒的汽车为1辆时,总利润最大,最大利润为117.4万元.
【点睛】
本题考查了一次函数的应用,解题的关键是熟练的掌握一次函数的应用.
23、旗杆AB的高为(4+1)m.
【解析】
试题分析:过点C作CE⊥AB于E,过点B作BF⊥CD于F.在Rt△BFD中,分别求出DF、BF的长度.在Rt△ACE中,求出AE、CE的长度,继而可求得AB的长度.
试题解析:解:过点C作CE⊥AB于E,过点B作BF⊥CD于F,过点B作BF⊥CD于F.
在Rt△BFD中,∵∠DBF=30°,sin∠DBF==,cos∠DBF==.
∵BD=8,∴DF=4,BF=.
∵AB∥CD,CE⊥AB,BF⊥CD,∴四边形BFCE为矩形,∴BF=CE=4,CF=BE=CD﹣DF=1.
在Rt△ACE中,∠ACE=45°,∴AE=CE=4,∴AB=4+1(m).
答:旗杆AB的高为(4+1)m.
24、(1)证明见解析;(2)证明见解析;(3)CP=16.9cm.
【解析】
【分析】(1)先判断出∠BAC=2∠BAD,进而判断出∠BOD=∠BAC=90°,得出PD⊥OD即可得出结论;
(2)先判断出∠ADB=∠P,再判断出∠DCP=∠ABD,即可得出结论;
(3)先求出BC,再判断出BD=CD,利用勾股定理求出BC=BD=,最后用△ABD∽△DCP得出比例式求解即可得出结论.
【详解】(1)如图,连接OD,
∵BC是⊙O的直径,
∴∠BAC=90°,
∵AD平分∠BAC,
∴∠BAC=2∠BAD,
∵∠BOD=2∠BAD,
∴∠BOD=∠BAC=90°,
∵DP∥BC,
∴∠ODP=∠BOD=90°,
∴PD⊥OD,
∵OD是⊙O半径,
∴PD是⊙O的切线;
(2)∵PD∥BC,
∴∠ACB=∠P,
∵∠ACB=∠ADB,
∴∠ADB=∠P,
∵∠ABD+∠ACD=180°,∠ACD+∠DCP=180°,
∴∠DCP=∠ABD,
∴△ABD∽△DCP;
(3)∵BC是⊙O的直径,
∴∠BDC=∠BAC=90°,
在Rt△ABC中,BC==13cm,
∵AD平分∠BAC,
∴∠BAD=∠CAD,
∴∠BOD=∠COD,
∴BD=CD,
在Rt△BCD中,BD2+CD2=BC2,
∴BD=CD=BC=,
∵△ABD∽△DCP,
∴,
∴,
∴CP=16.9cm.
【点睛】本题考查了切线的判定、相似三角形的判定与性质等,熟练掌握切线的判定方法、相似三角形的判定与性质定理是解题的关键.
相关试卷
这是一份2022年武汉市重点中学中考联考数学试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,下列运算中,正确的是等内容,欢迎下载使用。
这是一份2022年随州市重点中学中考联考数学试卷含解析,共29页。试卷主要包含了若分式有意义,则a的取值范围为等内容,欢迎下载使用。
这是一份2022年海南市重点中学中考联考数学试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,方程的解为等内容,欢迎下载使用。