所属成套资源:多地区中考数学真题按题型知识点分层分类汇编
湖南省永州市三年(2020-2022)中考数学真题分类汇编-03解答题
展开
这是一份湖南省永州市三年(2020-2022)中考数学真题分类汇编-03解答题,共37页。试卷主要包含了﹣1,,其中x=1,其中x=+1,,其中a=2,解关于x的不等式组等内容,欢迎下载使用。
湖南省永州市三年(2020-2022)中考数学真题分类汇编-03解答题
一.实数的运算(共1小题)
1.(2020•永州)计算:20200+sin30°﹣()﹣1.
二.整式的混合运算—化简求值(共1小题)
2.(2021•永州)先化简,再求值:(x+1)2+(2+x)(2﹣x),其中x=1.
三.分式的化简求值(共2小题)
3.(2022•永州)先化简,再求值:÷(﹣)其中x=+1.
4.(2020•永州)先化简,再求值:(﹣•)•(a+2),其中a=2.
四.一元一次方程的应用(共1小题)
5.(2022•永州)受第24届北京冬季奥林匹克运动会的影响,小勇爱上了雪上运动.一天,小勇在滑雪场训练滑雪,第一次他从滑雪道A端以平均(x+2)米/秒的速度滑到B端,用了24秒;第二次从滑雪道A端以平均(x+3)米/秒的速度滑到B端,用了20秒.
(1)求x的值;
(2)设小勇从滑雪道A端滑到B端的平均速度为v米/秒,所用时间为t秒,请用含t的代数式表示v(不要求写出t的取值范围).
五.根与系数的关系(共1小题)
6.(2021•永州)若x1,x2是关于x的一元二次方程ax2+bx+c=0的两个根,则x1+x2=﹣,x1•x2=.现已知一元二次方程px2+2x+q=0的两根分别为m,n.
(1)若m=2,n=﹣4,求p,q的值;
(2)若p=3,q=﹣1,求m+mn+n的值.
六.分式方程的应用(共2小题)
7.(2021•永州)永州市某村经济合作社在乡村振兴工作队的指导下,根据市场需求,计划在2022年将30亩土地全部用于种植A、B两种经济作物.预计B种经济作物亩产值比A种经济作物亩产值多2万元,为实现2022年A种经济作物年总产值20万元,B种经济作物年总产值30万元的目标,问:2022年A、B两种经济作物应各种植多少亩?
8.(2020•永州)某药店在今年3月份,购进了一批口罩,这批口罩包括有一次性医用外科口罩和N95口罩,且两种口罩的只数相同.其中购进一次性医用外科口罩花费1600元,N95口罩花费9600元.已知购进一次性医用外科口罩的单价比N95口罩的单价少10元.
(1)求该药店购进的一次性医用外科口罩和N95口罩的单价各是多少元?
(2)该药店计划再次购进两种口罩共2000只,预算购进的总费用不超过1万元,问至少购进一次性医用外科口罩多少只?
七.解一元一次不等式组(共1小题)
9.(2022•永州)解关于x的不等式组:.
八.二次函数与不等式(组)(共1小题)
10.(2021•永州)已知关于x的二次函数y1=x2+bx+c(实数b,c为常数).
(1)若二次函数的图象经过点(0,4),对称轴为x=1,求此二次函数的表达式;
(2)若b2﹣c=0,当b﹣3≤x≤b时,二次函数的最小值为21,求b的值;
(3)记关于x的二次函数y2=2x2+x+m,若在(1)的条件下,当0≤x≤1时,总有y2≥y1,求实数m的最小值.
九.二次函数综合题(共2小题)
11.(2022•永州)已知关于x的函数y=ax2+bx+c.
(1)若a=1,函数的图象经过点(1,﹣4)和点(2,1),求该函数的表达式和最小值;
(2)若a=1,b=﹣2,c=m+1时,函数的图象与x轴有交点,求m的取值范围.
(3)阅读下面材料:
设a>0,函数图象与x轴有两个不同的交点A,B,若A,B两点均在原点左侧,探究系数a,b,c应满足的条件,根据函数图象,思考以下三个方面:
①因为函数的图象与x轴有两个不同的交点,所以Δ=b2﹣4ac>0;
②因为A,B两点在原点左侧,所以x=0对应图象上的点在x轴上方,即c>0;
③上述两个条件还不能确保A,B两点均在原点左侧,我们可以通过抛物线的对称轴位置来进一步限制抛物线的位置:即需﹣<0.
综上所述,系数a,b,c应满足的条件可归纳为:
请根据上面阅读材料,类比解决下面问题:
若函数y=ax2﹣2x+3的图象在直线x=1的右侧与x轴有且只有一个交点,求a的取值范围.
12.(2020•永州)在平面直角坐标系xOy中,等腰直角△ABC的直角顶点C在y轴上,另两个顶点A,B在x轴上,且AB=4,抛物线经过A,B,C三点,如图1所示.
(1)求抛物线所表示的二次函数表达式.
(2)过原点任作直线l交抛物线于M,N两点,如图2所示.
①求△CMN面积的最小值.
