还剩15页未读,
继续阅读
2022九年级数学上册第二十四章圆24.2点和圆直线和圆的位置关系第2课时课件新版新人教版
展开
这是一份2022九年级数学上册第二十四章圆24.2点和圆直线和圆的位置关系第2课时课件新版新人教版,共23页。
第二十四章 圆24.2点和圆、直线和圆的位置关系第2课时1.了解直线和圆的位置关系.2.了解直线与圆的不同位置关系时的有关概念.3.理解直线和圆的三种位置关系时圆心到直线的距离d和圆 的半径r之间的数量关系.(重点)4.会运用直线和圆的三种位置关系的性质与判定进行有关计 算.(难点)学习目标点和圆的位置关系有几种?dr用数量关系如何来判断呢?(令OP=d )导入新课P问题1 如果我们把太阳看成一个圆,地平线看成一条直线,那你能根据直线和圆的公共点个数想象一下,直线和圆有几种位置关系吗?讲授新课用定义判断直线与圆的位置关系问题2 请同学在纸上画一条直线l,把硬币的边缘看作圆,在纸上移动硬币,你能发现直线和圆的公共点个数的变化情况吗?公共点个数最少时有几个?最多时有几个?●●●l022个交点1个切点切线0个相离相切相交位置关系公共点个数填一填: 直线和圆有唯一的公共点(即直线和圆相切)时,这条直线叫做圆的切线(如图直线l),这个唯一的公共点叫做切点(如图点A).要点归纳1.直线与圆最多有两个公共点.2.若直线与圆相交,则直线上的点都在圆上. 3.若A是⊙O上一点,则直线AB与⊙O相切. 4.若C为⊙O外一点,则过点C的直线与⊙O相交或相离. 5.直线a 和⊙O有公共点,则直线a与⊙O相交.判一判:√××××问题1 同学们用直尺在圆上移动的过程中,除了发现公共点的个数发生了变化外,还发现有什么量也在改变?它与圆的半径有什么样的数量关系呢?用数量关系判断直线与圆的位置关系问题2 怎样用d(圆心与直线的距离)来判别直线与圆的位置关系呢?Od直线和圆相交d< r直线和圆相切d= r直线和圆相离d> r数形结合:位置关系数量关系(用圆心O到直线的距离d与圆的半径r的关系来区分)ooo公共点个数要点归纳相交相切相离d > 5cmd = 5cm0cm≤d < 5cm210练一练:例1 在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有怎样的位置关系?为什么?(1) r=2cm;(2) r=2.4cm; (3) r=3cm.分析:要了解AB与⊙C的位置关系,只要知道圆心C到AB的距离d与r的关系.已知r,只需求出C到AB的距离d.典例精析解:过C作CD⊥AB,垂足为D.在△ABC中,AB=5.根据三角形的面积公式有∴即圆心C到AB的距离d=2.4cm.所以 (1)当r=2cm时,有d >r,因此⊙C和AB相离.d记住:斜边上的高等于两直角边的乘积除以斜边.(2)当r=2.4cm时,有d=r.因此⊙C和AB相切.d(3)当r=3cm时,有d 5 C. r = 5 D. r ≥ 53. ☉O的最大弦长为8,若圆心O到直线l的距离为d=5,则直线l与☉O .4. ☉O的半径为5,直线l上的一点到圆心O的距离是5,则直线l与☉O的位置关系是( )A. 相交或相切 B. 相交或相离 C. 相切或相离 D. 上三种情况都有可能B相离A解析:过点A作AQ⊥MN于Q,连接AN,设半径为r,由垂径定理有MQ=NQ,所以AQ=2,AN=r,NQ=4-r,利用勾股定理可以求出NQ=1.5,所以N点坐标为(-1,-2).故选A.5.如图,在平面直角坐标系中,⊙A与y轴相切于原点O,平行于x轴的直线交⊙A于M、N两点.若点M的坐标是(-4,-2),则点N的坐标为( )A.(-1,-2) B.(1,2)C.(-1.5,-2) D.(1.5,-2)A拓展提升:已知☉O的半径r=7cm,直线l1 // l2,且l1与☉O相切,圆心O到l2的距离为9cm.求l1与l2的距离.解:(1) l2与l1在圆的同一侧: m=9-7=2 cm(2)l2与l1在圆的两侧: m=9+7=16 cm课堂小结直线与圆的位置关系定义性质判定相离相切相交公共点的个数d与r的数量关系定义法性质法特别提醒:在图中没有d要先做出该垂线段相离:0个相切:1个相交:2个相离:d>r相切:d=r相交:dr:相离d=r:相切d
第二十四章 圆24.2点和圆、直线和圆的位置关系第2课时1.了解直线和圆的位置关系.2.了解直线与圆的不同位置关系时的有关概念.3.理解直线和圆的三种位置关系时圆心到直线的距离d和圆 的半径r之间的数量关系.(重点)4.会运用直线和圆的三种位置关系的性质与判定进行有关计 算.(难点)学习目标点和圆的位置关系有几种?d
相关资料
更多