2022年江阴山观二中中考数学最后冲刺浓缩精华卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,数轴上有A,B,C,D四个点,其中表示互为倒数的点是( )
A.点A与点B B.点A与点D C.点B与点D D.点B与点C
2.如图,直线l1∥l2,以直线l1上的点A为圆心、适当长为半径画弧,分别交直线l1、l2于点B、C,连接AC、BC.若∠ABC=67°,则∠1=( )
A.23° B.46° C.67° D.78°
3.下列计算正确的是( )
A. B. C. D.
4.郑州地铁Ⅰ号线火车站站口分布如图所示,有A,B,C,D,E五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是( )
A. B. C. D.
5.如图,PA切⊙O于点A,PO交⊙O于点B,点C是⊙O优弧弧AB上一点,连接AC、BC,如果∠P=∠C,⊙O的半径为1,则劣弧弧AB的长为( )
A.π B.π C.π D.π
6.如图,在中,点D、E、F分别在边、、上,且,.下列四种说法: ①四边形是平行四边形;②如果,那么四边形是矩形;③如果平分,那么四边形是菱形;④如果且,那么四边形是菱形. 其中,正确的有( ) 个
A.1 B.2 C.3 D.4
7.如图,已知△ABC的三个顶点均在格点上,则cosA的值为( )
A. B. C. D.
8.如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是( )
A.第24天的销售量为200件 B.第10天销售一件产品的利润是15元
C.第12天与第30天这两天的日销售利润相等 D.第27天的日销售利润是875元
9.在一个口袋中有4个完全相同的小球,把它们分别标号为 1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球.则两次摸出的小球的标号的和等于6的概率为( )
A. B. C. D.
10.上体育课时,小明5次投掷实心球的成绩如下表所示,则这组数据的众数与中位数分别是( )
1
2
3
4
5
成绩(m)
8.2
8.0
8.2
7.5
7.8
A.8.2,8.2 B.8.0,8.2 C.8.2,7.8 D.8.2,8.0
11.下面的统计图反映了我国最近十年间核电发电量的增长情况,根据统计图提供的信息,下列判断合理的是( )
A.2011年我国的核电发电量占总发电量的比值约为1.5%
B.2006年我国的总发电量约为25000亿千瓦时
C.2013年我国的核电发电量占总发电量的比值是2006年的2倍
D.我国的核电发电量从2008年开始突破1000亿千瓦时
12.为了解某校初三学生的体重情况,从中随机抽取了80名初三学生的体重进行统计分析,在此问题中,样本是指( )
A.80 B.被抽取的80名初三学生
C.被抽取的80名初三学生的体重 D.该校初三学生的体重
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.已知正比例函数的图像经过点M( )、、,如果,那么________.(填“>”、“=”、“<”)
14.如图,在平行四边ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是 (把所有正确结论的序号都填在横线上)∠DCF=∠BCD,(2)EF=CF;(3)SΔBEC=2SΔCEF;(4)∠DFE=3∠AEF
15.已知,正六边形的边长为1cm,分别以它的三个不相邻的顶点为圆心,1cm长为半径画弧(如图),则所得到的三条弧的长度之和为__________cm(结果保留π).
16.计算:=________.
17.在一次射击训练中,某位选手五次射击的环数分别为5,8,7,6,1.则这位选手五次射击环数的方差为 .
18.我们定义:关于x的函数y=ax2+bx与y=bx2+ax(其中a≠b)叫做互为交换函数.如y=3x2+4x与y=4x2+3x是互为交换函数.如果函数y=2x2+bx与它的交换函数图象顶点关于x轴对称,那么b=_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)某工厂去年的总收入比总支出多50万元,计划今年的总收入比去年增加10%,总支出比去年节约20%,按计划今年总收入将比总支出多100万元.今年的总收入和总支出计划各是多少万元?
20.(6分)阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE.
(1)在图1中证明小胖的发现;
借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:
(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;
(3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).
21.(6分)在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C处(如图),然后沿BC方向走到D处,这时目测旗杆顶部A与竹竿顶部E恰好在同一直线上,又测得C、D两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.
22.(8分)如图,在□ABCD中,对角线AC、BD相交于点O,点E在BD的延长线上,且△EAC是等边三角形.
(1)求证:四边形ABCD是菱形.
(2)若AC=8,AB=5,求ED的长.