②已知Q(1,﹣)是抛物线上一定点,问抛物线上是否存在点P,使得点P与点Q关于直线l对称,若存在,求出点P的坐标及直线l的一次函数表达式;若不存在,请说明理由.
一十.全等三角形的判定与性质(共1小题)
13.(2021•永州)如图,已知点A,D,C,B在同一条直线上,AD=BC,AE=BF,AE∥BF.
(1)求证:△AEC≌△BFD.
(2)判断四边形DECF的形状,并证明.
一十一.平行四边形的判定与性质(共1小题)
14.(2022•永州)如图,BD是平行四边形ABCD的对角线,BF平分∠DBC,交CD于点F.
(1)请用尺规作∠ADB的角平分线DE,交AB于点E(要求保留作图痕迹,不写作法);
(2)根据图形猜想四边形DEBF为平行四边形.
请将下面的证明过程补充完整.
证明:∵四边形ABCD是平行四边形,
∴AD∥BC.
∴∠ADB=∠ .(两直线平行,内错角相等).
又∵DE平分∠ADB,BF平分∠DBC,
∴∠EDB=∠ADB,∠DBF=∠DBC.
∴∠EDB=∠DBF.
∴DE∥ .( )(填推理的依据)
又∵四边形ABCD是平行四边形.
∴BE∥DF.
∴四边形DEBF为平行四边形( )(填推理的依据).
一十二.四边形综合题(共1小题)
15.(2020•永州)某校开展了一次综合实践活动,参加该活动的每个学生持有两张宽为6cm,长足够的矩形纸条.探究两张纸条叠放在一起,重叠部分的形状和面积.
如图1所示,一张纸条水平放置不动,另一张纸条与它成45°的角,将该纸条从右往左平移.
(1)写出在平移过程中,重叠部分可能出现的形状.
(2)当重叠部分的形状为如图2所示的四边形ABCD时,求证:四边形ABCD是菱形.
(3)设平移的距离为xcm(0<x≤6+6),两张纸条重叠部分的面积为scm2.求s与x的函数关系式,并求s的最大值.
一十三.圆的综合题(共2小题)
16.(2022•永州)如图,已知AB,CE是⊙O的直径,BM是⊙O的切线,点D在EA的延长线上,AC,OD交于点F,∠MBC=∠ACD.
(1)求证:∠MBC=∠BAC;
(2)求证:AE=AD;
(3)若△OFC的面积S1=4,求四边形AOCD的面积S.
17.(2021•永州)如图1,AB是⊙O的直径,点E是⊙O上一动点,且不与A,B两点重合,∠EAB的平分线交⊙O于点C,过点C作CD⊥AE,交AE的延长线于点D.
(1)求证:CD是⊙O的切线;
(2)求证:AC2=2AD•AO;
(3)如图2,原有条件不变,连接BE,BC,延长AB至点M,∠EBM的平分线交AC的延长线于点P,∠CAB的平分线交∠CBM的平分线于点Q.求证:无论点E如何运动,总有∠P=∠Q.
一十四.轴对称-最短路线问题(共1小题)
18.(2022•永州)为提高耕地灌溉效率,小明的爸妈准备在耕地A、B、C、D四个位置安装四个自动喷洒装置(如图1所示),A、B、C、D四点恰好在边长为50米的正方形的四个顶点上,为了用水管将四个自动喷洒装置相互连通,爸妈设计了如下两个水管铺设方案(各图中实线为铺设的水管).
方案一:如图2所示,沿正方形ABCD的三边铺设水管;
方案二:如图3所示,沿正方形ABCD的两条对角线铺设水管.
(1)请通过计算说明上述两方案中哪个方案铺设水管的总长度更短;
(2)小明看了爸妈的方案后,根据“蜂集原理”重新设计了一个方案(如图4所示).
满足∠AEB=∠CFD=120°,AE=BE=CF=DF,EF∥AD.请将小明的方案与爸妈的方案比较,判断谁的方案中铺设水管的总长度更短,并说明理由.(参考数据:≈1.4,≈1.7)
一十五.相似三角形的判定与性质(共1小题)
19.(2020•永州)如图,△ABC内接于⊙O,AB是⊙O的直径,BD与⊙O相切于点B,BD交AC的延长线于点D,E为BD的中点,连接CE.
(1)求证:CE是⊙O的切线.
(2)已知BD=3,CD=5,求O,E两点之间的距离.
一十六.解直角三角形的应用(共1小题)
20.(2021•永州)已知锐角△ABC中,角A、B、C的对边分别为a、b、c,边角总满足关系式:==.
(1)如图1,若a=6,∠B=45°,∠C=75°,求b的值;
(2)某公园准备在园内一个锐角三角形水池ABC中建一座小型景观桥CD(如图2所示),若CD⊥AB,AC=14米,AB=10米,sin∠ACB=,求景观桥CD的长度.
一十七.解直角三角形的应用-方向角问题(共1小题)
21.(2020•永州)一艘渔船从位于A海岛北偏东60°方向,距A海岛60海里的B处出发,以每小时30海里的速度沿正南方向航行.已知在A海岛周围50海里水域内有暗礁.(参考数据:≈1.73,≈2.24,≈2.65)
(1)这艘渔船在航行过程中是否有触礁的危险?请说明理由.
