2017-2021年湖南中考数学真题分类汇编之方程与不等式
展开
这是一份2017-2021年湖南中考数学真题分类汇编之方程与不等式,共25页。
2017-2021年湖南中考数学真题分类汇编之方程与不等式
一.选择题(共14小题)
1.(2020•张家界)今有若干人乘车,每3人共乘一车且坐满,最终剩余2辆车;若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x人,可列方程( )
A.﹣9 B.+2= C.﹣2= D.+9
2.(2020•衡阳)如图,学校课外生物小组的试验园地的形状是长35米、宽20米的矩形.为便于管理,要在中间开辟一横两纵共三条等宽的小道,使种植面积为600平方米,则小道的宽为多少米?若设小道的宽为x米,则根据题意,列方程为( )
A.35×20﹣35x﹣20x+2x2=600
B.35×20﹣35x﹣2×20x=600
C.(35﹣2x)(20﹣x)=600
D.(35﹣x)(20﹣2x)=600
3.(2020•怀化)已知一元二次方程x2﹣kx+4=0有两个相等的实数根,则k的值为( )
A.k=4 B.k=﹣4 C.k=±4 D.k=±2
4.(2021•益阳)解方程组时,若将①﹣②可得( )
A.﹣2y=﹣1 B.﹣2y=1 C.4y=1 D.4y=﹣1
5.(2021•常德)若a>b,下列不等式不一定成立的是( )
A.a﹣5>b﹣5 B.﹣5a<﹣5b C.> D.a+c>b+c
6.(2019•株洲)关于x的分式方程﹣=0的解为( )
A.﹣3 B.﹣2 C.2 D.3
7.(2021•湘潭)为执行国家药品降价政策,给人民群众带来实惠,某药品经过两次降价,每瓶零售价由100元降为64元,求平均每次降价的百分率.设平均每次降价的百分率为x,可列方程得( )
A.100(1﹣x)2=64 B.100(1+x)2=64
C.100(1﹣2x)=64 D.100(1+2x)=64
8.(2021•株洲)《九章算术》之“粟米篇”中记载了中国古代的“粟米之法”:“粟率五十,粝米三十…”(粟指带壳的谷子,粝米指糙米),其意为:“50单位的粟,可换得30单位的粝米…”.问题:有3斗的粟(1斗=10升),若按照此“粟米之法”,则可以换得的粝米为( )
A.1.8升 B.16升 C.18升 D.50升
9.(2021•湘潭)不等式组的解集在数轴上表示正确的是( )
A. B.
C. D.
10.(2021•郴州)已知二元一次方程组,则x﹣y的值为( )
A.2 B.6 C.﹣2 D.﹣6
11.(2021•张家界)对于实数a,b定义运算“☆”如下:a☆b=ab2﹣ab,例如3☆2=3×22﹣3×2=6,则方程1☆x=2的根的情况为( )
A.没有实数根 B.只有一个实数根
C.有两个相等的实数根 D.有两个不相等的实数根
12.(2021•邵阳)在平面直角坐标系中,若直线y=﹣x+m不经过第一象限,则关于x的方程mx2+x+1=0的实数根的个数为( )
A.0个 B.1个 C.2个 D.1或2个
13.(2019•永州)若关于x的不等式组有解,则在其解集中,整数的个数不可能是( )
A.1 B.2 C.3 D.4
14.(2019•常德)小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜.甲说:“至少15元.”乙说:“至多12元.”丙说:“至多10元.”小明说:“你们三个人都说错了”.则这本书的价格x(元)所在的范围为( )
A.10<x<12 B.12<x<15 C.10<x<15 D.11<x<14
二.填空题(共3小题)
15.(2019•岳阳)分式方程的解为x= .
16.(2019•张家界)《田亩比类乘除捷法》是我国古代数学家杨辉的著作,其中有一个数学问题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何”.意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多多少步?根据题意得,长比宽多 步.
17.(2019•邵阳)关于x的一元二次方程x2﹣2x﹣m=0有两个不相等的实数根,则m的最小整数值是 .
三.解答题(共6小题)
18.(2019•邵阳)2019年1月14日,国新办举行新闻发布会,海关总署新闻发言人李魁文在会上指出:在2018年,我国进出口规模创历史新高,全年外贸进出口总值为30万亿元人民币.有望继续保持全球货物贸易第一大国地位.预计2020年我国外贸进出口总值将达36.3万亿元人民币.求这两年我国外贸进出口总值的年平均增长率.
