|试卷下载
搜索
    上传资料 赚现金
    苏科版初中数学八年级上册第二章《轴对称图形》单元测试卷(困难)(含答案解析)
    立即下载
    加入资料篮
    苏科版初中数学八年级上册第二章《轴对称图形》单元测试卷(困难)(含答案解析)01
    苏科版初中数学八年级上册第二章《轴对称图形》单元测试卷(困难)(含答案解析)02
    苏科版初中数学八年级上册第二章《轴对称图形》单元测试卷(困难)(含答案解析)03
    还剩23页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学第二章 轴对称图形综合与测试单元测试当堂检测题

    展开
    这是一份初中数学第二章 轴对称图形综合与测试单元测试当堂检测题,共26页。试卷主要包含了0分),【答案】B,【答案】A,【答案】C等内容,欢迎下载使用。

    苏科版初中数学八年级上册第二章《轴对称图形》单元测试卷

    考试范围:第二章;考试时间:120分钟;总分120分

    学校:___________姓名:___________班级:___________考号:___________

    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上,写在试卷上无效。
    3.考试结束后,本试卷和答题卡一并交回。

     

     

    I卷(选择题)

     

    一、选择题(本大题共12小题,共36.0分)

    1. 下列图形:

      其中轴对称图形的个数是(    )

    A.  B.  C.  D.

    1. 如图,在中,边上的一个动点不与重合,连接,则的最小值是(    )


    A.  B.  C.  D.

    1. 下列图形中,对称轴的总条数是:(    )
       

    A.  B.  C.  D.

    1. 如图,在中,,以为圆心,为半径的圆上有一动点,连接,则的最小值为(    )


     

    A.  B.  C.  D.

    1. 一个多边形纸片剪去一个内角后,得到一个内角和为的新多边形,则原多边形的边数为(    )

    A.  B.  C.  D.

    1. 如图,中,,点上一动点,,在点的运动过程中,线段的最小值为(    )

    A.
    B.
    C.
    D.

    1. 如图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用个这样的图形拼出来的图形的总长度是(    )


    A.  B.  C.  D.

    1. 如图,在的正方形网格中,选取个格点,以其中的三个格点为顶点画,请你以选取的格点为顶点再画出一个,使成轴对称,满足这样条件的点(    )


     

    A.  B.  C.  D.

    1. 如图,在中,边的垂直平分线,分别与边和边交于点和点边的垂直平分线,分别与边和边交于点和点,又的周长为,且,则的长为(    )

    A.  B.  C.  D.

    1. 的三条边距离相等的点是(    )

    A. 三条中线交点 B. 三条角平分线交点
    C. 三条高的交点 D. 三条边的垂直平分线交点

    1. 下列命题中,正确的是(    )

    A. 等腰三角形顶角的外角平分线与底边平行
    B. 等腰三角形的高线、中线、角平分线互相重合
    C. 顶角相等的两个等腰三角形全等
    D. 等腰三角形的一边不可以是另一边的

    1. 如图,在中,分别为边上的点,相交于点,则下列结论:连接,则所在的直线为的对称轴:,则四边形的面积与的面积相等.其中正确的是(    )


     

    A.  B.  C.  D.

    II卷(非选择题)

     

    二、填空题(本大题共4小题,共12.0分)

    1. 学剪五角星:先将一张长方形纸片按图所示的虚线对折,得到图,然后将图沿虚线折叠得到图,再将图沿剪下,展开即可得到一个五角星如图如果想得到一个正五角星,那么在图中剪下时,应使的度数为      


    1. 的方格中有五个同样大小的正方形按图示位置摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形.这样的移法共有_______种.


     

    1. 如图,在中,平分,则_________


     

    1. 如图,中,,点边上一点.点为线段上一点,且,则的长为______


     

     

    三、解答题(本大题共9小题,共72.0分)

    1. 同一平面内,我们把正多边形任意边的两顶点都构成等腰三角形的点称为这个正多边形的幸运点,把正边形幸运点的个数记作小明同学在学习了轴对称这一章之后,发现正多边形都是轴对称图形,决定运用轴对称的知识探究一下,请与小明同学一起完成下面的探究

      如图,在正五边形中,点是其对称点的交点,显然是这个正五边形的一个幸运点,______度,在对称轴交于上另一点与点之间也是一个幸运点,则______度,______
      如图为正方形的对称轴
      请在直线画出这个正方形的幸运点
      ______
      ______
    2. 如图,四边形为长方形的台球桌面,现有一白球和一彩球,在图中的边上找一点,当击打白球时,使白球碰撞台边上的点,反弹后能击中彩球

       


    1. 如图,已知是平面直角坐标系中的三点.
      请画出关于轴对称的
      画出向下平移个单位得到的
      中有一点坐标为,请直接写出经过以上变换后中点的对应点的坐标.