(2)渔船航行3小时后到达C处,求A,C之间的距离.
一十八.频数(率)分布直方图(共1小题)
22.(2021•永州)为庆祝中国共产党成立100周年,某校组织全校学生进行了一场党史知识竞赛活动,根据竞赛结果,抽取了200名学生的成绩(得分均为正整数,满分为100分,大于80分的为优秀)进行统计,绘制了如图所示尚不完整的统计图表.
200名学生党史知识竞赛成绩的频数表
组别
频数
频率
A组(60.5~70.5)
a
0.3
B组(70.5~80.5)
30
0.15
C组(80.5~90.5)
50
b
D组(90.5~100.5)
60
0.3
请结合图表解决下列问题:
(1)频数表中,a= ,b= ;
(2)请将频数分布直方图补充完整;
(3)抽取的200名学生中竞赛成绩的中位数落在的组别是 组;
(4)若该校共有1000名学生,请估计本次党史知识竞赛成绩为“优秀”的学生人数.
一十九.扇形统计图(共1小题)
23.(2022•永州)“风华中学”计划在劳动技术课中增设剪纸、陶艺,厨艺、刺绣、养殖等五类选择性“技能课程”,加大培养学生的劳动习惯和实践操作能力,为了解学生选择各“技能课程”的意向,从全校随机抽取了部分学生进行问卷调查,将调查结果整理并绘制如下不完整统计图表:
样本中选择各技能课程的人数统计表
技能课程
人数
A:剪纸
B:陶艺
20
C:厨艺
a
D:刺绣
20
E:养殖
请根据上述统计数据解决下列问题:
(1)扇形统计图中m= .
(2)所抽取样本的样本容量是 ,频数统计表中a= .
(3)若该校有2000名学生,请你估计全校有意向选择“养殖”技能课程的人数.
二十.列表法与树状图法(共1小题)
24.(2020•永州)今年6月份,永州市某中学开展“六城同创”知识竞赛活动.赛后,随机抽取了部分参赛学生的成绩,按得分划为A,B,C,D四个等级,A:90<S≤100,B:80<S≤90,C:70<S≤80,D:S≤70.并绘制了如图两幅不完整的统计图,请结合图中所给信息,解答下列问题:
(1)请把条形统计图补充完整.
(2)扇形统计图中m= ,n= ,B等级所占扇形的圆心角度数为 .
(3)该校准备从上述获得A等级的四名学生中选取两人参加永州市举行的“六城同创”知识竞赛,已知这四人中有两名男生(用A1,A2表示),两名女生(用B1,B2表示),请利用树状图法或列表法,求恰好抽到1名男生和1名女生的概率.
参考答案与试题解析
一.实数的运算(共1小题)
1.(2020•永州)计算:20200+sin30°﹣()﹣1.
【解答】解:原式=1+2×﹣2
=1+1﹣2
=0.
二.整式的混合运算—化简求值(共1小题)
2.(2021•永州)先化简,再求值:(x+1)2+(2+x)(2﹣x),其中x=1.
【解答】解:(x+1)2+(2+x)(2﹣x)
=x2+2x+1+4﹣x2
=2x+5,
当x=1时,原式=2+5=7.
三.分式的化简求值(共2小题)
3.(2022•永州)先化简,再求值:÷(﹣)其中x=+1.
【解答】解:原式=÷
=•
=x﹣1,
当x=+1时,
原式=+1﹣1
=.
4.(2020•永州)先化简,再求值:(﹣•)•(a+2),其中a=2.
【解答】解:原式=[﹣•]•(a+2)
=[﹣]•(a+2)
=﹣
=,
当a=2时,
原式==1.
四.一元一次方程的应用(共1小题)
5.(2022•永州)受第24届北京冬季奥林匹克运动会的影响,小勇爱上了雪上运动.一天,小勇在滑雪场训练滑雪,第一次他从滑雪道A端以平均(x+2)米/秒的速度滑到B端,用了24秒;第二次从滑雪道A端以平均(x+3)米/秒的速度滑到B端,用了20秒.
(1)求x的值;
(2)设小勇从滑雪道A端滑到B端的平均速度为v米/秒,所用时间为t秒,请用含t的代数式表示v(不要求写出t的取值范围).
【解答】解:(1)由题意得:24(x+2)=20(x+3),
解得:x=3,
答:x的值为3;
(2)从滑雪道A端滑到B端的路程为:24×(3+2)=120(米),
∵小勇从滑雪道A端滑到B端的平均速度为v米/秒,所用时间为t秒,
∴v=.
五.根与系数的关系(共1小题)
6.(2021•永州)若x1,x2是关于x的一元二次方程ax2+bx+c=0的两个根,则x1+x2=﹣,x1•x2=.现已知一元二次方程px2+2x+q=0的两根分别为m,n.
(1)若m=2,n=﹣4,求p,q的值;
(2)若p=3,q=﹣1,求m+mn+n的值.