19.(2019•娄底)某商场用14500元购进甲、乙两种矿泉水共500箱,矿泉水的成本价与销售价如表所示:
类别
成本价(元/箱)
销售价(元/箱)
甲
25
35
乙
35
48
求:(1)购进甲、乙两种矿泉水各多少箱?
(2)该商场售完这500箱矿泉水,可获利多少元?
20.(2021•永州)若x1,x2是关于x的一元二次方程ax2+bx+c=0的两个根,则x1+x2=﹣,x1•x2=.现已知一元二次方程px2+2x+q=0的两根分别为m,n.
(1)若m=2,n=﹣4,求p,q的值;
(2)若p=3,q=﹣1,求m+mn+n的值.
21.(2021•常德)某汽车贸易公司销售A、B两种型号的新能源汽车,A型车进货价格为每台12万元,B型车进货价格为每台15万元,该公司销售2台A型车和5台B型车,可获利3.1万元,销售1台A型车和2台B型车,可获利1.3万元.
(1)求销售一台A型、一台B型新能源汽车的利润各是多少万元?
(2)该公司准备用不超过300万元资金,采购A、B两种新能源汽车共22台,问最少需要采购A型新能源汽车多少台?
22.(2019•衡阳)某商店购进A、B两种商品,购买1个A商品比购买1个B商品多花10元,并且花费300元购买A商品和花费100元购买B商品的数量相等.
(1)求购买一个A商品和一个B商品各需要多少元;
(2)商店准备购买A、B两种商品共80个,若A商品的数量不少于B商品数量的4倍,并且购买A、B商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?
23.(2019•长沙)近日,长沙市教育局出台《长沙市中小学教师志愿辅导工作实施意见》,鼓励教师参与志愿辅导,某区率先示范,推出名师公益大课堂,为学生提供线上线下免费辅导,据统计,第一批公益课受益学生2万人次,第三批公益课受益学生2.42万人次.
(1)如果第二批,第三批公益课受益学生人次的增长率相同,求这个增长率;
(2)按照这个增长率,预计第四批公益课受益学生将达到多少万人次?
2017-2021年湖南中考数学真题分类汇编之方程与不等式
参考答案与试题解析
一.选择题(共14小题)
1.(2020•张家界)今有若干人乘车,每3人共乘一车且坐满,最终剩余2辆车;若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x人,可列方程( )
A.﹣9 B.+2= C.﹣2= D.+9
【考点】由实际问题抽象出一元一次方程.版权所有
【专题】一次方程(组)及应用;推理能力.
【分析】根据车的辆数不变,即可得出关于x的一元一次方程,此题得解.
【解答】解:依题意,得:+2=.
故选:B.
【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.
2.(2020•衡阳)如图,学校课外生物小组的试验园地的形状是长35米、宽20米的矩形.为便于管理,要在中间开辟一横两纵共三条等宽的小道,使种植面积为600平方米,则小道的宽为多少米?若设小道的宽为x米,则根据题意,列方程为( )
A.35×20﹣35x﹣20x+2x2=600
B.35×20﹣35x﹣2×20x=600
C.(35﹣2x)(20﹣x)=600
D.(35﹣x)(20﹣2x)=600
【考点】由实际问题抽象出一元二次方程.版权所有
【专题】一元二次方程及应用;推理能力.
【分析】若设小道的宽为x米,则阴影部分可合成长为(35﹣2x)米,宽为(20﹣x)米的矩形,利用矩形的面积公式,即可得出关于x的一元二次方程,此题得解.
【解答】解:依题意,得:(35﹣2x)(20﹣x)=600.
故选:C.
【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.
3.(2020•怀化)已知一元二次方程x2﹣kx+4=0有两个相等的实数根,则k的值为( )
A.k=4 B.k=﹣4 C.k=±4 D.k=±2
【考点】根的判别式.版权所有
【专题】判别式法;推理能力.
【分析】根据方程的系数结合根的判别式Δ=0,即可得出关于k的方程,解之即可得出k值.
【解答】解:∵一元二次方程x2﹣kx+4=0有两个相等的实数根,
∴Δ=(﹣k)2﹣4×1×4=0,
解得:k=±4.
故选:C.
【点评】本题考查了根的判别式,牢记“当Δ=0时,方程有两个相等的实数根”是解题的关键.
