所属成套资源:多地区中考数学真题按题型知识点分层分类汇编
内蒙古赤峰市三年(2020-2022)中考数学真题分类汇编-03解答题基础题
展开
这是一份内蒙古赤峰市三年(2020-2022)中考数学真题分类汇编-03解答题基础题,共15页。试卷主要包含了﹣1+4cs45°,先化简,再求值,阅读下列材料等内容,欢迎下载使用。
内蒙古赤峰市三年(2020-2022)中考数学真题分类汇编-03解答题基础题一.分式的化简求值(共2小题)1.(2022•赤峰)先化简,再求值:(1+)÷,其中a=()﹣1+4cos45°.2.(2020•赤峰)先化简,再求值:m﹣÷,其中m满足:m2﹣m﹣1=0.二.二元一次方程组的应用(共1小题)3.(2022•赤峰)某学校建立了劳动基地,计划在基地上种植A、B两种苗木共6000株,其中A种苗木的数量比B种苗木的数量的一半多600株.(1)请问A、B两种苗木各多少株?(2)如果学校安排350人同时开始种植这两种苗木,每人每天平均能种植A种苗木50株或B种苗木30株,应分别安排多少人种植A种苗木和B种苗木,才能确保同时完成任务?三.分式方程的应用(共1小题)4.(2020•赤峰)甲、乙两支工程队修建二级公路,已知甲队每天修路的长度是乙队的2倍,如果两队各自修建公路500m,甲队比乙队少用5天.(1)求甲,乙两支工程队每天各修路多少米?(2)我市计划修建长度为3600m的二级公路,因工程需要,须由甲、乙两支工程队来完成.若甲队每天所需费用为1.2万元,乙队每天所需费用为0.5万元,求在总费用不超过40万元的情况下,至少安排乙队施工多少天?四.一元一次不等式的应用(共1小题)5.(2021•赤峰)为传承优秀传统文化,某地青少年活动中心计划分批次购进四大名著:《西游记》《水浒传》《三国演义》《红楼梦》.第一次购进《西游记》50本,《水浒传》60本,共花费6600元;第二次购进《西游记》40本,《水浒传》30本,共花费4200元.(1)求《西游记》和《水浒传》每本的售价分别是多少元;(2)青少年活动中心决定再购买上述四种图书,总费用不超过32000元.如果《西游记》比《三国演义》每本售价多10元,《水浒传》比《红楼梦》每本售价少10元,要使先后购进的四大名著刚好配套(四大名著各一本为一套),那么这次最多购买《西游记》多少本?五.反比例函数与一次函数的交点问题(共1小题)6.(2022•赤峰)阅读下列材料定义运算:min|a,b|,当a≥b时,min|a,b|=b;当a<b时,min|a,b|=a.例如:min|﹣1,3|=﹣1;min|﹣1,﹣2|=﹣2.完成下列任务(1)①min|(﹣3)0,2|= ;②min|﹣,﹣4|= .(2)如图,已知反比例函数y1=和一次函数y2=﹣2x+b的图象交于A、B两点.当﹣2<x<0时,min|,﹣2x+b|=(x+1)(x﹣3)﹣x2,求这两个函数的解析式.六.切线的判定与性质(共1小题)7.(2020•赤峰)如图,AB是⊙O的直径,AC是⊙O的一条弦,点P是⊙O上一点,且PA=PC,PD∥AC,与BA的延长线交于点D.(1)求证:PD是⊙O的切线;(2)若tan∠PAC=,AC=12,求直径AB的长.七.作图—基本作图(共2小题)8.(2022•赤峰)如图,已知Rt△ABC中,∠ACB=90°,AB=8,BC=5.(1)作BC的垂直平分线,分别交AB、BC于点D、H;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接CD,求△BCD的周长.9.(2021•赤峰)如图,在Rt△ABC中,∠ACB=90°,点D是斜边AB上一点,且AC=AD.(1)作∠BAC的平分线,交BC于点E;(要求尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接DE,求证:DE⊥AB.