    1. 如图,在平面直角坐标系中有两点,请在轴上找一点,将沿翻折,使点的对应点恰好落在轴上.

       

    利用无刻度的直尺和圆规在图中找出所有符合条件的点不写作法,保留作图痕迹

    若点的坐标为,点的坐标为,请求出点的坐标.

    1. 如图,在平面直角坐标系中,的顶点均在正方形网格的格点上.
      画出关于轴的对称图形
      沿轴方向向左平移个单位、再沿轴向下平移个单位后得到,写出顶点的坐标.


    1. 如图,点的内部,点分别是点关于直线的对称点,线段分别交于点
       

    ,求的周长

    ,求的度数.

    1. 如图,在四边形中,的中点,连接,延长的延长线于点已知

    求证:

    的长.

    1. 如图相交于点,连接
      求证:
      用含的式子表示的度数直接写出结果
      时,取的中点分别为点,连接,如图,判断的形状,并加以证明.
       


    1. 已知均为等腰直角三角形,且,点在直线上.
      如图,当点延长线上时,求证:
      如图,当点不在直线上时,相交于
      直接写出的度数;
      求证:平分
       



    答案和解析

     

    1.【答案】 

    【解析】解:是轴对称图形;
    是轴对称图形;
    不是轴对称图形;
    是轴对称图形;
    故选:
    根据图形对称的定义判定就行.
    考查轴对称图形的定义,关键要理解轴对称图形的定义.
     

    2.【答案】 

    【解析】解:以为顶点,为一边,在下方作,过,交,如图:

    由作图可知:是等腰直角三角形,


    取最小值即是取最小值,此时共线,且的最小值即是的长,



    的最小值是
    故选:
    为顶点,为一边,在下方作,过,交,由是等腰直角三角形的,即,故取最小值即是取最小值,此时共线,且的最小值即是的长,根据,可得,即可得答案.
    本题考查三角形中的最小路径,解题的关键是作辅助线,把的最小值转化为求的最小值.
     

    3.【答案】 

    【解析】

    【分析】
    本题主要考查的知识点是轴对称图形,顺利的找出所有图形的对称轴条数是解题的关键,首先将四个图形的对称轴条数分别找出,再将对称轴条数的和找出即可得到答案.
    【解答】
    解:第一个图形有条对称轴,第二个图形有条对称轴,第三个图形没有对称轴,第四个图形没有对称轴,
    对称轴条数之和为
    故选C  

    4.【答案】 

    【解析】解:在上截取,使得,连接










    中,


    的最小值为
    故选:
    上截取,使得,连接利用相似三角形的性质证明,推出,利用勾股定理求出即可解决问题.
    本题考查相似三角形的判定和性质,两点之间线段最短,勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考填空题中的压轴题.
     

    5.【答案】 

    【解析】解:设原多边形是边形,分三种情况:
    由多边形内角和公式得,
    若剪后为边形,

    解得
    若剪后为边形,

    解得
    若剪后为边形,

    解得
    综上所述,原多边形的边数为
    故选:
    设原多边形是边形,分三种情况:若剪后为边形,若剪后为边形,若剪后为边形,根据多边形内角和公式,可得答案.
    本题考查了剪纸问题,多边形内角与外角,多边形的内角和公式是解题关键.
     

    6.【答案】 

    【解析】解:如图:






    四点共圆,且直径为
    时,的值最小四边形四点共圆,是直径,是定值,故直径最小时,所对的弦最小
    中,
    是等腰直角三角形,





    ,则
    的中点,连接,则


    ,则

    由勾股定理得:

    ,即线段的最小值为
    故选:
    时,线段的值最小,利用四点共圆的判定可得:四点共圆,且直径为,得出,从而可得,设,表示出的长,代入比例式中,可求出的值.
    本题考查了四点共圆,相似三角形的判定和性质,勾股定理,等腰直角三角形的判定和性质,解直角三角形,正确的判断当时,线段的值最小是解题的关键.
     

