2017-2021年河南中考数学真题分类汇编之图形的变化
展开
这是一份2017-2021年河南中考数学真题分类汇编之图形的变化,共39页。试卷主要包含了,则△BEC的面积为 等内容,欢迎下载使用。
2017-2021年河南中考数学真题分类汇编之图形的变化
一.选择题(共8小题)
1.(2021•河南)如图是由8个相同的小正方体组成的几何体,其主视图是( )
A. B. C. D.
2.(2020•河南)如图摆放的几何体中,主视图与左视图有可能不同的是( )
A. B. C. D.
3.(2017•河南)某几何体的左视图如图所示,则该几何体不可能是( )
A. B.
C. D.
4.(2019•河南)如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的三视图,下列说法正确的是( )
A.主视图相同 B.左视图相同
C.俯视图相同 D.三种视图都不相同
5.(2019•河南)如图,在△OAB中,顶点O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为( )
A.(10,3) B.(﹣3,10) C.(10,﹣3) D.(3,﹣10)
6.(2018•河南)将图①中的小正方体沿箭头方向平移到图②位置,下列说法正确的是( )
A.图①的主视图和图②的主视图相同
B.图①的主视图与图②的左视图相同
C.图①的左视图与图②的左视图相同
D.图①的俯视图与图②的俯视图相同
7.(2021•河南)如图,▱OABC的顶点O(0,0),A(1,2),点C在x轴的正半轴上,延长BA交y轴于点D.将△ODA绕点O顺时针旋转得到△OD′A′,当点D的对应点D′落在OA上时,D′A′的延长线恰好经过点C,则点C的坐标为( )
A.(2,0) B.(2,0) C.(2+1,0) D.(2+1,0)
8.(2017•河南)如图,在横格作业纸(横线等距)上画一条直线,与横格线交于A,B,C三点,则BC:AC等于( )
A.2:3 B.2:5 C.3:4 D.3:5
二.填空题(共6小题)
9.(2017•河南)如图,在等边三角形ABC中,AB=2cm,点M为边BC的中点,点N为边AB上的任意一点(不与点A,B重合),若点B关于直线MN的对称点B'恰好落在等边三角形ABC的边上,则BN的长为 cm.
10.(2017•河南)如图,在△ABC中,AB=8,AC=12,D为AB的中点,点E为CD上一点,若四边形AGEF为正方形(其中点F,G分别在AC,AB上),则△BEC的面积为 .
11.小华用一张直角三角形纸片玩折纸游戏,如图1,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=1.第一步,在AB边上找一点D,将纸片沿CD折叠,点A落在A'处,如图2;第二步,将纸片沿CA'折叠,点D落在D′处,如图3.当点D′恰好落在原直角三角形纸片的边上时,线段A′D′的长为 .
12.(2019•河南)如图,在矩形ABCD中,AB=1,BC=a,点E在边BC上,且BE=a.连接AE,将△ABE沿AE折叠,若点B的对应点B′落在矩形ABCD的边上,则a的值为 .
13.(2018•河南)如图,在矩形ABCD中,点E为AB的中点,点F为射线AD上一动点,△A′EF与△AEF关于EF所在直线对称,连接AC,分别交EA′、EF于点M、N,AB=2,AD=2.若△EMN与△AEF相似,则AF的长为 .
14.(2017•河南)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为 .
三.解答题(共6小题)
15.(2021•河南)开凿于北魏孝文帝年间的龙门石窟是中国石刻艺术瑰宝,卢舍那佛像是石窟中最大的佛像.某数学活动小组到龙门石窟景区测量这尊佛像的高度.如图,他们选取的测量点A与佛像BD的底部D在同一水平线上.已知佛像头部BC为4m,在A处测得佛像头顶部B的仰角为45°,头底部C的仰角为37.5°,求佛像BD的高度(结果精确到0.1m.参考数据:sin37.5°≈0.61,cos37.5°≈0.79,tan37.5°≈0.77).
16.(2019•河南)数学兴趣小组到黄河风景名胜区测量炎帝塑像(塑像中高者)的高度.如图所示,炎帝塑像DE在高55m的小山EC上,在A处测得塑像底部E的仰角为34°,再沿AC方向前进21m到达B处,测得塑像顶部D的仰角为60°,求炎帝塑像DE的高度.