【解答】解:(1)根据题意得2﹣4=﹣,2×(﹣4)=,
所以p=1,q=﹣8;
(2)根据m+n=﹣=﹣,mn=﹣,
所以m+mn+n=m+n+mn=﹣﹣=﹣1.
六.分式方程的应用(共2小题)
7.(2021•永州)永州市某村经济合作社在乡村振兴工作队的指导下,根据市场需求,计划在2022年将30亩土地全部用于种植A、B两种经济作物.预计B种经济作物亩产值比A种经济作物亩产值多2万元,为实现2022年A种经济作物年总产值20万元,B种经济作物年总产值30万元的目标,问:2022年A、B两种经济作物应各种植多少亩?
【解答】解:设2022年A种经济作物应种植x亩,则B种经济作物应种植(30﹣x)亩,
根据题意,得+2=.
解得x=20或x=﹣15(舍去).
经检验x=20是原方程的解,且符合题意.
所以30﹣x=10.
答:2022年A种经济作物应种植20亩,则B种经济作物应种植10亩.
8.(2020•永州)某药店在今年3月份,购进了一批口罩,这批口罩包括有一次性医用外科口罩和N95口罩,且两种口罩的只数相同.其中购进一次性医用外科口罩花费1600元,N95口罩花费9600元.已知购进一次性医用外科口罩的单价比N95口罩的单价少10元.
(1)求该药店购进的一次性医用外科口罩和N95口罩的单价各是多少元?
(2)该药店计划再次购进两种口罩共2000只,预算购进的总费用不超过1万元,问至少购进一次性医用外科口罩多少只?
【解答】解:(1)设一次性医用外科口罩的单价是x元,则N95口罩的单价是(x+10)元,依题意有
=,
解得x=2,
经检验,x=2是原方程的解,
x+10=2+10=12.
故一次性医用外科口罩的单价是2元,N95口罩的单价是12元;
(2)设购进一次性医用外科口罩y只,依题意有
2y+12(2000﹣y)≤10000,
解得y≥1400.
故至少购进一次性医用外科口罩1400只.
七.解一元一次不等式组(共1小题)
9.(2022•永州)解关于x的不等式组:.
【解答】解:
解不等式①得:x>3,
解不等式②得:x>4,
则不等式组的解集为x>4.
八.二次函数与不等式(组)(共1小题)
10.(2021•永州)已知关于x的二次函数y1=x2+bx+c(实数b,c为常数).
(1)若二次函数的图象经过点(0,4),对称轴为x=1,求此二次函数的表达式;
(2)若b2﹣c=0,当b﹣3≤x≤b时,二次函数的最小值为21,求b的值;
(3)记关于x的二次函数y2=2x2+x+m,若在(1)的条件下,当0≤x≤1时,总有y2≥y1,求实数m的最小值.
【解答】解:(1)∵二次函数的图象经过点(0,4),
∴c=4;
∵对称轴为直线:x=﹣=1,
∴b=﹣2,
∴此二次函数的表达式为:y1=x2﹣2x+4.
(2)当b2﹣c=0时,b2=c,此时函数的表达式为:y1=x2+bx+b2,
根据题意可知,需要分三种情况:
①当b<﹣,即b<0时,二次函数的最小值在x=b处取到;
∴b2+b2+b2=21,解得b1=﹣,b2=(舍去);
②b﹣3>﹣,即b>2时,二次函数的最小值在x=b﹣3处取到;
∴(b﹣3)2+b(b﹣3)+b2=21,解得b3=4,b4=﹣1(舍去);
③b﹣3≤﹣≤b,即0≤b≤2时,二次函数的最小值在x=﹣处取到;
∴(﹣)2+b•(﹣)+b2=21,解得b=±2(舍去).
综上所述,b的值为﹣或4.
(3)由(1)知,二次函数的表达式为:y1=x2﹣2x+4,
设函数y3=y2﹣y1=x2+3x+m﹣4,
对称轴为直线x=﹣<0,
∴当0≤x≤1时,y3随x的增大而增大,
∴当x=0时,y3即y2﹣y1有最小值m﹣4,
∴m﹣4≥0,
∴m≥4,即m的最小值为4.
九.二次函数综合题(共2小题)
11.(2022•永州)已知关于x的函数y=ax2+bx+c.
(1)若a=1,函数的图象经过点(1,﹣4)和点(2,1),求该函数的表达式和最小值;
(2)若a=1,b=﹣2,c=m+1时,函数的图象与x轴有交点,求m的取值范围.
(3)阅读下面材料:
设a>0,函数图象与x轴有两个不同的交点A,B,若A,B两点均在原点左侧,探究系数a,b,c应满足的条件,根据函数图象,思考以下三个方面:
①因为函数的图象与x轴有两个不同的交点,所以Δ=b2﹣4ac>0;
②因为A,B两点在原点左侧,所以x=0对应图象上的点在x轴上方,即c>0;
③上述两个条件还不能确保A,B两点均在原点左侧,我们可以通过抛物线的对称轴位置来进一步限制抛物线的位置:即需﹣<0.