23.(8分)抛物线与x轴交于A,B两点(点A在点B的左边),与y轴正半轴交于点C.
(1)如图1,若A(-1,0),B(3,0),
① 求抛物线的解析式;
② P为抛物线上一点,连接AC,PC,若∠PCO=3∠ACO,求点P的横坐标;
(2)如图2,D为x轴下方抛物线上一点,连DA,DB,若∠BDA+2∠BAD=90°,求点D的纵坐标.
24.(10分)某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.该商场两次共购进这种运动服多少套?如果这两批运动服每套的售价相同,且全部售完后总利润不低于20%,那么每套售价至少是多少元?
25.(10分)如图,图①是某电脑液晶显示器的侧面图,显示屏AO可以绕点O旋转一定的角度.研究表明:显示屏顶端A与底座B的连线AB与水平线BC垂直时(如图②),人观看屏幕最舒适.此时测得∠BAO=15°,AO=30 cm,∠OBC=45°,求AB的长度.(结果精确到0.1 cm)
26.(12分)为了弘扬我国古代数学发展的伟大成就,某校九年级进行了一次数学知识竞赛,并设立了以我国古代数学家名字命名的四个奖项:“祖冲之奖”、“刘徽奖”、“赵爽奖”和“杨辉奖”,根据获奖情况绘制成如图1和图2所示的条形统计图和扇形统计图,并得到了获“祖冲之奖”的学生成绩统计表:
“祖冲之奖”的学生成绩统计表:
分数/分
80
85
90
95
人数/人
4
2
10
4
根据图表中的信息,解答下列问题:
(1)这次获得“刘徽奖”的人数是_____,并将条形统计图补充完整;
(2)获得“祖冲之奖”的学生成绩的中位数是_____分,众数是_____分;
(3)在这次数学知识竟赛中有这样一道题:一个不透明的盒子里有完全相同的三个小球,球上分别标有数字“﹣2”,“﹣1”和“2”,随机摸出一个小球,把小球上的数字记为x放回后再随机摸出一个小球,把小球上的数字记为y,把x作为横坐标,把y作为纵坐标,记作点(x,y).用列表法或树状图法求这个点在第二象限的概率.
27.(12分)已知:如图,E是BC上一点,AB=EC,AB∥CD,BC=CD.求证:AC=ED.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
试题分析:主要考查倒数的定义和数轴,要求熟练掌握.需要注意的是:
倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.
倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.
根据倒数定义可知,-2的倒数是-,有数轴可知A对应的数为-2,B对应的数为-,所以A与B是互为倒数.
故选A.
考点:1.倒数的定义;2.数轴.
2、B
【解析】
根据圆的半径相等可知AB=AC,由等边对等角求出∠ACB,再由平行得内错角相等,最后由平角180°可求出∠1.
【详解】
根据题意得:AB=AC,
∴∠ACB=∠ABC=67°,
∵直线l1∥l2,
∴∠2=∠ABC=67°,
∵∠1+∠ACB+∠2=180°,
∴∠ACB=180°-∠1-∠ACB=180°-67°-67°=46º.
故选B.
【点睛】
本题考查等腰三角形的性质,平行线的性质,熟练根据这些性质得到角之间的关系是关键.
3、A
【解析】
原式各项计算得到结果,即可做出判断.
【详解】
A、原式=,正确;
B、原式不能合并,错误;
C、原式=,错误;
D、原式=2,错误.
故选A.
【点睛】
此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
4、C
【解析】
列表得出进出的所有情况,再从中确定出恰好选择从同一个口进出的结果数,继而根据概率公式计算可得.
【详解】
解:列表得:
A
B
C
D
E
A
AA
BA
CA
DA
EA
B
AB
BB
CB
DB
EB
C
AC
BC
CC
DC
EC
D
AD
BD
CD
DD
ED
E
AE
BE
CE
DE
EE
∴一共有25种等可能的情况,恰好选择从同一个口进出的有5种情况,
∴恰好选择从同一个口进出的概率为=,
故选C.
【点睛】
此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
5、A
【解析】
利用切线的性质得∠OAP=90°,再利用圆周角定理得到∠C=∠O,加上∠P=∠C可计算写出∠O=60°,然后根据弧长公式计算劣弧的长.