(精确到1m.参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67,≈1.73)
17.(2018•河南)2018年5月13日清晨,我国第一艘自主研制的001A型航空母舰从大连造船厂码头启航,赴相关海域执行海上试验任务已知舰长BD约306m,航母前端点E到水平甲板BD的距离DE为6m,舰岛顶端A到BD的距离是AC,经测量,∠BAC=71.6°,∠EAC=80.6°,请计算舰岛AC的高度.(结果精确到1m,参考数据:sin71.6°≈0.95,cos71.6°≈0.32,tan71.6°≈3.01,sin80.6°≈0.99,cos80.6°≈0.16,tan80.6°≈6.04)
18.(2020•河南)位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.
某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道MP上架设测角仪,先在点M处测得观星台最高点A的仰角为22°,然后沿MP方向前进16m到达点N处,测得点A的仰角为45°.测角仪的高度为1.6m.
(1)求观星台最高点A距离地面的高度(结果精确到0.1m.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,≈1.41);
(2)“景点简介”显示,观星台的高度为12.6m.请计算本次测量结果的误差,并提出一条减小误差的合理化建议.
19.(2019•河南)在△ABC中,CA=CB,∠ACB=α.点P是平面内不与点A,C重合的任意一点.连接AP,将线段AP绕点P逆时针旋转α得到线段DP,连接AD,BD,CP.
(1)观察猜想
如图1,当α=60°时,的值是 ,直线BD与直线CP相交所成的较小角的度数是 .
(2)类比探究
如图2,当α=90°时,请写出的值及直线BD与直线CP相交所成的较小角的度数,并就图2的情形说明理由.
(3)解决问题
当α=90°时,若点E,F分别是CA,CB的中点,点P在直线EF上,请直接写出点C,P,D在同一直线上时的值.
20.(2017•河南)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.
(1)观察猜想:图1中,线段PM与PN的数量关系是 ,位置关系是 ;
(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;
(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.
2017-2021年河南中考数学真题分类汇编之图形的变化
参考答案与试题解析
一.选择题(共8小题)
1.(2021•河南)如图是由8个相同的小正方体组成的几何体,其主视图是( )
A. B. C. D.
【考点】简单组合体的三视图.版权所有
【专题】投影与视图;空间观念.
【分析】将图形分成三层,从上而下第一层主视图为一个正方形,第二层主视图为两个正方形,第三层主视图为三个正方形,且左边是对齐的.
【解答】解:该几何体的主视图有三层,从上而下第一层主视图为一个正方形,第二层主视图为两个正方形,第三层主视图为三个正方形,且左边是对齐的.
故选:A.
【点评】本题主要考查三视图的定义,在理解三视图的基础上,还要有较强的空间想象能力.
2.(2020•河南)如图摆放的几何体中,主视图与左视图有可能不同的是( )
A. B. C. D.
【考点】简单几何体的三视图.版权所有
【专题】投影与视图;几何直观.
【分析】分别确定每个几何体的主视图和左视图即可作出判断.
【解答】解:A、主视图和左视图是长方形,一定相同,故本选项不合题意;
B、主视图和左视图都是等腰三角形,一定相同,故选项不符合题意;
C、主视图和左视图都是圆,一定相同,故选项不符合题意;
D、主视图是长方形,左视图是可能是正方形,也可能是长方形,故本选项符合题意;
故选:D.
【点评】本题考查了简单几何体的三视图,确定三视图是关键.
3.(2017•河南)某几何体的左视图如图所示,则该几何体不可能是( )
A. B.
C. D.
【考点】由三视图判断几何体.版权所有
【分析】左视图是从左边看到的,据此求解.
【解答】解:从左视图可以发现:该几何体共有两列,正方体的个数分别为2,1,
D不符合,
故选:D.
【点评】考查了由三视图判断几何体的知识,解题的关键是了解该几何体的构成,难度不大.
4.(2019•河南)如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的三视图,下列说法正确的是( )
A.主视图相同 B.左视图相同
C.俯视图相同 D.三种视图都不相同
【考点】简单组合体的三视图;平移的性质.版权所有
【专题】投影与视图.
【分析】根据三视图解答即可.
【解答】解:图①的三视图为:
图②的三视图为:
故选:C.
【点评】本题考查了几何体的三视图,解题的关键是学生的观察能力和对几何体三种视图的空间想象能力.
5.(2019•河南)如图,在△OAB中,顶点O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为( )
A.(10,3) B.(﹣3,10) C.(10,﹣3) D.(3,﹣10)
【考点】坐标与图形变化﹣旋转;规律型:点的坐标.版权所有
【专题】平移、旋转与对称.