4.(2021•益阳)解方程组时,若将①﹣②可得( )
A.﹣2y=﹣1 B.﹣2y=1 C.4y=1 D.4y=﹣1
【考点】解二元一次方程组.版权所有
【专题】一次方程(组)及应用;运算能力.
【分析】①﹣②得出(2x+y)﹣(2x﹣3y)=3﹣4,再去括号,合并同类项即可.
【解答】解:,
①﹣②,得4y=﹣1,
故选:D.
【点评】本题考查了二元一次方程组的解法,能把二元一次方程组转化成一元一次方程是解此题的关键.
5.(2021•常德)若a>b,下列不等式不一定成立的是( )
A.a﹣5>b﹣5 B.﹣5a<﹣5b C.> D.a+c>b+c
【考点】不等式的性质.版权所有
【专题】一元一次不等式(组)及应用;模型思想.
【分析】根据不等式的性质逐个判断即可.
【解答】解:A.∵a>b,
∴a﹣5>b﹣5,故本选项不符合题意;
B.∵a>b,
∴﹣5a<﹣5b,故本选项不符合题意;
C.∵a>b,
∴当c>0时,;当c<0时,,故本选项符合题意;
D.∵a>b,
∴a+c>b+c,故本选项不符合题意;
故选:C.
【点评】本题考查了不等式的性质,能熟记不等式的性质是解此题的关键,注意:①不等式的性质1:不等式的两边都加(或减)同一个数或式子,不等号的方向不变;②不等式的性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;③不等式的性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.
6.(2019•株洲)关于x的分式方程﹣=0的解为( )
A.﹣3 B.﹣2 C.2 D.3
【考点】解分式方程.版权所有
【专题】计算题;分式方程及应用;运算能力.
【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【解答】解:去分母得:2x﹣6﹣5x=0,
解得:x=﹣2,
经检验x=﹣2是分式方程的解,
故选:B.
【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
7.(2021•湘潭)为执行国家药品降价政策,给人民群众带来实惠,某药品经过两次降价,每瓶零售价由100元降为64元,求平均每次降价的百分率.设平均每次降价的百分率为x,可列方程得( )
A.100(1﹣x)2=64 B.100(1+x)2=64
C.100(1﹣2x)=64 D.100(1+2x)=64
【考点】由实际问题抽象出一元二次方程.版权所有
【专题】一元二次方程及应用;应用意识.
【分析】设该药品平均每次降价的百分率为x,根据降价后的价格=降价前的价格×(1﹣降价的百分率),则第一次降价后的价格是100(1﹣x),第二次降价后的价格是100(1﹣x)2,据此即可列方程求解.
【解答】解:根据题意得:100(1﹣x)2=64,
故选:A.
【点评】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.
8.(2021•株洲)《九章算术》之“粟米篇”中记载了中国古代的“粟米之法”:“粟率五十,粝米三十…”(粟指带壳的谷子,粝米指糙米),其意为:“50单位的粟,可换得30单位的粝米…”.问题:有3斗的粟(1斗=10升),若按照此“粟米之法”,则可以换得的粝米为( )
A.1.8升 B.16升 C.18升 D.50升
【考点】分式方程的应用;数学常识.版权所有
【专题】其他问题;运算能力;应用意识.
【分析】先将单位换成升,根据:“50单位的粟,可换得30单位的粝米…”列方程可得结论.
【解答】解:根据题意得:3斗=30升,
设可以换得的粝米为x升,
则=,
解得:x==18(升),
经检验:x=18是原分式方程的解,
答:有3斗的粟(1斗=10升),若按照此“粟米之法”,则可以换得的粝米为18升.
故选:C.
【点评】本题考查了分式方程的应用,本题首先要弄清题意,正确列分式方程是本题的关键.
9.(2021•湘潭)不等式组的解集在数轴上表示正确的是( )
A. B.
C. D.
【考点】解一元一次不等式组.版权所有
【专题】一元一次不等式(组)及应用;运算能力.
【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,继而在数轴上表示解集即可.
【解答】解:解不等式x+1≥2,得:x≥1,
解不等式4x﹣8<0,得:x<2,
则不等式组的解集为1≤x<2,
将不等式组的解集表示在数轴上如下:
故选:D.