【详解】
解:∵PA切⊙O于点A,
∴OA⊥PA,
∴∠OAP=90°,
∵∠C=∠O,∠P=∠C,
∴∠O=2∠P,
而∠O+∠P=90°,
∴∠O=60°,
∴劣弧AB的长=.
故选:A.
【点睛】
本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理和弧长公式.
6、D
【解析】
先由两组对边分别平行的四边形为平行四边形,根据DE∥CA,DF∥BA,得出AEDF为平行四边形,得出①正确;当∠BAC=90°,根据推出的平行四边形AEDF,利用有一个角为直角的平行四边形为矩形可得出②正确;若AD平分∠BAC,得到一对角相等,再根据两直线平行内错角相等又得到一对角相等,等量代换可得∠EAD=∠EDA,利用等角对等边可得一组邻边相等,根据邻边相等的平行四边形为菱形可得出③正确;由AB=AC,AD⊥BC,根据等腰三角形的三线合一可得AD平分∠BAC,同理可得四边形AEDF是菱形,④正确,进而得到正确说法的个数.
【详解】
解:∵DE∥CA,DF∥BA,
∴四边形AEDF是平行四边形,选项①正确;
若∠BAC=90°,
∴平行四边形AEDF为矩形,选项②正确;
若AD平分∠BAC,
∴∠EAD=∠FAD,
又DE∥CA,∴∠EDA=∠FAD,
∴∠EAD=∠EDA,
∴AE=DE,
∴平行四边形AEDF为菱形,选项③正确;
若AB=AC,AD⊥BC,
∴AD平分∠BAC,
同理可得平行四边形AEDF为菱形,选项④正确,
则其中正确的个数有4个.
故选D.
【点睛】
此题考查了平行四边形的定义,菱形、矩形的判定,涉及的知识有:平行线的性质,角平分线的定义,以及等腰三角形的判定与性质,熟练掌握平行四边形、矩形及菱形的判定与性质是解本题的关键.
7、D
【解析】
过B点作BD⊥AC,如图,
由勾股定理得,AB=,AD=,
cosA===,
故选D.
8、C
【解析】
试题解析:A、根据图①可得第24天的销售量为200件,故正确;
B、设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=kx+b,
把(0,25),(20,5)代入得:,
解得:,
∴z=-x+25,
当x=10时,y=-10+25=15,
故正确;
C、当0≤t≤24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=k1t+b1,
把(0,100),(24,200)代入得:,
解得:,
∴y=t+100,
当t=12时,y=150,z=-12+25=13,
∴第12天的日销售利润为;150×13=1950(元),第30天的日销售利润为;150×5=750(元),
750≠1950,故C错误;
D、第30天的日销售利润为;150×5=750(元),故正确.
故选C
9、C
【解析】
列举出所有情况,看两次摸出的小球的标号的和等于6的情况数占总情况数的多少即可.
解:
共16种情况,和为6的情况数有3种,所以概率为.
故选C.
10、D
【解析】
解:按从小到大的顺序排列小明5次投球的成绩:7.5,7.8,8.2,8.1,8.1.
其中8.1出现1次,出现次数最多,8.2排在第三,
∴这组数据的众数与中位数分别是:8.1,8.2.
故选D.
【点睛】
本题考查众数;中位数.
11、B
【解析】
由折线统计图和条形统计图对各选项逐一判断即可得.
【详解】
解:A、2011年我国的核电发电量占总发电量的比值大于1.5%、小于2%,此选项错误;
B、2006年我国的总发电量约为500÷2.0%=25000亿千瓦时,此选项正确;
C、2013年我国的核电发电量占总发电量的比值是2006年的显然不到2倍,此选项错误;
D、我国的核电发电量从2012年开始突破1000亿千瓦时,此选项错误;
故选:B.
【点睛】
本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;折线统计图表示的是事物的变化情况.
12、C
【解析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
【详解】
样本是被抽取的80名初三学生的体重,
故选C.
【点睛】
此题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、>
【解析】
分析:根据正比例函数的图象经过点M(﹣1,1)可以求得该函数的解析式,然后根据正比例函数的性质即可解答本题.
详解:设该正比例函数的解析式为y=kx,则1=﹣1k,得:k=﹣0.5,∴y=﹣0.5x.∵正比例函数的图象经过点A(x1,y1)、B(x1,y1),x1<x1,∴y1>y1.
故答案为>.
点睛:本题考查了正比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用正比例函数的性质解答.
