人教版高考数学一轮复习第10章统计与统计案例第1节随机抽样学案理含解析
展开第一节 随机抽样
[最新考纲] | [考情分析] | [核心素养] |
1.理解随机抽样的必要性和重要性. 2.会用简单随机抽样方法从总体中抽取样本,了解分层抽样和系统抽样. | 简单随机抽样、系统抽样、分层抽样的相关概念,是2021年高考考查的热点,题型仍将是以选择题与填空题为主,分值为5分. | 1.数学运算 2.数据分析 |
‖知识梳理‖
1.简单随机抽样
(1)抽取方式:逐个不放回地抽取;
(2)特点:每个个体被抽到的概率相等;
(3)常用方法:抽签法和随机数法.
2.分层抽样
(1)在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,作为样本,这种抽样方法叫做分层抽样.
(2)分层抽样的应用范围
当总体是由差异明显的几个部分组成时,往往选用分层抽样.
3.系统抽样的步骤
假设要从容量为N的总体中抽取容量为n的样本.
(1)先将总体的N个个体编号.
(2)确定分段间隔k,对编号进行分段,当(n是样本容量)是整数时,取k=.
(3)在第1段用简单随机抽样确定第一个个体编号l(l≤k).
(4)按照一定的规则抽取样本.通常是将l加上间隔k得到第2个个体编号l+k,再加k得到第3个个体编号l+2k,依次进行下去,直到获取整个样本.
‖基础自测‖
一、疑误辨析
1.判断下列结论是否正确(请在括号中打“√”或“×”).
(1)在简单随机抽样中,某一个个体被抽到的可能性与第几次抽取有关,第一次被抽到的可能性最大.( )
(2)从100件玩具中随机拿出一件,放回后再拿出一件,连续拿5次,是简单随机抽样.( )
(3)系统抽样适用于元素个数很多且均衡的总体.( )
(4)要从1 002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平.( )
(5)分层抽样中,每个个体被抽到的可能性与层数及分层有关.( )
(6)某校即将召开学生代表大会,现从高一、高二、高三共抽取60名代表,则可用分层抽样的方法抽取.( )
答案:(1)× (2)× (3)√ (4)× (5)× (6)√
二、走进教材
2.(必修3P100A1改编)在“世界读书日”前夕,为了了解某地5 000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5 000名居民的阅读时间的全体是( )
A.总体
B.个体
C.样本的容量
D.从总体中抽取的一个样本
答案:A
3.(必修3P100A2(2)改编)一个公司共有N名员工,下设一些部门,要采用等比例分层抽样的方法从全体员工中抽取样本容量为n的样本,已知某部门有m名员工,那么从该部门抽取的员工人数是________.
答案:
三、易错自纠
4.从2 017名学生中选取50名学生参加全国数学联赛,若采用以下方法选取:先用简单随机抽样法从2 017名学生中剔除17名学生,剩下的2 000名学生再按系统抽样的方法抽取,则每名学生入选的概率( )
A.不全相等 B.均不相等
C.都相等,且为 D.都相等,且为
解析:选C 若从N个个体中抽取M个个体,则每个个体被抽到的概率都等于.
5.从300名学生(其中男生180人,女生120人)中按性别用分层抽样的方法抽取50人参加比赛,则应该抽取男生人数为( )
A.27 B.30
C.33 D.36
解析:选B 因为男生与女生的比例为180∶120=3∶2,所以应该抽取男生人数为50×=30.
|题组突破|
1.某班级有男生20人,女生30人,从中抽取10人作为样本,其中一次抽样结果是:抽到了4名男生、6名女生,则下列命题正确的是( )
A.这次抽样可能采用的是简单随机抽样
B.这次抽样一定没有采用系统抽样
C.这次抽样中每个女生被抽到的概率大于每个男生被抽到的概率
D.这次抽样中每个女生被抽到的概率小于每个男生被抽到的概率
解析:选A 这次抽样可能采用的是简单随机抽样,A正确;这次抽样可能采用系统抽样,男生编号为1~20,女生编号为21~50,间隔为5,依次抽取1号,6号,…,46号便可,B错误;这次抽样中每个女生被抽到的概率等于每个男生被抽到的概率,C、D均错误.故选A.
2.(2019届上饶模拟)已知总体由编号为00,01,02,…,48,49的50个个体组成,利用下面的随机数表选取8个个体,选取方法是从随机数表第6行的第9列和第10列数字开始由左向右依次选取两个数字,则选出来的第8个个体的编号为( )
附:第6行至第9行的随机数表:
16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
A.17 B.20
C.23 D.37
解析:选B 从随机数表第6行的第9列和第10列数字开始由左到右依次选取两个数字,符合条件的依次为39,49,43,17,37,23,35,20,故第8个数为20.
3.对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则( )
A.p1=p2<p3 B.p2=p3<p1
C.p1=p3<p2 D.p1=p2=p3
解析:选D 由于三种抽样过程中,每个个体被抽到的概率都是相等的,因此p1=p2=p3.
►名师点津
一个抽样试验用抽签法的2个注意事项
一是抽签是否方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都较小时可用抽签法.
|题组突破|
4.(2019届江西八校联考)从编号为001,002,…,500的500个产品中用系统抽样的方法抽取一个样本,已知样本中编号最小的两个编号分别为007,032,则样本中最大的编号应该为( )
A.480 B.481
C.482 D.483
解析:选C 根据系统抽样的定义可知,样本的编号成等差数列,令a1=7,a2=32,则d=25,所以an=7+25(n-1)≤500,所以n≤20,所以最大编号为7+25×19=482.