【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式的解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
10.(2021•郴州)已知二元一次方程组,则x﹣y的值为( )
A.2 B.6 C.﹣2 D.﹣6
【考点】解二元一次方程组.版权所有
【专题】一次方程(组)及应用;运算能力.
【分析】①+②得出3x﹣3y=6,再方程两边都除以3即可.
【解答】解:,
①+②,得3x﹣3y=6,
两边都除以3得:x﹣y=2,
故选:A.
【点评】本题考查了解二元一次方程组,能选择适当的方法求解是解此题的关键.
11.(2021•张家界)对于实数a,b定义运算“☆”如下:a☆b=ab2﹣ab,例如3☆2=3×22﹣3×2=6,则方程1☆x=2的根的情况为( )
A.没有实数根 B.只有一个实数根
C.有两个相等的实数根 D.有两个不相等的实数根
【考点】根的判别式;实数的运算.版权所有
【专题】实数;一元二次方程及应用;运算能力.
【分析】根据运算“☆”的定义将方程1☆x=2转化为一般式,由根的判别式Δ=9>0,即可得出该方程有两个不相等的实数根.
【解答】解:∵1☆x=2,
∴1•x2﹣1•x=2,
∴x2﹣x﹣2=0,
∴Δ=(﹣1)2﹣4×1×(﹣2)=9>0,
∴方程1☆x=2有两个不相等的实数根.
故选:D.
【点评】本题考查了根的判别式和实数的运算,牢记“当Δ>0时,方程有两个不相等的实数根”是解决问题的关键.
12.(2021•邵阳)在平面直角坐标系中,若直线y=﹣x+m不经过第一象限,则关于x的方程mx2+x+1=0的实数根的个数为( )
A.0个 B.1个 C.2个 D.1或2个
【考点】根的判别式;一次函数的性质;一元二次方程的定义.版权所有
【专题】一元二次方程及应用;一次函数及其应用;运算能力.
【分析】由直线解析式求得m≤0,然后确定△的符号即可.
【解答】解:∵直线y=﹣x+m不经过第一象限,
∴m≤0,
当m=0时,方程mx2+x+1=0是一次方程,有一个根,
当m<0时,
∵关于x的方程mx2+x+1=0,
∴Δ=12﹣4m>0,
∴关于x的方程mx2+x+1=0有两个不相等的实数根,
故选:D.
【点评】本题考查了一次函数的性质,根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.
13.(2019•永州)若关于x的不等式组有解,则在其解集中,整数的个数不可能是( )
A.1 B.2 C.3 D.4
【考点】一元一次不等式组的整数解;解一元一次不等式组.版权所有
【专题】一元一次不等式(组)及应用.
【分析】先分别求出每一个不等式的解集,再根据不等式组有解,求出m<4,然后分别取m=2,0,﹣1,得出整数解的个数,即可求解.
【解答】解:方法1:解不等式2x﹣6+m<0,得:x<,
解不等式4x﹣m>0,得:x>,
∵不等式组有解,
∴<,
解得m<4,
如果m=2,则不等式组的解集为<x<2,整数解为x=1,有1个;
如果m=0,则不等式组的解集为0<x<3,整数解为x=1,2,有2个;
如果m=﹣1,则不等式组的解集为﹣<x<,整数解为x=0,1,2,3,有4个.
方法2:解不等式2x﹣6+m<0,得:x<,
解不等式4x﹣m>0,得:x>,
∵不等式组有解,
∴<,
解得m<4,
①0<m<4时,0<<1,1<<3,
∴只能取1或1,2;
②m<0时,<0,>3,
∴至少可取0,1,2,3,至,4个.
故选:C.
【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
14.(2019•常德)小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜.甲说:“至少15元.”乙说:“至多12元.”丙说:“至多10元.”小明说:“你们三个人都说错了”.则这本书的价格x(元)所在的范围为( )
A.10<x<12 B.12<x<15 C.10<x<15 D.11<x<14
【考点】一元一次不等式组的应用.版权所有
【专题】一元一次不等式(组)及应用.
【分析】根据题意得出不等式组解答即可.
【解答】解:根据题意可得:,
可得无解,
∵三个人都说错了,
∴12<x<15
故选:B.
【点评】此题考查一元一次不等式组的应用,关键是根据题意得出不等式组解答.
二.填空题(共3小题)
15.(2019•岳阳)分式方程的解为x= 1 .
【考点】解分式方程.版权所有
【专题】计算题.