14、①②④
【解析】
试题解析:①∵F是AD的中点,
∴AF=FD,
∵在▱ABCD中,AD=2AB,
∴AF=FD=CD,
∴∠DFC=∠DCF,
∵AD∥BC,
∴∠DFC=∠FCB,
∴∠DCF=∠BCF,
∴∠DCF=∠BCD,故此选项正确;
延长EF,交CD延长线于M,
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠A=∠MDF,
∵F为AD中点,
∴AF=FD,
在△AEF和△DFM中,
,
∴△AEF≌△DMF(ASA),
∴FE=MF,∠AEF=∠M,
∵CE⊥AB,
∴∠AEC=90°,
∴∠AEC=∠ECD=90°,
∵FM=EF,
∴FC=FM,故②正确;
③∵EF=FM,
∴S△EFC=S△CFM,
∵MC>BE,
∴S△BEC<2S△EFC
故S△BEC=2S△CEF错误;
④设∠FEC=x,则∠FCE=x,
∴∠DCF=∠DFC=90°-x,
∴∠EFC=180°-2x,
∴∠EFD=90°-x+180°-2x=270°-3x,
∵∠AEF=90°-x,
∴∠DFE=3∠AEF,故此选项正确.
考点:1.平行四边形的性质;2.全等三角形的判定与性质;3.直角三角形斜边上的中线.
15、
【解析】
考点:弧长的计算;正多边形和圆.
分析:本题主要考查求正多边形的每一个内角,以及弧长计算公式.
解:方法一:
先求出正六边形的每一个内角==120°,
所得到的三条弧的长度之和=3×=2πcm;
方法二:先求出正六边形的每一个外角为60°,
得正六边形的每一个内角120°,
每条弧的度数为120°,
三条弧可拼成一整圆,其三条弧的长度之和为2πcm.
16、.
【解析】
根据异分母分式加减法法则计算即可.
【详解】
原式.
故答案为:.
【点睛】
本题考查了分式的加减,关键是掌握分式加减的计算法则.
17、2.
【解析】
试题分析:五次射击的平均成绩为=(5+7+8+6+1)=7,
方差S2=[(5﹣7)2+(8﹣7)2+(7﹣7)2+(6﹣7)2+(1﹣7)2]=2.
考点:方差.
18、﹣1
【解析】
根据题意可以得到交换函数,由顶点关于x轴对称,从而得到关于b的方程,可以解答本题.
【详解】
由题意函数y=1x1+bx的交换函数为y=bx1+1x.
∵y=1x1+bx=,
y=bx1+1x=,
函数y=1x1+bx与它的交换函数图象顶点关于x轴对称,
∴﹣=﹣且,
解得:b=﹣1.
故答案为﹣1.
【点睛】
本题考查了二次函数的性质.理解交换函数的意义是解题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、今年的总收入为220万元,总支出为1万元.
【解析】
试题分析:设去年总收入为x万元,总支出为y万元,根据利润=收入-支出即可得出关于x、y的二元一次方程组,解之即可得出结论.
试题解析:
设去年的总收入为x万元,总支出为y万元.
根据题意,得,
解这个方程组,得,
∴(1+10%)x=220,(1-20%)y=1.
答:今年的总收入为220万元,总支出为1万元.
20、(1)证明见解析;(2)证明见解析;(3)∠EAF =m°.
【解析】
分析:(1)如图1中,欲证明BD=EC,只要证明△DAB≌△EAC即可;
(2)如图2中,延长DC到E,使得DB=DE.首先证明△BDE是等边三角形,再证明△ABD≌△CBE即可解决问题;
(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.想办法证明△AFE≌△AFG,可得∠EAF=∠FAG=m°.
详(1)证明:如图1中,
∵∠BAC=∠DAE,
∴∠DAB=∠EAC,
在△DAB和△EAC中,
,
∴△DAB≌△EAC,
∴BD=EC.
(2)证明:如图2中,延长DC到E,使得DB=DE.
∵DB=DE,∠BDC=60°,
∴△BDE是等边三角形,
∴∠BD=BE,∠DBE=∠ABC=60°,
∴∠ABD=∠CBE,
∵AB=BC,
∴△ABD≌△CBE,
∴AD=EC,
∴BD=DE=DC+CE=DC+AD.
∴AD+CD=BD.
(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.