【分析】先求出AB=6,再利用正方形的性质确定D(﹣3,10),由于70=4×17+2,所以第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转2次,每次旋转90°,此时旋转前后的点D关于原点对称,于是利用关于原点对称的点的坐标特征可得到旋转后的点D的坐标.
【解答】解:∵A(﹣3,4),B(3,4),
∴AB=3+3=6,
∵四边形ABCD为正方形,
∴AD=AB=6,
∴D(﹣3,10),
∵70=4×17+2,
∴每4次一个循环,第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转2次,每次旋转90°,
∴点D的坐标为(3,﹣10).
故选:D.
【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.
6.(2018•河南)将图①中的小正方体沿箭头方向平移到图②位置,下列说法正确的是( )
A.图①的主视图和图②的主视图相同
B.图①的主视图与图②的左视图相同
C.图①的左视图与图②的左视图相同
D.图①的俯视图与图②的俯视图相同
【考点】简单组合体的三视图;平移的性质.版权所有
【专题】投影与视图.
【分析】根据主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形,得出图①、图②的三视图即可.
【解答】解:找到图①、图②从正面、侧面和上面看所得到的图形,
可知图①的主视图与图②的左视图相同,图①的左视图与图②的主视图相同.
故选:B.
【点评】本题主要是从比较图①、图②来考查物体的三视图,难度一般.
7.(2021•河南)如图,▱OABC的顶点O(0,0),A(1,2),点C在x轴的正半轴上,延长BA交y轴于点D.将△ODA绕点O顺时针旋转得到△OD′A′,当点D的对应点D′落在OA上时,D′A′的延长线恰好经过点C,则点C的坐标为( )
A.(2,0) B.(2,0) C.(2+1,0) D.(2+1,0)
【考点】旋转的性质;坐标与图形性质;平行四边形的性质.版权所有
【专题】多边形与平行四边形;运算能力.
【分析】延长A′D′交y轴于点E,延长D′A′,由题意D′A′的延长线经过点C,利用点A的坐标可求得线段AD,OD,OA的长,由题意:△OA′D′≌△OAD,可得对应部分相等;利用OD′⊥A′E,OA平分∠A′OE,可得△A′OE为等腰三角形,可得OE=OA′=,ED′=A′D′=1;利用△OED′∽△CEO,得到比例式可求线段OC,则点C坐标可得.
【解答】解:延长A′D′交y轴于点E,延长D′A′,由题意D′A′的延长线经过点C,如图,
∵A(1,2),
∴AD=1,OD=2,
∴OA=.
由题意:△OA′D′≌△OAD,
∴A′D′=AD=1,OA′=OA=,OD′=OD=2,∠A′D′O=∠ADO=90°,∠A′OD′=∠DOD′.
则OD′⊥A′E,OA平分∠A′OE,
∴△A′OE为等腰三角形.
∴OE=OA′=,ED′=A′D′=1.
∵EO⊥OC,OD′⊥EC,
∴△OED′∽△CEO.
∴.
∴.
∴OC=2.
∴C(2,0).
故选:B.
【点评】本题主要考查了旋转的性质,平行四边形的性质,坐标与图形的性质,三角形相似的判定与性质,利用点的坐标表示出相应线段的长度和利用线段的长度表示相应点的坐标是解题的关键.
8.(2017•河南)如图,在横格作业纸(横线等距)上画一条直线,与横格线交于A,B,C三点,则BC:AC等于( )
A.2:3 B.2:5 C.3:4 D.3:5
【考点】平行线分线段成比例.版权所有
【专题】线段、角、相交线与平行线.
【分析】根据已知图形构造相似三角形,进而得出△ABD∽△ACE,
【解答】解:如图所示:过点A作平行线的垂线,交点分别为D,E,
可得:△ABD∽△ACE,
∴==,
∴BC:AC=3:4,
故选:C.
【点评】此题主要考查了相似三角形的应用,根据题意构造△ABD∽△ACE是解题关键.
二.填空题(共6小题)
9.(2017•河南)如图,在等边三角形ABC中,AB=2cm,点M为边BC的中点,点N为边AB上的任意一点(不与点A,B重合),若点B关于直线MN的对称点B'恰好落在等边三角形ABC的边上,则BN的长为 或 cm.
【考点】轴对称的性质.版权所有
【专题】平移、旋转与对称.
【分析】如图1,当点B关于直线MN的对称点B'恰好落在等边三角形ABC的边AB上时,于是得到MN⊥AB,BN=BN′,根据等边三角形的性质得到=AC=BC,∠ABC=60°,根据线段中点的定义得到BN=BM=,如图2,当点B关于直线MN的对称点B'恰好落在等边三角形ABC的边A,C上时,则MN⊥BB′,四边形BMB′N是菱形,根据线段中点的定义即可得到结论.