【分析】观察可得最简公分母为x(x+1).去分母,转化为整式方程求解.结果要检验.
【解答】解:方程两边同乘x(x+1),
得x+1=2x,
解得x=1.
将x=1代入x(x+1)=2≠0.
所以x=1是原方程的解.
【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.
(2)解分式方程一定注意要验根.
16.(2019•张家界)《田亩比类乘除捷法》是我国古代数学家杨辉的著作,其中有一个数学问题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何”.意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多多少步?根据题意得,长比宽多 12 步.
【考点】一元二次方程的应用;数学常识.版权所有
【专题】一元二次方程及应用.
【分析】根据题意,可以列出相应的一元二次方程,从而可以解答本题.
【解答】解:设长为x步,宽为(60﹣x)步,
x(60﹣x)=864,
解得,x1=36,x2=24(舍去),
∴当x=36时,60﹣x=24,
∴长比宽多:36﹣24=12(步),
故答案为:12.
【点评】本题考查一元二次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的知识解答,注意长比宽要长.
17.(2019•邵阳)关于x的一元二次方程x2﹣2x﹣m=0有两个不相等的实数根,则m的最小整数值是 0 .
【考点】根的判别式.版权所有
【专题】一元二次方程及应用.
【分析】根据一元二次方程根的存在性,利用判别式Δ>0求解即可;
【解答】解:一元二次方程x2﹣2x﹣m=0有两个不相等的实数根,
∴Δ=4+4m>0,
∴m>﹣1;
故答案为0;
【点评】本题考查一元二次方程的根的存在性;熟练掌握利用判别式△确定一元二次方程的根的存在性是解题的关键.
三.解答题(共6小题)
18.(2019•邵阳)2019年1月14日,国新办举行新闻发布会,海关总署新闻发言人李魁文在会上指出:在2018年,我国进出口规模创历史新高,全年外贸进出口总值为30万亿元人民币.有望继续保持全球货物贸易第一大国地位.预计2020年我国外贸进出口总值将达36.3万亿元人民币.求这两年我国外贸进出口总值的年平均增长率.
【考点】一元二次方程的应用.版权所有
【专题】增长率问题;数学建模思想;一元二次方程及应用;模型思想.
【分析】根据a(1+x)2=b增长率公式建立方程30(1+x)2=36.3,解方程即可.
【解答】解:设平均增长率为x,根据题意列方程得
30(1+x)2=36.3
解得x1=0.1,x2=﹣2.1(舍)
答:我国外贸进出口总值的年平均增长率为10%.
【点评】本题考查了一元二次方程应用问题关于增长率类型,利用公式建立方程即可,记忆公式并运用公式是本题的关键.
19.(2019•娄底)某商场用14500元购进甲、乙两种矿泉水共500箱,矿泉水的成本价与销售价如表所示:
类别
成本价(元/箱)
销售价(元/箱)
甲
25
35
乙
35
48
求:(1)购进甲、乙两种矿泉水各多少箱?
(2)该商场售完这500箱矿泉水,可获利多少元?
【考点】二元一次方程组的应用.版权所有
【专题】方程思想;一次方程(组)及应用.
【分析】(1)设购进甲矿泉水x箱,购进乙矿泉水y箱,根据该商场用14500元购进甲、乙两种矿泉水共500箱,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)根据总利润=单箱利润×销售数量,即可求出结论.
【解答】解:(1)设购进甲矿泉水x箱,购进乙矿泉水y箱,
依题意,得:,
解得:.
答:购进甲矿泉水300箱,购进乙矿泉水200箱.
(2)(35﹣25)×300+(48﹣35)×200=5600(元).
答:该商场售完这500箱矿泉水,可获利5600元.
【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
20.(2021•永州)若x1,x2是关于x的一元二次方程ax2+bx+c=0的两个根,则x1+x2=﹣,x1•x2=.现已知一元二次方程px2+2x+q=0的两根分别为m,n.
(1)若m=2,n=﹣4,求p,q的值;
(2)若p=3,q=﹣1,求m+mn+n的值.
【考点】根与系数的关系;一元二次方程的一般形式.版权所有
【专题】一元二次方程及应用;运算能力.
【分析】(1)利用根与系数的关系得到2﹣4=﹣,2×(﹣4)=,然后分别解方程求出p与q的值;
(2)利用根与系数的关系得到m+n=﹣,mn=﹣,然后利用整体代入的方法计算.