由(1)可知△EAB≌△GAC,
∴∠1=∠2,BE=CG,
∵BD=DC,∠BDE=∠CDM,DE=DM,
∴△EDB≌△MDC,
∴EM=CM=CG,∠EBC=∠MCD,
∵∠EBC=∠ACF,
∴∠MCD=∠ACF,
∴∠FCM=∠ACB=∠ABC,
∴∠1=3=∠2,
∴∠FCG=∠ACB=∠MCF,
∵CF=CF,CG=CM,
∴△CFG≌△CFM,
∴FG=FM,
∵ED=DM,DF⊥EM,
∴FE=FM=FG,
∵AE=AG,AF=AF,
∴△AFE≌△AFG,
∴∠EAF=∠FAG=m°.
点睛:本题考查几何变换综合题、旋转变换、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会利用“手拉手”图形中的全等三角形解决问题,学会构造“手拉手”模型,解决实际问题,属于中考压轴题.
21、这种测量方法可行,旗杆的高为21.1米.
【解析】
分析:根据已知得出过F作FG⊥AB于G,交CE于H,利用相似三角形的判定得出△AGF∽△EHF,再利用相似三角形的性质得出即可.
详解:这种测量方法可行.
理由如下:
设旗杆高AB=x.过F作FG⊥AB于G,交CE于H(如图).
所以△AGF∽△EHF.
因为FD=1.1,GF=27+3=30,HF=3,
所以EH=3.1﹣1.1=2,AG=x﹣1.1.
由△AGF∽△EHF,
得,
即,
所以x﹣1.1=20,
解得x=21.1(米)
答:旗杆的高为21.1米.
点睛:此题主要考查了相似三角形的判定与性质,根据已知得出△AGF∽△EHF是解题关键.
22、(1)证明见解析(2)4-3
【解析】
试题分析:(1)根据等边三角形的性质,可得EO⊥AC,即BD⊥AC,根据平行四边形的对角线互相垂直可证菱形,(2) 根据平行四边形的对角线互相平分可得AO=CO,BO=DO,再根据△EAC是等边三角形可以判定EO⊥AC,并求出EA的长度,然后在Rt△ABO中,利用勾股定理列式求出BO的长度,即DO的长度,在Rt△AOE中,根据勾股定理列式求出EO的长度,再根据ED=EO-DO计算即可得解.
试题解析:(1) ∵四边形ABCD是平行四边形,∴AO=CO,DO=BO,
∵△EAC是等边三角形, EO是AC边上中线,
∴EO⊥AC,即BD⊥AC,
∴平行四边形ABCD是是菱形.
(2) ∵平行四边形ABCD是是菱形,
∴AO=CO==4,DO=BO,
∵△EAC是等边三角形,∴EA=AC=8,EO⊥AC,
在Rt△ABO中,由勾股定理可得:BO=3,
∴DO=BO=3,
在Rt△EAO中,由勾股定理可得:EO=4
∴ED=EO-DO=4-3.
23、(1)①y=-x2+2x+3②(2)-1
【解析】
分析:(1)①把A、B的坐标代入解析式,解方程组即可得到结论;
②延长CP交x轴于点E,在x轴上取点D使CD=CA,作EN⊥CD交CD的延长线于N.由CD=CA ,OC⊥AD,得到∠DCO=∠ACO.由∠PCO=3∠ACO,得到∠ACD=∠ECD,从而有tan∠ACD=tan∠ECD,
,即可得出AI、CI的长,进而得到.设EN=3x,则CN=4x,由tan∠CDO=tan∠EDN,得到,故设DN=x,则CD=CN-DN=3x=,解方程即可得出E的坐标,进而求出CE的直线解析式,联立解方程组即可得到结论;
(2)作DI⊥x轴,垂足为I.可以证明△EBD∽△DBC,由相似三角形对应边成比例得到,
即,整理得.令y=0,得:.
故,从而得到.由,得到,解方程即可得到结论.
详解:(1)①把A(-1,0),B(3,0)代入得:
,解得:,
∴
②延长CP交x轴于点E,在x轴上取点D使CD=CA,作EN⊥CD交CD的延长线于N.
∵CD=CA ,OC⊥AD,∴ ∠DCO=∠ACO.
∵∠PCO=3∠ACO,∴∠ACD=∠ECD,∴tan∠ACD=tan∠ECD,
∴,AI=,
∴CI=,∴.