综上所述,系数a,b,c应满足的条件可归纳为:
请根据上面阅读材料,类比解决下面问题:
若函数y=ax2﹣2x+3的图象在直线x=1的右侧与x轴有且只有一个交点,求a的取值范围.
【解答】解:(1)根据题意得,
解得,
∴y=x2+2x﹣7=(x+1)2﹣8,
∴该函数的表达式为y=x2+2x﹣7或y=(x+1)2﹣8,
当x=1时,y的最小值为0;
(2)根据题意得y=x2﹣2x+m+1,
∵函数的图象与x轴有交点,
∴Δ=b2﹣4ac=(﹣2)2﹣4(m+1)≥0,
解得:m≤0;
(3)根据题意得到y=ax2﹣2x+3的图象如图所示,
如图1,
,即,
∴a的值不存在;
如图2,
,解得﹣1<a<0.
如图3,
,即,
∴a的值不存在;
如图4,
,即
∴a的值不存在;
如图5,
,即,
∴a的值为;
如图6,
当a=0时,函数解析式为y=﹣2x+3,函数与x轴的交点为(1.5,0),
∴a=0成立;
综上所述,a的取值范围为﹣1<a≤0或a=.
12.(2020•永州)在平面直角坐标系xOy中,等腰直角△ABC的直角顶点C在y轴上,另两个顶点A,B在x轴上,且AB=4,抛物线经过A,B,C三点,如图1所示.
(1)求抛物线所表示的二次函数表达式.
(2)过原点任作直线l交抛物线于M,N两点,如图2所示.
①求△CMN面积的最小值.
②已知Q(1,﹣)是抛物线上一定点,问抛物线上是否存在点P,使得点P与点Q关于直线l对称,若存在,求出点P的坐标及直线l的一次函数表达式;若不存在,请说明理由.
【解答】解:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),
在等腰Rt△ABC中,OC垂直平分AB,且AB=4,
∴OA=OB=OC=2,
∴A(﹣2,0),B(2,0),C(0,﹣2),
∴,
解得,,
∴抛物线的解析式为y=﹣2;
(2)①设直线l的解析式为y=kx,M(x1,y1),N(x2,y2),
由,可得,
∴x1+x2=2k,x1•x2=﹣4,
∴,
∴,
∴,
∴当k=0时2取最小值为4.
∴△CMN面积的最小值为4.
②假设抛物线上存在点P(m,﹣2),使得点P与点Q关于直线l对称,
∴OP=OQ,即,
解得,,,m3=1,m4=﹣1,
∵m3=1,m4=﹣1不合题意,舍去,
当时,点P(),
线段PQ的中点为(),
∴,
∴,
∴直线l的表达式为:y=(1﹣)x,
当时,点P(﹣,﹣),
线段PQ的中点为(,﹣1),
∴,
∴,
∴直线l的解析式为y=(1+)x.
综上,点P(,﹣),直线l的解析式为y=(1﹣)x或点P(﹣,﹣),直线l的解析式为y=(1+)x.
一十.全等三角形的判定与性质(共1小题)
13.(2021•永州)如图,已知点A,D,C,B在同一条直线上,AD=BC,AE=BF,AE∥BF.
(1)求证:△AEC≌△BFD.
(2)判断四边形DECF的形状,并证明.
【解答】(1)证明:∵AD=BC,
∴AD+DC=BC+DC,
∴AC=BD,
∵AE∥BF,
∴∠A=∠B,
在△AEC和△BFD中,
,
∴△AEC≌△BFD(SAS).
(2)四边形DECF是平行四边形,
证明:∵△AEC≌△BFD,
∴∠ACE=∠BDF,CE=DF,
∴CE∥DF,
∴四边形DECF是平行四边形.
一十一.平行四边形的判定与性质(共1小题)
14.(2022•永州)如图,BD是平行四边形ABCD的对角线,BF平分∠DBC,交CD于点F.
(1)请用尺规作∠ADB的角平分线DE,交AB于点E(要求保留作图痕迹,不写作法);
(2)根据图形猜想四边形DEBF为平行四边形.
请将下面的证明过程补充完整.
证明:∵四边形ABCD是平行四边形,
∴AD∥BC.
∴∠ADB=∠ DBC .(两直线平行,内错角相等).
又∵DE平分∠ADB,BF平分∠DBC,
∴∠EDB=∠ADB,∠DBF=∠DBC.
∴∠EDB=∠DBF.
∴DE∥ BF .( 内错角相等,两直线平行 )(填推理的依据)
又∵四边形ABCD是平行四边形.
∴BE∥DF.
∴四边形DEBF为平行四边形( 两组对边分别平行的四边形是平行四边形 )(填推理的依据).
【解答】解:(1)作图如下:
DE即为所求;
(2)证明:∵四边形ABCD是平行四边形,
∴AD∥BC.
∴∠ADB=∠DBC.(两直线平行,内错角相等).
又∵DE平分∠ADB,BF平分∠DBC,
∴∠EDB=∠ADB,∠DBF=∠DBC.
∴∠EDB=∠DBF.
∴DE∥BF.(内错角相等,两直线平行)(填推理的依据),
又∵四边形ABCD是平行四边形.