【解答】解:(1)根据题意得2﹣4=﹣,2×(﹣4)=,
所以p=1,q=﹣8;
(2)根据m+n=﹣=﹣,mn=﹣,
所以m+mn+n=m+n+mn=﹣﹣=﹣1.
【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1•x2=.
21.(2021•常德)某汽车贸易公司销售A、B两种型号的新能源汽车,A型车进货价格为每台12万元,B型车进货价格为每台15万元,该公司销售2台A型车和5台B型车,可获利3.1万元,销售1台A型车和2台B型车,可获利1.3万元.
(1)求销售一台A型、一台B型新能源汽车的利润各是多少万元?
(2)该公司准备用不超过300万元资金,采购A、B两种新能源汽车共22台,问最少需要采购A型新能源汽车多少台?
【考点】一元一次不等式的应用;二元一次方程组的应用.版权所有
【专题】一次方程(组)及应用;一元一次不等式(组)及应用;应用意识.
【分析】(1)设销售一台A型新能源汽车的利润是x万元,销售一台B型新能源汽车的利润是y万元,根据“销售2台A型车和5台B型车,可获利3.1万元,销售1台A型车和2台B型车,可获利1.3万元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设需要采购A型新能源汽车m台,则采购B型新能源汽车(22﹣m)台,根据总价=单价×数量,结合总价不超过300万元,即可得出关于m的一元一次不等式,解之取其中的最小值即可得出结论.
【解答】解:(1)设销售一台A型新能源汽车的利润是x万元,销售一台B型新能源汽车的利润是y万元,
依题意得:,
解得:.
答:销售一台A型新能源汽车的利润是0.3万元,销售一台B型新能源汽车的利润是0.5万元.
(2)设需要采购A型新能源汽车m台,则采购B型新能源汽车(22﹣m)台,
依题意得:12m+15(22﹣m)≤300,
解得:m≥10.
答:最少需要采购A型新能源汽车10台.
【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.
22.(2019•衡阳)某商店购进A、B两种商品,购买1个A商品比购买1个B商品多花10元,并且花费300元购买A商品和花费100元购买B商品的数量相等.
(1)求购买一个A商品和一个B商品各需要多少元;
(2)商店准备购买A、B两种商品共80个,若A商品的数量不少于B商品数量的4倍,并且购买A、B商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?
【考点】分式方程的应用;一元一次不等式组的应用.版权所有
【专题】方程思想;分式方程及应用;一元一次不等式(组)及应用.
【分析】(1)设购买一个B商品需要x元,则购买一个A商品需要(x+10)元,根据数量=总价÷单价结合花费300元购买A商品和花费100元购买B商品的数量相等,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)设购买B商品m个,则购买A商品(80﹣m)个,根据A商品的数量不少于B商品数量的4倍并且购买A、B商品的总费用不低于1000元且不高于1050元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数即可找出各购买方案.
【解答】解:(1)设购买一个B商品需要x元,则购买一个A商品需要(x+10)元,
依题意,得:=,
解得:x=5,
经检验,x=5是原方程的解,且符合题意,
∴x+10=15.
答:购买一个A商品需要15元,购买一个B商品需要5元.
(2)设购买B商品m个,则购买A商品(80﹣m)个,
依题意,得:,
解得:15≤m≤16.
∵m为整数,
∴m=15或16.
∴商店有2种购买方案,方案①:购进A商品65个、B商品15个;方案②:购进A商品64个、B商品16个.
【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.
23.(2019•长沙)近日,长沙市教育局出台《长沙市中小学教师志愿辅导工作实施意见》,鼓励教师参与志愿辅导,某区率先示范,推出名师公益大课堂,为学生提供线上线下免费辅导,据统计,第一批公益课受益学生2万人次,第三批公益课受益学生2.42万人次.
(1)如果第二批,第三批公益课受益学生人次的增长率相同,求这个增长率;
(2)按照这个增长率,预计第四批公益课受益学生将达到多少万人次?
【考点】一元二次方程的应用.版权所有
【专题】一元二次方程及应用.
【分析】(1)设增长率为x,根据“第一批公益课受益学生2万人次,第三批公益课受益学生2.42万人次”可列方程求解;
(2)用2.42×(1+增长率),计算即可求解.
【解答】解:(1)设增长率为x,根据题意,得
2(1+x)2=2.42,
解得x1=﹣2.1(舍去),x2=0.1=10%.