    7.【答案】 

    【解析】分析
    本题主要考查了利用轴对称设计图案,利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.
    方法:用个这样的图形的总长减去拼接时的重叠部分,即可得到拼出来的图形的总长度.
    方法:口朝上的有个,长度之和是,口朝下的有四个,长度为,即可得出结论.
    详解
    解:方法:如图,由图可得,拼出来的图形的总长度
    故答案为:
    方法小明用个这样的图形拼出来的图形
    口朝上的有个,口朝下的有四个,
    而口朝上的有个,长度之和是,口朝下的有四个,长度为
    即:总长度为
    故选A
     

    8.【答案】 

    【解析】

    【分析】
    此题考查了轴对称变换及利用轴对称进行设计,根据网格结构找出对应点的位置是解题关键,画出图形即可得到答案.
    【解答】
    解:如图所示,使成轴对称,满足这样条件的点个,

    故选B  

    9.【答案】 

    【解析】

    【分析】
    本题主要考查了线段垂直平分线的性质,线段垂直平分线上的点到线段两端点的距离相等,把的周长合理转化成,因为,只需求出的长即可,结合线段的和差即可解答
    【解答】
    解:垂直平分垂直平分

    周长


    ,即的长为
    故选C   

    10.【答案】 

    【解析】解:的三条边距离相等,
    这点在这个三角形三条角平分线上,
    即这点是三条角平分线的交点.
    故选B
    由于角平分线上的点到角的两边的距离相等,而已知一点到的三条边距离相等,那么这样的点在这个三角形的三条角平分线上,由此即可作出选择.
    此题主要考查了三角形的角平分线的性质:三条角平分线交于一点,并且这一点到三边的距离相等.
     

    11.【答案】 

    【解析】

    【分析】
    本题主要考查对于等腰三角形的性质定理的记忆与理解从各选项提供的已知条件,根据等腰三角形的性质,全等三角形的判定对各个命题进行分析,从而得到答案.
    【解答】
    解:因为等腰三角形顶角的外角等于两底角的和,作顶角的外角的平分线得到的角就等于等腰三角形的底角,根据内错角相等,两直线平行就可以得到:等腰三角形顶角的外角平分线与底边平行,所以此命题正确;
    B.应该为等腰三角形底边上的高线,中线,角平分线重合,所以原命题不正确;
    C.因为顶角相等的两个等腰三角形对应边不一定相等,因而不一定全等,所以原命题不正确;
    D.等腰三角形的腰可以为底边的两倍,所以原命题不正确;
    故选A  

    12.【答案】 

    【解析】解:在中,

    ,故正确;




    ,故正确;
    点在的垂直平分线上,

    点在的垂直平分线上,
    直线的垂直平分线,
    所在的直线为的对称轴,故正确;
    ,则
    中,



    ,故正确.
    故选:
    可利用证明;由全等三角形的性质及等腰三角形的性质可得,进而可证明;利用线段垂直平分的判定可得的垂直平分线,进而可判定;利用三角形的中线的性质可得,再证明可得,进而可证明
    本题主要考查全等三角形的判定与性质,线段垂直平分线的判定,三角形的面积,等腰三角形的判定与性质,灵活运用全等三角形的判定与性质是解题的关键.
     

    13.【答案】  

    【解析】如图所示,利用三角形外角的性质和三角形内角和定理容易得出五角星的五个角之和为,所以
    如图所示,,所以在中,

     

    14.【答案】 

    【解析】

    【分析】
    此题主要考查了利用轴对称设计图案,熟练利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.
    根据轴对称图形的性质,分别移动一个正方形,即可得出符合要求的答案.
    【解答】
    解:如图所示:

    故一共有移法,
    故答案为:  

    15.【答案】 

    【解析】

    【分析】

    本题考查了角平分线的性质及三角形面积公式的灵活运用.正确作出辅助线是解答本题的关键.过点作边上的高,由已知,可求,再利用角平分线性质证明即可.

    【解答】

    解:过点作,垂足为


    得,

    解得
    平分

    故答案为

      

    16.【答案】 

    【解析】解:如图,作,作

    中,

    中,









    ,即

    由勾股定理得:



    故答案为:
    利用含角的直角三角形的性质及图形的相似可求的长.
    本题考查含角的直角三角形的性质及相似三角形的判定,作辅助线构造直角三角形是求解本题的关键.
     

    17.【答案】         

    【解析】解:由题意是正五边形的中心角


    正五边形有条对称轴,每条对称轴上有两个幸运点,点重复,

    故答案为

    如图,直线上的幸运点如图所示.