八.列表法与树状图法(共1小题)10.(2022•赤峰)为了解青少年健康状况,某班对50名学生的体育达标情况进行了测试,满分为50分.根据测试成绩,绘制出不完整的频数分布表和不完整的频数分布直方图如下:组别成绩x(分)频数(人数)第一组5≤x<151第二组15≤x<255第三组25≤x<3512第四组35≤x<45m第五组45≤x<5514请结合图表完成下列各题:(1)求表中m的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于35分为达标,则本次测试的达标率是多少?(4)第三组12名学生中有A、B、C、D四名女生,现将这12名学生平均分成两组进行竞赛练习,每组两名女生,请用画树状图法或列表法求B、C两名女生分在同一组的概率.九.游戏公平性(共1小题)11.(2020•赤峰)如图1,一枚质地均匀的正四面体骰子,它有四个面,并分别标有1,2,3,4四个数字;如图2,等边三角形ABC的三个顶点处各有一个圆圈.丫丫和甲甲想玩跳圈游戏,游戏的规则为:游戏者从圈A起跳,每投掷一次骰子,骰子着地的一面点数是几,就沿着三角形的边逆时针方向连续跳跃几个边长.如:若第一次掷得点数为2,就逆时针连续跳2个边长,落到圈C;若第二次掷得点数为4,就从圈C继续逆时针连续跳4个边长,落到圈A.(1)丫丫随机掷一次骰子,她跳跃后落回到圈A的概率为 ;(2)丫丫和甲甲一起玩跳圈游戏:丫丫随机投掷一次骰子,甲甲随机投掷两次骰子,都以最终落回到圈A为胜者.这个游戏规则公平吗?请说明理由.
参考答案与试题解析一.分式的化简求值(共2小题)1.(2022•赤峰)先化简,再求值:(1+)÷,其中a=()﹣1+4cos45°.【解答】解:(1+)÷=•=•=3(a﹣1)=3a﹣3,当a=()﹣1+4cos45°=2﹣2+4×=2﹣2+2=2时,原式=3×2﹣3=3.2.(2020•赤峰)先化简,再求值:m﹣÷,其中m满足:m2﹣m﹣1=0.【解答】解:原式=m﹣=m﹣=,∵m2﹣m﹣1=0,∴m2=m+1,∴原式=.二.二元一次方程组的应用(共1小题)3.(2022•赤峰)某学校建立了劳动基地,计划在基地上种植A、B两种苗木共6000株,其中A种苗木的数量比B种苗木的数量的一半多600株.(1)请问A、B两种苗木各多少株?(2)如果学校安排350人同时开始种植这两种苗木,每人每天平均能种植A种苗木50株或B种苗木30株,应分别安排多少人种植A种苗木和B种苗木,才能确保同时完成任务?【解答】解:(1)设A种苗木有x株,B种苗木有y株,根据题意,得,解得,答:A种苗木有2400株,B种苗木有3600株;(2)设安排m人种植A种苗木,根据题意,得,解得m=100,经检验,m=100是原方程的根,且符合题意,350﹣m=350﹣100=250(人),答:应安排100人种植A种苗木,250人种植B种苗木,才能确保同时完成任务.三.分式方程的应用(共1小题)4.(2020•赤峰)甲、乙两支工程队修建二级公路,已知甲队每天修路的长度是乙队的2倍,如果两队各自修建公路500m,甲队比乙队少用5天.(1)求甲,乙两支工程队每天各修路多少米?(2)我市计划修建长度为3600m的二级公路,因工程需要,须由甲、乙两支工程队来完成.若甲队每天所需费用为1.2万元,乙队每天所需费用为0.5万元,求在总费用不超过40万元的情况下,至少安排乙队施工多少天?【解答】解:(1)设乙工程队每天修路x米,则甲工程队每天修路2x米,依题意,得:﹣=5,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴2x=100.