∴BE∥DF.
∴四边形DEBF为平行四边形(两组对边分别平行的四边形是平行四边形)(填推理的依据).
故答案为:DBC,BF,内错角相等,两直线平行,两组对边分别平行的四边形是平行四边形.
一十二.四边形综合题(共1小题)
15.(2020•永州)某校开展了一次综合实践活动,参加该活动的每个学生持有两张宽为6cm,长足够的矩形纸条.探究两张纸条叠放在一起,重叠部分的形状和面积.
如图1所示,一张纸条水平放置不动,另一张纸条与它成45°的角,将该纸条从右往左平移.
(1)写出在平移过程中,重叠部分可能出现的形状.
(2)当重叠部分的形状为如图2所示的四边形ABCD时,求证:四边形ABCD是菱形.
(3)设平移的距离为xcm(0<x≤6+6),两张纸条重叠部分的面积为scm2.求s与x的函数关系式,并求s的最大值.
【解答】解:(1)在平移过程中,重叠部分的形状分别为:三角形,梯形,菱形,五边形.如下图所示,
(2)分别过B,D作BE⊥CD于点E,DF⊥CB于点F,如图,
∴∠BEC=∠DFC=90°,
∵两纸条等宽,
∴BE=DF=6,
∵∠BCE=∠DCF=45°,
∴BC=CD=6,
∵两纸条都是矩形,
∴AB∥CD,BC∥AD,
∴四边形ABCD是平行四边形,
又BC=DC,
∴四边形ABCD是菱形;
(3)①当0<x≤6时,重叠部分为三角形,如图所求,
∴s=,
∵0<x≤6,
∴当x=6时,s取最大值为s=18;
②当6<x≤6时,重叠部分为梯形,如图所求,梯形的下底为xcm,上底为(x﹣6)cm,
∴s=(x+x﹣6)×6=6x﹣18,
当x=6时,s取最大值为(36﹣18);
③当6<x<6+6时,重叠部分为五边形,如图所求,
∴s五边形=s菱形﹣s三角形==,
此时,36;
④当x=6+6时,重叠部分为菱形,如图所求,
∴,
综上,s与x函数关系为:
.
s的最大值为36.
一十三.圆的综合题(共2小题)
16.(2022•永州)如图,已知AB,CE是⊙O的直径,BM是⊙O的切线,点D在EA的延长线上,AC,OD交于点F,∠MBC=∠ACD.
(1)求证:∠MBC=∠BAC;
(2)求证:AE=AD;
(3)若△OFC的面积S1=4,求四边形AOCD的面积S.
【解答】(1)证明:∵BM是⊙O的切线,
∴AB⊥BM,
∴∠ABC+∠MBC=90°,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠ABC+∠BAC=90°,
∴∠MBC=∠BAC;
(2)证明:∵AO=OC,
∴∠BAC=∠ACE,
∵∠MBC=∠ACD,∠MBC=∠BAC,
∴∠ACD=∠ACE,
∵CE是⊙O的直径,
∴∠EAC=∠DAC=90°,
∵AC=AC,
∴△AEC≌△ADC(ASA),
∴AE=AD;
(3)解:∵∠BAC=∠ACD,
∴AB∥DC,
∴,
∴,
∴,
∵AO∥DC,
∴△AOF∽△CDF,
∴,
∵△OFC的面积S1=4,
∴S△AOF=2,S△ADF=S△OCF=4,S△CDF=8,
∴S四边形AOCD=S△AOF+S△ADF+S△CDF+S△COF=2+4+8+4=18.
17.(2021•永州)如图1,AB是⊙O的直径,点E是⊙O上一动点,且不与A,B两点重合,∠EAB的平分线交⊙O于点C,过点C作CD⊥AE,交AE的延长线于点D.
(1)求证:CD是⊙O的切线;
(2)求证:AC2=2AD•AO;
(3)如图2,原有条件不变,连接BE,BC,延长AB至点M,∠EBM的平分线交AC的延长线于点P,∠CAB的平分线交∠CBM的平分线于点Q.求证:无论点E如何运动,总有∠P=∠Q.
【解答】证明:(1)连接OC,
∵OA=OC,
∴∠OAC=∠OCA,
∴∠BOC=2∠OAC,
∵AC平分∠BAE,
∴∠BAE=2∠OAC,
∴∠BAE=∠BOC,
∴CO∥AD,
∵CD⊥AE,
∴∠D=90°,
∴∠DCO=90°,
∴OC⊥CD,
∴CD是⊙O的切线.
(2)连接BC,
∵AC平分∠BAE,
∴∠BAC=∠CAD,
∵AB是⊙O的直径,
∴∠BCA=90°,
∵∠D=90°,
∴∠D=∠BCA,
∴△BAC∽△CAD,
∴,
∴AC2=AB•AD,
∵AB=2AO,
∴AC2=2AD•AO.