    观察上图可知,正方形的幸运点共有个,
    故答案为

    如图观察图象可知
    故答案为

    根据正五边形的性质、幸运点的定义即可解决问题;
    根据幸运点的定义画出图形即可解决问题;
    幸运点在对称轴上,画出两条对称轴上的幸运点即可解决问题;
    幸运点在对称轴上,画出三条对称轴上的幸运点即可解决问题;
    本题考查四边形综合题、正五边形、正方形、正三角形的性质等知识,解题的关键是理解题意,学会利用图象法解决问题,属于中考创新题目.
     

    18.【答案】解:如图,作点关于的对称点,连接,交于点,将白球打到台边的点处,反弹后能击中彩球
     

    【解析】本题考查的是应用与设计图有关知识,找到球关于的对称点,连接交点即为台球的撞击点.
     

    19.【答案】解:如图:即为所求;

    如图,即为所求;

    根据题意可得点的坐标为 

    【解析】首先确定三点关于轴对称的对称点位置,再连接即可;
    首先确定三点向下平移个单位对应点位置,再连接即可;
    根据图形可得点的坐标的变化规律,进而确定点的坐标.
    此题主要考查了作图--轴对称变换和平移,关键是掌握组成图形的关键点平移或对称的对应点位置.
     

    20.【答案】解:如图,以为圆心,为半径画圆交轴于,作的平分线交轴于,点即为所求.


    设满足条件的点坐标为




    的中点坐标为,已知直线的中点,故设直线的解析式为
    得到,解得
    直线的解析式为

    同理,的中点为,得到的解析式为,可得
    综上所述,满足条件的点坐标为 

    【解析】本题考查作图轴对称变换,解题的关键是灵活运用所学知识解决问题,学会构建一次函数解决问题,属于中考常考题型.
    如图,以为圆心,为半径画圆交轴于,作的平分线交轴于,点即为所求.
    先根据勾股定理求得点的坐标,接着求出的中点坐标,再求出直线的解析式即可解决问题.
     

    21.【答案】解:如图所示:,即为所求;

    如图所示:,即为所求,
     

    【解析】根据网格结构找出点的位置,然后顺次连接即可;
    根据网格结构找出点的位置,然后顺次连接,再根据平面直角坐标系写出各点的坐标.
    本题考查了利用轴对称变换作图,利用平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.
     

    22.【答案】解:分别是点关于直线的对称点,

    的周长是

    如图,设相交于点相交于点

    在四边形中,

     

    【解析】见答案
     

    23.【答案】证明:已知
    两直线平行,内错角相等
    的中点已知
    中点的定义
    中,
     




    是线段的垂直平分线,


     

    【解析】本题主要考查了全等三角形的判定及线段垂直平分线的性质.

    根据可知,再根据的中点可求出,根据全等三角形的性质即可解答. 
    根据线段垂直平分线的性质判断出即可.


     

    24.【答案】解:如图

    中,



    如图

    中,

    中,

    为等腰直角三角形.
    证明:如图,由可得,
    的中点分别为点



    中,


    ,且



    为等腰直角三角形. 

    【解析】本题主要考查了全等三角形的判定与性质,等腰直角三角形的判定以及三角形内角和定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
    ,利用即可判定
    根据,得出,再根据三角形内角和即可得到
    先根据判定,再根据全等三角形的性质,得出,最后根据即可得到,进而得到为等腰直角三角形.
     

    25.【答案】证明:设交于点,如图,

    均为等腰直角三角形,



    中,







    解:设交于点,如图,

    均为等腰直角三角形,



    中,







    证明:



    四点共圆.

    均为等腰直角三角形,




    平分 

    【解析】交于点,通过证明,得到,利用三角形内角和定理和对顶角的性质定理通过计算即可得出结论;
    利用中的方法解答即可;
    利用可得四点共圆,再利用圆周角定理可得结论.
    本题主要考查了等腰直角三角形的性质,直角三角形的性质,全等三角形的判定与性质,三角形的内角和定理,圆周角定理,证明是解题的关键.
     

    相关试卷

    苏科版八年级上册第二章 轴对称图形综合与测试单元测试课后练习题: 这是一份苏科版八年级上册第二章 轴对称图形综合与测试单元测试课后练习题,共32页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    初中数学苏科版八年级上册第二章 轴对称图形综合与测试单元测试同步测试题: 这是一份初中数学苏科版八年级上册第二章 轴对称图形综合与测试单元测试同步测试题,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    苏科版八年级上册第二章 轴对称图形综合与测试单元测试复习练习题: 这是一份苏科版八年级上册第二章 轴对称图形综合与测试单元测试复习练习题,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        苏科版初中数学八年级上册第二章《轴对称图形》单元测试卷(困难)(含答案解析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map