答:甲工程队每天修路100米,乙工程队每天修路50米.(2)设安排乙工程队施工m天,则安排甲工程队施工=(36﹣0.5m)天,依题意,得:0.5m+1.2(36﹣0.5m)≤40,解得:m≥32.答:至少安排乙工程队施工32天.四.一元一次不等式的应用(共1小题)5.(2021•赤峰)为传承优秀传统文化,某地青少年活动中心计划分批次购进四大名著:《西游记》《水浒传》《三国演义》《红楼梦》.第一次购进《西游记》50本,《水浒传》60本,共花费6600元;第二次购进《西游记》40本,《水浒传》30本,共花费4200元.(1)求《西游记》和《水浒传》每本的售价分别是多少元;(2)青少年活动中心决定再购买上述四种图书,总费用不超过32000元.如果《西游记》比《三国演义》每本售价多10元,《水浒传》比《红楼梦》每本售价少10元,要使先后购进的四大名著刚好配套(四大名著各一本为一套),那么这次最多购买《西游记》多少本?【解答】解:(1)设《西游记》每本的售价为x元,《水浒传》每本的售价为y元,依题意得:,解得:.答:《西游记》每本的售价为60元,《水浒传》每本的售价为60元.(2)《三国演义》每本售价为60﹣10=50(元),《红楼梦》每本售价为60+10=70(元).设这次购买《西游记》m本,则购买《水浒传》(50+40+m﹣60﹣30)=m本,《三国演义》(50+40+m)=(90+m)本,《红楼梦》(50+40+m)=(90+m)本,依题意得:60m+60m+50(90+m)+70(90+m)≤32000,解得:m≤88.又∵m为整数,∴m可以取的最大值为88.答:这次最多购买《西游记》88本.五.反比例函数与一次函数的交点问题(共1小题)6.(2022•赤峰)阅读下列材料定义运算:min|a,b|,当a≥b时,min|a,b|=b;当a<b时,min|a,b|=a.例如:min|﹣1,3|=﹣1;min|﹣1,﹣2|=﹣2.完成下列任务(1)①min|(﹣3)0,2|= 1 ;②min|﹣,﹣4|= ﹣4 .(2)如图,已知反比例函数y1=和一次函数y2=﹣2x+b的图象交于A、B两点.当﹣2<x<0时,min|,﹣2x+b|=(x+1)(x﹣3)﹣x2,求这两个函数的解析式.【解答】解:(1)由题意可知:①min|(﹣3)0,2|=1,②min|﹣,﹣4|=﹣4;故答案为:1,﹣4.(2)当﹣2<x<0时,min|,﹣2x+b|=(x+1)(x﹣3)﹣x2=﹣2x﹣3,∵一次函数y2=﹣2x+b,∴b=﹣3,∴y2=﹣2x﹣3,当x=﹣2时,y=1,∴A(﹣2,1)将A点代入y1=中,得k=﹣2,∴y1=﹣.六.切线的判定与性质(共1小题)7.(2020•赤峰)如图,AB是⊙O的直径,AC是⊙O的一条弦,点P是⊙O上一点,且PA=PC,PD∥AC,与BA的延长线交于点D.(1)求证:PD是⊙O的切线;(2)若tan∠PAC=,AC=12,求直径AB的长.【解答】解:(1)连接PO,交AC于H,∵PA=PC,∴∠PAC=∠PCA,∵∠PCA=∠PBA,∴∠PAC=∠PCA=∠PBA,∵DP∥AC,∴∠DPA=∠PAC=∠PCA=∠PBA,∵OA=OP,∴∠PAO=∠OPA,∵AB是直径,∴∠APB=90°,∴∠PAB+∠ABP=90°,∴∠OPA+∠DPA=90°,∴∠DPO=90°,又∵OP是半径,∴DP是⊙O的切线;(2)∵DP∥AC,∠DPO=90°,∴∠DPO=∠AHO=90°,又∵PA=PC,∴AH=HC=AC=6,∵tan∠PAC==,∴PH=×AH=4,∵AO2=AH2+OH2,∴AO2=36+(OA﹣4)2,∴OA=,∴AB=2OA=13.七.作图—基本作图(共2小题)8.(2022•赤峰)如图,已知Rt△ABC中,∠ACB=90°,AB=8,BC=5.