5.采用系统抽样方法从1 000人中抽取50人做问卷调查,将他们随机编号1,2,…,1 000.适当分组后在第一组采用简单随机抽样的方法抽到的号码为8.若抽到的50人中,编号落入区间[1,400]的人做问卷A,编号落入区间[401,750]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷C的人数为( )
A.12 B.13
C.14 D.15
解析:选A 根据系统抽样的特点可知,所有做问卷调查的人的编号构成首项为8,公差d==20的等差数列{an},∴通项公式an=8+20(n-1)=20n-12.令751≤20n-12≤1 000,解得≤n≤.又∵n∈N*,∴39≤n≤50,∴做问卷C的共有12人.
6.(2019年全国卷Ⅰ)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( )
A.8号学生 B.200号学生
C.616号学生 D.815号学生
解析:选C 由系统抽样可知,第一组学生的编号为1~10,第二组学生的编号为11~20,…,最后一组学生的编号为991~1 000.设第一组取到的学生编号为x,则第二组取到的学生编号为x+10,以此类推,所取的学生编号为10的倍数加x.因为46号学生被抽到,所以x=6,所以616号学生被抽到,故选C.
►名师点津
解决系统抽样问题的2个关键步骤
(1)分组的方法应依据抽取比例而定,即根据定义每组抽取一个样本.
(2)起始编号的确定应用简单随机抽样的方法,一旦起始编号确定,其他编号便随之确定了.
【例】 (2019届洛阳模拟)某大学数学系共有本科生1 000人,其中一、二、三、四年级的人数比为4∶3∶2∶1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为( )
A.80 B.40
C.60 D.20
[解析] 因为要用分层抽样的方法从该系所有本科生中抽取一个容量为200的样本,一、二、三、四年级的学生比为4∶3∶2∶1,所以三年级要抽取的学生人数是×200=40.
[答案] B
►名师点津
分层抽样中的计算问题
分层抽样满足“=”,即“==…=或n1∶n2∶…∶n=N1∶N2∶…∶N”,据此在已知每层间的个体数量或数量比、样本容量、总体数量中的两个时,就可以求出第三个.
|跟踪训练|
某高中在校学生有2 000人.为了响应“阳光体育运动”的号召,学校开展了跑步和登山比赛活动.每人都参与而且只参与其中一项比赛,各年级参与比赛的人数情况如下表:
| 高一年级 | 高二年级 | 高三年级 |
跑步 | a | b | c |
登山 | x | y | z |
其中a∶b∶c=2∶3∶5,全校参与登山的人数占总人数的.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则从高二年级参与跑步的学生中应抽取________人.
解析:根据题意可知,样本中参与跑步的人数为200×=120,所以从高二年级参与跑步的学生中应抽取的人数为120×=36.
答案:36
【例】 (2019年天津卷)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.
(1)应从老、中、青员工中分别抽取多少人?
(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.
员工 项目 | A | B | C | D | E | F |
子女教育 | ○ | ○ | × | ○ | × | ○ |
继续教育 | × | × | ○ | × | ○ | ○ |
大病医疗 | × | × | × | ○ | × | × |
住房贷款利息 | ○ | ○ | × | × | ○ | ○ |
住房租金 | × | × | ○ | × | × | × |
赡养老人 | ○ | ○ | × | × | × | ○ |
①试用所给字母列举出所有可能的抽取结果;
②设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.
[解] (1)由已知,得老、中、青员工人数之比为6∶9∶10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人,9人,10人.
(2)①从已知的6人中随机抽取2人的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F},共15种.
②由表格知,符合题意的所有可能结果为{A,B},{A,D},{A,E},{A,F},{B,D},{B,E},{B,F},{C,E},{C,F},{D,F},{E,F},共11种.
所以,事件M发生的概率P(M)=.
►名师点津
先通过分层抽样确定抽取样本,再根据古典概型确定概率是解决分层抽样与概率问题的关键.
|跟踪训练|
(2019届绵阳模拟)某校共有在职教师140人,其中高级教师28人,中级教师56人,初级教师56人,现采用分层抽样的方法从在职教师中抽取5人进行职称改革调研,然后从抽取的5人中随机抽取2人进行深入了解,则抽取的这2人中至少有1人是初级教师的概率为( )
A. B.
C. D.
解析:选A 由题意得,应从高级、中级、初级教师中抽取的人数分别为5×=1,5×=2,5×=2,记A为抽取的高级教师,B1,B2为抽取的中级教师,C1,C2为抽取的初级教师.从抽取的5人中随机抽取2人的所有可能结果有10种,分别为{A,B1},{A,B2},{A,C1},{A,C2},{B1,B2},{B1,C1},{B1,C2},{B2,C1},{B2,C2},{C1,C2},记“这2人中至少有1人是初级教师”为事件M,则事件M包含的可能结果有{A,C1},{A,C2},{B1,C1},{B1,C2},{B2,C1},{B2,C2},{C1,C2},共有7种,所以所求概率P(M)=.
高考数学统考一轮复习第9章统计与统计案例第3节变量间的相关关系统计案例学案: 这是一份高考数学统考一轮复习第9章统计与统计案例第3节变量间的相关关系统计案例学案,共12页。
人教b版高考数学一轮复习第9章统计与统计案例第3节统计模型学案含解析: 这是一份人教b版高考数学一轮复习第9章统计与统计案例第3节统计模型学案含解析,共12页。学案主要包含了教材概念·结论·性质重视,基本技能·思想·活动体验等内容,欢迎下载使用。
人教版高考数学一轮复习第10章统计与统计案例第3节变量间的相关关系与统计案例学案理含解析: 这是一份人教版高考数学一轮复习第10章统计与统计案例第3节变量间的相关关系与统计案例学案理含解析,共11页。学案主要包含了疑误辨析,走进教材,易错自纠等内容,欢迎下载使用。