(3)∵∠CAB、∠CBM的角平分线交于点Q,
∴∠QAM=∠CAB,∠QBM=∠CBM,
∵∠QBM是△QAB的一个外角,∠CBM是△ABC的一个外角,
∴∠Q=∠QBM﹣∠QAM=(∠CBM﹣∠CAM),
∵∠ACB=∠CBM﹣∠CAM,
∴∠Q=∠ACB,
∵∠ACB=90°,
∴∠Q=45°,
同理可证:∠P===45°,
∴∠P=∠Q.
一十四.轴对称-最短路线问题(共1小题)
18.(2022•永州)为提高耕地灌溉效率,小明的爸妈准备在耕地A、B、C、D四个位置安装四个自动喷洒装置(如图1所示),A、B、C、D四点恰好在边长为50米的正方形的四个顶点上,为了用水管将四个自动喷洒装置相互连通,爸妈设计了如下两个水管铺设方案(各图中实线为铺设的水管).
方案一:如图2所示,沿正方形ABCD的三边铺设水管;
方案二:如图3所示,沿正方形ABCD的两条对角线铺设水管.
(1)请通过计算说明上述两方案中哪个方案铺设水管的总长度更短;
(2)小明看了爸妈的方案后,根据“蜂集原理”重新设计了一个方案(如图4所示).
满足∠AEB=∠CFD=120°,AE=BE=CF=DF,EF∥AD.请将小明的方案与爸妈的方案比较,判断谁的方案中铺设水管的总长度更短,并说明理由.(参考数据:≈1.4,≈1.7)
【解答】解:(1)方案一:铺设水管的总长度为50×3=150(米),
方案二:铺设水管的总长度为2=100≈140(米),
∵140<150,
∴方案二铺设水管的总长度更短;
(2)小明的方案中铺设水管的总长度最短,理由如下:
如图:
∵AE=BE,GE⊥AB,
∴AG=BG=AB=25米,∠AEG=∠BEG=∠AEB=60°,
同理DH=CH=25米,∠DFH=∠CFH=60°,
在Rt△AEG中,
GE==(米),AE==(米),
同理FH=米,BE=CF=DF=AE=米
∴EF=GH﹣GE﹣FH=(50﹣)米,
∴方案中铺设水管的总长度为×4+50﹣=50+50≈135(米),
∵135<140<150,
∴小明的方案中铺设水管的总长度最短.
一十五.相似三角形的判定与性质(共1小题)
19.(2020•永州)如图,△ABC内接于⊙O,AB是⊙O的直径,BD与⊙O相切于点B,BD交AC的延长线于点D,E为BD的中点,连接CE.
(1)求证:CE是⊙O的切线.
(2)已知BD=3,CD=5,求O,E两点之间的距离.
【解答】证明:(1)如图,连接OC,
∵OB=OC,
∴∠OBC=∠OCB,
∵AB是直径,
∴∠ACB=90°,
∵E为BD的中点,
∴BE=CE=DE,
∴∠ECB=∠EBC,
∵BD与⊙O相切于点B,
∴∠ABD=90°,
∴∠OBC+∠EBC=90°,
∴∠OCB+∠ECB=90°,
∴∠OCE=90°
∴OC⊥CE,
又∵OC为半径,
∴CE是⊙O的切线;
(2)连接OE,
∵∠D=∠D,∠BCD=∠ABD,
∴△BCD∽△ABD,
∴,
∴BD2=AD•CD,
∴(3)2=5AD,
∴AD=9,
∵E为BD的中点,AO=BO,
∴OE=AD=,
∴O,E两点之间的距离为.
一十六.解直角三角形的应用(共1小题)
20.(2021•永州)已知锐角△ABC中,角A、B、C的对边分别为a、b、c,边角总满足关系式:==.
(1)如图1,若a=6,∠B=45°,∠C=75°,求b的值;
(2)某公园准备在园内一个锐角三角形水池ABC中建一座小型景观桥CD(如图2所示),若CD⊥AB,AC=14米,AB=10米,sin∠ACB=,求景观桥CD的长度.
【解答】解:(1)∵∠B=45°,∠C=75°,
∴∠A=180°﹣∠B﹣∠C=60°,
∵==,
∴=,
∴b=2;
(2)∵=,
∴=,
∴sinB=,
∴∠B=60°,
∴tanB==,
∴BD=CD,
∵AC2=CD2+AD2,
∴196=CD2+(10﹣CD)2,
∴CD=8,CD=﹣3(舍去),
∴CD的长度为8米.
一十七.解直角三角形的应用-方向角问题(共1小题)
21.(2020•永州)一艘渔船从位于A海岛北偏东60°方向,距A海岛60海里的B处出发,以每小时30海里的速度沿正南方向航行.已知在A海岛周围50海里水域内有暗礁.(参考数据:≈1.73,≈2.24,≈2.65)
(1)这艘渔船在航行过程中是否有触礁的危险?请说明理由.
(2)渔船航行3小时后到达C处,求A,C之间的距离.