(1)作BC的垂直平分线,分别交AB、BC于点D、H;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接CD,求△BCD的周长.【解答】解:(1)如图,DH为所作;(2)∵DH垂直平分BC,∴DC=DB,∴∠B=∠DCB,∵∠B+∠A=90°,∠DCB+∠DCA=90°,∴∠A=∠DCA,∴DC=DA,∴△BCD的周长=DC+DB+BC=DA+DB+BC=AB+BC=8+5=13.9.(2021•赤峰)如图,在Rt△ABC中,∠ACB=90°,点D是斜边AB上一点,且AC=AD.(1)作∠BAC的平分线,交BC于点E;(要求尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接DE,求证:DE⊥AB.【解答】(1)解:如图,AE为所作; (2)证明:∵AE平分∠BAC,∴∠CAE=∠DAE,在△ACE和△ADE中,,∴△ACE≌△ADE(SAS),∴∠ADE=∠C=90°,∴DE⊥AB.八.列表法与树状图法(共1小题)10.(2022•赤峰)为了解青少年健康状况,某班对50名学生的体育达标情况进行了测试,满分为50分.根据测试成绩,绘制出不完整的频数分布表和不完整的频数分布直方图如下:组别成绩x(分)频数(人数)第一组5≤x<151第二组15≤x<255第三组25≤x<3512第四组35≤x<45m第五组45≤x<5514请结合图表完成下列各题:(1)求表中m的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于35分为达标,则本次测试的达标率是多少?(4)第三组12名学生中有A、B、C、D四名女生,现将这12名学生平均分成两组进行竞赛练习,每组两名女生,请用画树状图法或列表法求B、C两名女生分在同一组的概率.【解答】解:(1)m=50﹣1﹣5﹣12﹣14=18;(2)如图,(3)本次测试的达标率为×100%=64%;(4)画树状图为:共用12种等可能的结果,其中B、C两名女生分在同一组的结果数为4,所以B、C两名女生分在同一组的概率==.九.游戏公平性(共1小题)11.(2020•赤峰)如图1,一枚质地均匀的正四面体骰子,它有四个面,并分别标有1,2,3,4四个数字;如图2,等边三角形ABC的三个顶点处各有一个圆圈.丫丫和甲甲想玩跳圈游戏,游戏的规则为:游戏者从圈A起跳,每投掷一次骰子,骰子着地的一面点数是几,就沿着三角形的边逆时针方向连续跳跃几个边长.如:若第一次掷得点数为2,就逆时针连续跳2个边长,落到圈C;若第二次掷得点数为4,就从圈C继续逆时针连续跳4个边长,落到圈A.(1)丫丫随机掷一次骰子,她跳跃后落回到圈A的概率为 ;(2)丫丫和甲甲一起玩跳圈游戏:丫丫随机投掷一次骰子,甲甲随机投掷两次骰子,都以最终落回到圈A为胜者.这个游戏规则公平吗?请说明理由.【解答】解:(1)丫丫随机掷一次骰子,她跳跃后落回到圈A的概率=;(2)这个游戏规则不公平.理由如下:画树状图为:共有16种等可能的结果,其中甲甲随机投掷两次骰子,最终落回到圈A的结果数为5,所以甲甲随机投掷两次骰子,最终落回到圈A的概率=,因为<,所以这个游戏规则不公平.
相关试卷
这是一份内蒙古赤峰市三年(2020-2022)中考数学真题分类汇编-01选择题,共36页。
这是一份内蒙古赤峰市三年(2020-2022)中考数学真题分类汇编-02填空题,共14页。试卷主要包含了一个电子跳蚤在数轴上做跳跃运动,分解因式等内容,欢迎下载使用。
这是一份内蒙古赤峰市三年(2020-2022)中考数学真题分类汇编-04解答题提升题,共37页。试卷主要包含了先化简,再求值,【生活情境】,阅读理解等内容,欢迎下载使用。