设EN=3x,则CN=4x.
∵tan∠CDO=tan∠EDN,
∴,∴DN=x,∴CD=CN-DN=3x=,
∴,∴DE= ,E(,0).
CE的直线解析式为:,
,解得:.
点P的横坐标 .
(2)作DI⊥x轴,垂足为I.
∵∠BDA+2∠BAD=90°,∴∠DBI+∠BAD=90°.
∵∠BDI+∠DBI=90°,∴∠BAD=∠BDI.
∵∠BID=∠DIA,∴△EBD∽△DBC,∴,
∴,
∴.
令y=0,得:.
∴,∴.
∵,
∴,
解得:yD=0或-1.
∵D为x轴下方一点,
∴,
∴D的纵坐标-1 .
点睛:本题是二次函数的综合题.考查了二次函数解析式、性质,相似三角形的判定与性质,根与系数的关系.综合性比较强,难度较大.
24、(1)商场两次共购进这种运动服600套;(2)每套运动服的售价至少是200元.
【解析】
(1)设商场第一次购进套运动服,根据“第二批所购数量是第一批购进数量的2倍,但每套进价多了10元”即可列方程求解;
(2)设每套运动服的售价为y元,根据“这两批运动服每套的售价相同,且全部售完后总利润率不低于20%” 即可列不等式求解.
【详解】
(1)设商场第一次购进x套运动服,由题意得
解这个方程,得
经检验,是所列方程的根
.
答:商场两次共购进这种运动服600套;
(2)设每套运动服的售价为y元,由题意得
,
解这个不等式,得
答:每套运动服的售价至少是200元.
【点睛】
此题主要考查分式方程的应用,一元一次不等式的应用,解题的关键是读懂题意,找到等量及不等关系,正确列方程和不等式求解.
25、37
【解析】
试题分析:过点作交于点.构造直角三角形,在中,计算出,在中, 计算出.
试题解析:如图所示:过点作交于点.
在中,
又∵在中,
答:的长度为
26、(1)刘徽奖的人数为人,补全统计图见解析;(2)获得“祖冲之奖”的学生成绩的中位数是90分,众数是90分;(3)(点在第二象限).
【解析】
(1)先根据祖冲之奖的人数及其百分比求得总人数,再根据扇形图求出赵爽奖、杨辉奖的人数,继而根据各奖项的人数之和等于总人数求得刘徽奖的人数,据此可得;
(2)根据中位数和众数的定义求解可得;
(3)列表得出所有等可能结果,再找到这个点在第二象限的结果,根据概率公式求解可得.
【详解】
(1)∵获奖的学生人数为20÷10%=200人,∴赵爽奖的人数为200×24%=48人,杨辉奖的人数为200×46%=92人,则刘徽奖的人数为200﹣(20+48+92)=40,补全统计图如下:
故答案为40;
(2)获得“祖冲之奖”的学生成绩的中位数是90分,众数是90分.
故答案为90、90;
(3)列表法:
∵第二象限的点有(﹣2,2)和(﹣1,2),∴P(点在第二象限).
【点睛】
本题考查了用列表法或画树状图法求概率、频数分布直方图以及利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查列表法或画树状图法求概率.
27、见解析
【解析】
试题分析:已知AB∥CD,根据两直线平行,内错角相等可得∠B=∠ECD,再根据SAS证明△ABC≌△ECD全,由全等三角形对应边相等即可得AC=ED.
试题解析:∵AB∥CD,∴∠B=∠DCE.在△ABC和△ECD中,∴△ABC≌△ECD(SAS),∴AC=ED.
考点:平行线的性质;全等三角形的判定及性质.
2022年山东新泰莆田中考数学最后冲刺浓缩精华卷含解析: 这是一份2022年山东新泰莆田中考数学最后冲刺浓缩精华卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2022届浙教版重点名校中考数学最后冲刺浓缩精华卷含解析: 这是一份2022届浙教版重点名校中考数学最后冲刺浓缩精华卷含解析,共23页。试卷主要包含了如图所示的几何体的俯视图是,如图,将△ABC绕点C等内容,欢迎下载使用。
2022届四川省德阳中学江县重点达标名校中考数学最后冲刺浓缩精华卷含解析: 这是一份2022届四川省德阳中学江县重点达标名校中考数学最后冲刺浓缩精华卷含解析,共20页。