年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2023年新教材高考数学一轮复习课时规范练44抛物线含解析新人教B版

    2023年新教材高考数学一轮复习课时规范练44抛物线含解析新人教B版第1页
    2023年新教材高考数学一轮复习课时规范练44抛物线含解析新人教B版第2页
    2023年新教材高考数学一轮复习课时规范练44抛物线含解析新人教B版第3页
    还剩4页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023年新教材高考数学一轮复习课时规范练44抛物线含解析新人教B版

    展开

    这是一份2023年新教材高考数学一轮复习课时规范练44抛物线含解析新人教B版,共7页。试卷主要包含了抛物线y=8mx2的焦点坐标是,若点P为抛物线C,故选B等内容,欢迎下载使用。
    1.抛物线y=8mx2(m0)的焦点到直线y=x+1的距离为2,则p=( )
    A.1B.2C.22D.4
    3.(2021北京海淀二模)已知F为抛物线y2=4x的焦点,点P(x0,y0)是该抛物线上的一点.若|PF|>2,则( )
    A.x0∈(0,1)B.x0∈(1,+∞)
    C.y0∈(2,+∞)D.y0∈(-∞,2)
    4.(2021河南郑州月考)若抛物线y2=2px(p>0)上的点A(3,y0)到焦点的距离是点A到y轴距离的3倍,则y0等于( )
    A.±62B.±6C.±122D.±12
    5.若抛物线y2=2px(p>0)的焦点与双曲线x25-y23=1的右焦点重合,则p的值为( )
    A.42B.2C.2D.22
    6.(2021湖南常德一中月考)在平面直角坐标系中,已知M(2,0),点B为直线l:x=-2上的动点,点A在线段MB的垂直平分线上,且AB⊥l,则动点A的轨迹方程是( )
    A.y2=8xB.y2=4x
    C.x2=8yD.x2=4y
    7.
    (多选)在平面直角坐标系xOy中,抛物线y2=6x的焦点为F,准线为l,点P为抛物线上一点,PA⊥l,垂足为A.若直线AF的斜率k=-3,则下列结论正确的是( )
    A.准线方程为x=-3
    B.焦点坐标F32,0
    C.点P的坐标为92,33
    D.PF的长为3
    8.(2021河北张家口一模)若点P(4,1)为抛物线C:x2=2py(p>0)上一点,抛物线C的焦点为F,则|PF|= .
    9.(2021北京怀柔一模)若抛物线C焦点在y轴上,且过点(2,1),则抛物线C的标准方程是 .
    综合提升组
    10.(2021福建龙岩三模)已知抛物线x2=4y的焦点为F,准线为l,过抛物线上一点P作PQ⊥l,垂足为Q,若|PF|=4,则∠FQP=( )
    A.30°B.45°C.60°D.75°
    11.(2021重庆一中月考)抛物线y2=2px(p>0)的准线方程为x=-4,点F为抛物线的焦点,点P为抛物线上一个动点,点Q为曲线C:x2-10x+y2-2y+22=0上的一个动点,则|PF|+|PQ|的最小值为( )
    A.7B.72C.8D.82
    12.(多选)(2021河北衡水五校联考)已知抛物线x2=12y的焦点为F,M(x1,y1),N(x2,y2)是抛物线上两点,则下列结论正确的是( )
    A.点F的坐标为18,0
    B.若直线MN过点F,则x1x2=-116
    C.若MF=λNF,则|MN|的最小值为12
    D.若|MF|+|NF|=32,则线段MN的中点P到x轴的距离为58
    13.(2021湖北襄阳四中模拟)已知点A是抛物线y2=2px(p>0)上一点,F为其焦点,以点F为圆心,|FA|为半径的圆交抛物线的准线于B,C两点.若△FBC为等腰直角三角形,且△ABC的面积是42,则抛物线的方程是 .
    创新应用组
    14.已知抛物线C:x2=2py(p>0)的焦点为F,点M(2,m)(m>0)在抛物线C上,且|MF|=2.
    (1)求抛物线C的方程;
    (2)若点P(x0,y0)为抛物线C上任意一点,过该点的切线为l0,证明:过点F作切线l0的垂线,垂足必在x轴上.
    课时规范练44 抛物线
    1.B 解析:由y=8mx2(m1.
    故选B.
    4.A 解析:由题可得3+p2=9,解得p=12,所以y2=24x.
    又点A(3,y0)在抛物线y2=24x上,所以y02=72,解得y0=±62.故选A.
    5.A 解析:由题可知抛物线y2=2px(p>0)的焦点为p2,0,双曲线x25-y23=1的右焦点为(22,0).
    因为抛物线的焦点与双曲线的右焦点重合,
    所以p2=22,解得p=42.
    故选A.
    6.A 解析:由题可知|AB|=|AM|,AB⊥l,所以点A的轨迹是以点M为焦点,直线l为准线的抛物线,