【解答】解:(1)这艘渔船在航行过程中没有触礁的危险,理由如下:
过A作AD⊥BC于D,如图:
则∠ADB=∠ADC=90°,
由题意得:AB=60(海里),∠BAD=90°﹣60°=30°,
∴BD=AB=30(海里),AD=BD=30≈51.9(海里)>50(海里),
∴这艘渔船在航行过程中没有触礁的危险;
(2)由(1)得:BD=30(海里),AD=30(海里),
∵BC=3×30=90(海里),
∴DC=BC﹣BD=90﹣30=60(海里),
在Rt△ADC中,AC===30≈79.50(海里);
答:A,C之间的距离约为79.50海里.
一十八.频数(率)分布直方图(共1小题)
22.(2021•永州)为庆祝中国共产党成立100周年,某校组织全校学生进行了一场党史知识竞赛活动,根据竞赛结果,抽取了200名学生的成绩(得分均为正整数,满分为100分,大于80分的为优秀)进行统计,绘制了如图所示尚不完整的统计图表.
200名学生党史知识竞赛成绩的频数表
组别
频数
频率
A组(60.5~70.5)
a
0.3
B组(70.5~80.5)
30
0.15
C组(80.5~90.5)
50
b
D组(90.5~100.5)
60
0.3
请结合图表解决下列问题:
(1)频数表中,a= 60 ,b= 0.25 ;
(2)请将频数分布直方图补充完整;
(3)抽取的200名学生中竞赛成绩的中位数落在的组别是 C 组;
(4)若该校共有1000名学生,请估计本次党史知识竞赛成绩为“优秀”的学生人数.
【解答】解:(1)∵30÷0.15=200,
∴a=200×0.3=60,
b=50÷200=0.25,
故答案为:60,0.25;
(2)由(1)知,a=60,
如图,即为补全的频数分布直方图;
(3)抽取的200名学生中竞赛成绩的中位数落在的组别是C组;
故答案为:C;
(4)1000×(0.25+0.3)=1000×0.55=550(人),
即本次党史知识竞赛成绩为“优秀”的学生人数有550人.
一十九.扇形统计图(共1小题)
23.(2022•永州)“风华中学”计划在劳动技术课中增设剪纸、陶艺,厨艺、刺绣、养殖等五类选择性“技能课程”,加大培养学生的劳动习惯和实践操作能力,为了解学生选择各“技能课程”的意向,从全校随机抽取了部分学生进行问卷调查,将调查结果整理并绘制如下不完整统计图表:
样本中选择各技能课程的人数统计表
技能课程
人数
A:剪纸
B:陶艺
20
C:厨艺
a
D:刺绣
20
E:养殖
请根据上述统计数据解决下列问题:
(1)扇形统计图中m= 20 .
(2)所抽取样本的样本容量是 200 ,频数统计表中a= 50 .
(3)若该校有2000名学生,请你估计全校有意向选择“养殖”技能课程的人数.
【解答】解:(1)m%=1﹣35%﹣10%﹣25%﹣10%=20%,
∴m=20,
故答案为:20;
(2)所抽取样本的样本容量是20÷10%=200,
a=200×25%=50,
故答案为:200,50;
(3)2000×20=400(人),
答:估计全校有意向选择“养殖”技能课程的有400人.
二十.列表法与树状图法(共1小题)
24.(2020•永州)今年6月份,永州市某中学开展“六城同创”知识竞赛活动.赛后,随机抽取了部分参赛学生的成绩,按得分划为A,B,C,D四个等级,A:90<S≤100,B:80<S≤90,C:70<S≤80,D:S≤70.并绘制了如图两幅不完整的统计图,请结合图中所给信息,解答下列问题:
(1)请把条形统计图补充完整.
(2)扇形统计图中m= 15 ,n= 5 ,B等级所占扇形的圆心角度数为 252° .
(3)该校准备从上述获得A等级的四名学生中选取两人参加永州市举行的“六城同创”知识竞赛,已知这四人中有两名男生(用A1,A2表示),两名女生(用B1,B2表示),请利用树状图法或列表法,求恰好抽到1名男生和1名女生的概率.
【解答】解:(1)∵被调查的总人数为4÷10%=40(人),
∴C等级人数为40﹣(4+28+2)=6(人),
补全图形如下:
(2)m%=×100%=15%,即m=15,
n%=×100%=5%,即n=5;
B等级所占扇形的圆心角度数为360°×70%=252°,
故答案为:15,5,252°;
(3)画树状图如下:
共有12种等可能的结果,恰好抽到1名男生和1名女生的有8种结果,
∴恰好抽到1名男生和1名女生的概率为=.
相关试卷
这是一份湖南省娄底市三年(2020-2022)中考数学真题分类汇编-03解答题,共39页。试卷主要包含了﹣1+|1﹣|﹣2sin60°,﹣1,﹣1﹣2cs45°等内容,欢迎下载使用。
这是一份湖南省岳阳市三年(2020-2022)中考数学真题分类汇编-03解答题,共40页。试卷主要包含了0+|﹣|,+1的值,,B两点等内容,欢迎下载使用。
这是一份湖南省邵阳市三年(2020-2022)中考数学真题分类汇编-03解答题,共35页。试卷主要包含了﹣2﹣2sin60°,0﹣|﹣2|﹣tan60°,已知,在抛物线上等内容,欢迎下载使用。