答:增长率为10%.
(2)2.42(1+0.1)=2.662(万人).
答:第四批公益课受益学生将达到2.662万人次.
【点评】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.
考点卡片
1.数学常识
数学常识
此类问题要结合实际问题来解决,生活中的一些数学常识要了解.比如给出一个物体的高度要会选择它合适的单位长度等等.
平时要注意多观察,留意身边的小知识.
2.实数的运算
(1)实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.
(2)在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.
另外,有理数的运算律在实数范围内仍然适用.
【规律方法】实数运算的“三个关键”
1.运算法则:乘方和开方运算、幂的运算、指数(特别是负整数指数,0指数)运算、根式运算、特殊三角函数值的计算以及绝对值的化简等.
2.运算顺序:先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算,无论何种运算,都要注意先定符号后运算.
3.运算律的使用:使用运算律可以简化运算,提高运算速度和准确度.
3.由实际问题抽象出一元一次方程
审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程.
(1)“总量=各部分量的和”是列方程解应用题中一个基本的关系式,在这一类问题中,表示出各部分的量和总量,然后利用它们之间的等量关系列方程.
(2)“表示同一个量的不同式子相等”是列方程解应用题中的一个基本相等关系,也是列方程的一种基本方法.通过对同一个量从不同的角度用不同的式子表示,进而列出方程.
4.解二元一次方程组
(1)用代入法解二元一次方程组的一般步骤:①从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数用含另一个未知数的代数式表示出来.②将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求出x(或y)的值.④将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值.⑤把求得的x、y的值用“{”联立起来,就是方程组的解.
(2)用加减法解二元一次方程组的一般步骤:①方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使某一个未知数的系数相等或互为相反数.②把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求得未知数的值.④将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值.⑤把所求得的两个未知数的值写在一起,就得到原方程组的解,用的形式表示.
5.二元一次方程组的应用
(一)列二元一次方程组解决实际问题的一般步骤:
(1)审题:找出问题中的已知条件和未知量及它们之间的关系.
(2)设元:找出题中的两个关键的未知量,并用字母表示出来.
(3)列方程组:挖掘题目中的关系,找出两个等量关系,列出方程组.
(4)求解.
(5)检验作答:检验所求解是否符合实际意义,并作答.
(二)设元的方法:直接设元与间接设元.
当问题较复杂时,有时设与要求的未知量相关的另一些量为未知数,即为间接设元.无论怎样设元,设几个未知数,就要列几个方程.
6.一元二次方程的定义
(1)一元二次方程的定义:
只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.
(2)概念解析:
一元二次方程必须同时满足三个条件:
①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;
②只含有一个未知数;
③未知数的最高次数是2.
(3)判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.
7.一元二次方程的一般形式
(1)一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.
其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项.一次项系数b和常数项c可取任意实数,二次项系数a是不等于0的实数,这是因为当a=0时,方程中就没有二次项了,所以,此方程就不是一元二次方程了.
(2)要确定二次项系数,一次项系数和常数项,必须先把一元二次方程化成一般形式.
8.根的判别式
利用一元二次方程根的判别式(△=b2﹣4ac)判断方程的根的情况.
一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:
①当△>0时,方程有两个不相等的两个实数根;
②当△=0时,方程有两个相等的两个实数根;
③当△<0时,方程无实数根.
上面的结论反过来也成立.
9.根与系数的关系
(1)若二次项系数为1,常用以下关系:x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q,反过来可得p=﹣(x1+x2),q=x1x2,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数.
(2)若二次项系数不为1,则常用以下关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=,反过来也成立,即=﹣(x1+x2),=x1x2.
(3)常用根与系数的关系解决以下问题:
①不解方程,判断两个数是不是一元二次方程的两个根.②已知方程及方程的一个根,求另一个根及未知数.③不解方程求关于根的式子的值,如求,x12+x22等等.④判断两根的符号.⑤求作新方程.⑥由给出的两根满足的条件,确定字母的取值.这类问题比较综合,解题时除了利用根与系数的关系,同时还要考虑a≠0,△≥0这两个前提条件.
10.由实际问题抽象出一元二次方程
在解决实际问题时,要全面、系统地审清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系,设出未知数,用方程表示出已知量与未知量之间的等量关系,即列出一元二次方程.
11.一元二次方程的应用
1、列方程解决实际问题的一般步骤是:审清题意设未知数,列出方程,解所列方程求所列方程的解,检验和作答.