    所以p2=2,解得p=4,所以点A的轨迹方程为y2=8x.
    故选A.
    7.BC 解析:∵抛物线方程为y2=6x,
    ∴焦点坐标F32,0,准线方程为x=-32,故A错误,B正确;
    ∵直线AF的斜率为-3,
    ∴直线AF的方程为y=-3x-32,
    ∴A-32,33.
    ∵PA⊥l,垂足为A,
    ∴点P的纵坐标为33,∴点P的坐标为92,33,故C正确;
    |PF|=|PA|=92+32=6,故D错误.
    故选BC.
    8.5 解析:因为点P(4,1)为抛物线C:x2=2py(p>0)上一点,
    所以42=2p×1,解得p=8,
    所以|PF|=1+82=5.
    9.x2=4y 解析:因为抛物线C焦点在y轴上,所以设抛物线方程为x2=my.又抛物线过点(2,1),所以22=m,即m=4,所以抛物线方程为x2=4y.
    10.C 解析:设P(x0,y0),则|PQ|=y0+1.
    由抛物线的定义可得|PQ|=|PF|,所以y0+1=4,即y0=3.
    又x02=4y0,所以x02=12,不妨设点P位于第一象限,则x0=23,即P(23,3),所以Q(23,-1),
    所以|QF|=12+4=4,所以|PQ|=|PF|=|QF|,所以△FQP为等边三角形,所以∠FQP=60°.
    故选C.
    11.A 解析:由题可知抛物线方程为y2=16x,曲线C:(x-5)2+(y-1)2=4.
    过点P作PA垂直于准线x=-4,垂足为A(图略),
    则|PA|=|PF|,
    所以|PF|+|PQ|=|PA|+|PQ|.
    要使|PA|+|PQ|最小,则需A,P,Q三点共线且QA最小,
    所以最小值为9-2=7.
    故选A.
    12.BCD 解析:抛物线x2=12y的焦点为F0,18,故A错误;
    根据抛物线的性质可得,MN过点F时,x1x2=-116,故B正确;
    若MF=λNF,则|MN|的最小值为抛物线的通径长,为2p=12,故C正确;
    由题可知,抛物线x2=12y的焦点为F0,18,准线方程为y=-18,
    过点M,N,P作准线的垂线MM',NN',PP'(图略),
    则|MM'|=|MF|,|NN'|=|NF|,|MM'|+|NN'|=|MF|+|NF|=32,
    所以|PP'|=|MM'|+|NN'|2=34,
    所以线段MN的中点P到x轴的距离为|PP'|-18=34-18=58,故D正确.
    故选BCD.
    13.y2=4x 解析:由题可知p|BF|=cs45°=22,所以|BF|=2p,
    所以|AF|=2p,所以点A到准线的距离d=2p,
    所以S△ABC=12|BC|×d=12×2p×2p=42(p>0),解得p=2,
    所以抛物线方程为y2=4x.
    14.(1)解由抛物线的定义,可知|MF|=m+p2=2.①
    因为点M(2,m)在抛物线C上,所以2pm=4.②
    由①②解得p=2,m=1,
    所以抛物线C的方程为x2=4y.
    (2)证明①当x0=0,即点P为原点时,显然符合;
    ②当x0≠0,即点P不在原点时,
    由(1)得x2=4y,即y=x24,则y'=12x,所以抛物线C在点P处的切线l0的斜率为12x0,所以抛物线C在点P处的切线l0的方程为y-y0=12x0(x-x0).
    又x02=4y0,所以y-y0=12x0(x-x0)可化为y=12x0x-y0.过点F(0,1)且与切线l0垂直的直线方程为y-1=-2x0x.
    由y=12x0x-y0,y-1=-2x0x,
    消去x,得y=-14(y-1)x02-y0.
    因为x02=4y0,
    所以y=-yy0,即(y0+1)y=0.由y0>0,可知y=0,即垂足必在x轴上.
    综上所述,过点F作切线l0的垂线,垂足必在x轴上.

    相关试卷

    2023年新教材高考数学一轮复习课时规范练47统计模型含解析新人教B版:

    这是一份2023年新教材高考数学一轮复习课时规范练47统计模型含解析新人教B版,共14页。试卷主要包含了根据如下样本数据,1x-17等内容,欢迎下载使用。

    2023年新教材高考数学一轮复习课时规范练46统计含解析新人教B版:

    这是一份2023年新教材高考数学一轮复习课时规范练46统计含解析新人教B版,共9页。试卷主要包含了03,请问每天应该进多少千克苹果?等内容,欢迎下载使用。

    2023年新教材高考数学一轮复习课时规范练42椭圆含解析新人教B版:

    这是一份2023年新教材高考数学一轮复习课时规范练42椭圆含解析新人教B版,共7页。试卷主要包含了已知F1,F2分别为椭圆E,已知F1,F2是椭圆C等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map