2、列一元二次方程解应用题中常见问题:
(1)数字问题:个位数为a,十位数是b,则这个两位数表示为10b+a.
(2)增长率问题:增长率=增长数量/原数量×100%.如:若原数是a,每次增长的百分率为x,则第一次增长后为a(1+x);第二次增长后为a(1+x)2,即 原数×(1+增长百分率)2=后来数.
(3)形积问题:①利用勾股定理列一元二次方程,求三角形、矩形的边长.②利用三角形、矩形、菱形、梯形和圆的面积,以及柱体体积公式建立等量关系列一元二次方程.③利用相似三角形的对应比例关系,列比例式,通过两内项之积等于两外项之积,得到一元二次方程.
(4)运动点问题:物体运动将会沿着一条路线或形成一条痕迹,运行的路线与其他条件会构成直角三角形,可运用直角三角形的性质列方程求解.
【规律方法】列一元二次方程解应用题的“六字诀”
1.审:理解题意,明确未知量、已知量以及它们之间的数量关系.
2.设:根据题意,可以直接设未知数,也可以间接设未知数.
3.列:根据题中的等量关系,用含所设未知数的代数式表示其他未知量,从而列出方程.
4.解:准确求出方程的解.
5.验:检验所求出的根是否符合所列方程和实际问题.
6.答:写出答案.
12.解分式方程
(1)解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.
(2)解分式方程时,去分母后所得整式方程的解有可能使原方程中的分母为0,所以应如下检验:
①将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解.
②将整式方程的解代入最简公分母,如果最简公分母的值为0,则整式方程的解不是原分式方程的解.
所以解分式方程时,一定要检验.
13.分式方程的应用
1、列分式方程解应用题的一般步骤:设、列、解、验、答.
必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.
2、要掌握常见问题中的基本关系,如行程问题:速度=路程时间;工作量问题:工作效率=工作量工作时间
等等.
列分式方程解应用题一定要审清题意,找相等关系是着眼点,要学会分析题意,提高理解能力.
14.不等式的性质
(1)不等式的基本性质
①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,即:
若a>b,那么a±m>b±m;
②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,即:
若a>b,且m>0,那么am>bm或>;
③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,即:
若a>b,且m<0,那么am<bm或<;
(2)不等式的变形:①两边都加、减同一个数,具体体现为“移项”,此时不等号方向不变,但移项要变号;②两边都乘、除同一个数,要注意只有乘、除负数时,不等号方向才改变.
【规律方法】
1.应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.
2.不等式的传递性:若a>b,b>c,则a>c.
15.一元一次不等式的应用
(1)由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.
(2)列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.
(3)列一元一次不等式解决实际问题的方法和步骤:
①弄清题中数量关系,用字母表示未知数.
②根据题中的不等关系列出不等式.
③解不等式,求出解集.
④写出符合题意的解.
16.解一元一次不等式组
(1)一元一次不等式组的解集:几个一元一次不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.
(2)解不等式组:求不等式组的解集的过程叫解不等式组.
(3)一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.
方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.
解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
17.一元一次不等式组的整数解
(1)利用数轴确定不等式组的解(整数解).
解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.
(2)已知解集(整数解)求字母的取值.
一般思路为:先把题目中除未知数外的字母当做常数看待解不等式组或方程组等,然后再根据题目中对结果的限制的条件得到有关字母的代数式,最后解代数式即可得到答案.
18.一元一次不等式组的应用
对具有多种不等关系的问题,考虑列一元一次不等式组,并求解.
一元一次不等式组的应用主要是列一元一次不等式组解应用题,其一般步骤:
(1)分析题意,找出不等关系;
(2)设未知数,列出不等式组;
(3)解不等式组;
(4)从不等式组解集中找出符合题意的答案;
(5)作答.
19.一次函数的性质
一次函数的性质:
k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.
由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.
声明:试题解析著作权属所有,未经书面同意,不得复制发布
日期:2022/3/16 20:21:13;用户:组卷1;邮箱:zyb001@xyh.com;学号:41418964
相关试卷
这是一份2017-2021年山东中考数学真题分类汇编之方程与不等式,共27页。
这是一份2017-2021年江苏中考数学真题分类汇编之方程与不等式,共27页。
这是一份2017-2021年四川中考数学真题分类汇编之方程与不等式,共26页。