【解答】解:如图1,当点B关于直线MN的对称点B'恰好落在等边三角形ABC的边AB上时,
则MN⊥AB,BN=BN′,
∵△ABC是等边三角形,
∴AB=AC=BC,∠ABC=60°,
∵点M为边BC的中点,
∴BM=BC=AB=,
∴BN=BM=,
如图2,当点B关于直线MN的对称点B'恰好落在等边三角形ABC的边A,C上时,
则MN⊥BB′,四边形BMB′N是菱形,
∵∠ABC=60°,点M为边BC的中点,
∴BN=BM=BC=AB=,
故答案为:或.
【点评】本题考查了轴对称的性质,等边三角形的性质,菱形的判定和性质,分类讨论是解题的关键.
10.(2017•河南)如图,在△ABC中,AB=8,AC=12,D为AB的中点,点E为CD上一点,若四边形AGEF为正方形(其中点F,G分别在AC,AB上),则△BEC的面积为 18 .
【考点】相似三角形的判定与性质;正方形的性质.版权所有
【专题】矩形 菱形 正方形;图形的相似.
【分析】由题意可得:EF∥AG,AF=EF=EG=AG,AD=DB=4,即可证△CEF∽△CDA,可得,即,可求AF=3,即可求△BEC的面积.
【解答】解:∵四边形AGEF是正方形
∴EF∥AG,AF=EF=EG=AG
∵点D是AB中点
∴DB=AD=AB=4
∵EF∥AG
∴△CEF∽△CDA
∴
∴
∴AF=3
∵S△BCE=S△ABC﹣S△ACD﹣S△BDE
∴S△BCE=×8×12﹣×12×4﹣×4×3=18
故答案为:18
【点评】本题考查了相似三角形的性质和判定,正方形的性质,熟练运用这些性质解决问题是本题的关键.
11.小华用一张直角三角形纸片玩折纸游戏,如图1,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=1.第一步,在AB边上找一点D,将纸片沿CD折叠,点A落在A'处,如图2;第二步,将纸片沿CA'折叠,点D落在D′处,如图3.当点D′恰好落在原直角三角形纸片的边上时,线段A′D′的长为 或 2﹣ .
【考点】翻折变换(折叠问题);含30度角的直角三角形.版权所有
【专题】操作型;等腰三角形与直角三角形;运算能力.
【分析】分两种情形解答:①点D′恰好落在直角三角形纸片的AB边上时,由题意:△ADC≌△A′DC≌△A′D′C,则∠D′A′C=∠DA′C=∠A=60°,A′C=AC=1;A′C垂直平分线段DD′;利用,可求得CE,则A′E=A′C﹣CE,解直角三角形A′D′E可求线段A′D′;②点D′恰好落在直角三角形纸片的BC边上时,由题意:△ADC≌△A′DC≌△A′D′C,则∠D′A′C=∠DA′C=∠A=60°,A′C=AC=1,∠ACD=∠A′CD=∠A′CD′=∠ACB=30°;在Rt△A′D′C中,利用30°所对的直角边等于斜边的一半可得结论.
【解答】解:①点D′恰好落在直角三角形纸片的AB边上时,设A′C交AB边于点E,如图,
由题意:△ADC≌△A′DC≌△A′D′C,A′C垂直平分线段DD′.
则∠D′A′C=∠DA′C=∠A=60°,A′C=AC=1.
∵∠ACB=90°,∠B=30°,AC=1,
∴BC=AC•tanA=1×tan60°=.
AB=2AC=2,
∵,
∴CE=.
∴A′E=A′C﹣CE=1﹣.
在Rt△A′D′E中,
∵cos∠D′A′E=,
∴,
∴A′D′=2A′E=2﹣.
②点D′恰好落在直角三角形纸片的BC边上时,如图,
由题意:△ADC≌△A′DC≌△A′D′C,∠ACD=∠A′CD=∠A′CD′=∠ACB=30°;
则∠D′A′C=∠DA′C=∠A=60°,A′C=AC=1.
∵∠D′A′C=60°,∠A′CD′=30°,
∴∠A′D′C=90°,
∴A′D′=′C=.
综上,线段A′D′的长为: 或 2﹣.
故答案为: 或 2﹣.
【点评】本题主要考查了翻折问题,含30°角的直角三角形,直角三角形的边角关系,特殊角的三角函数值,全等三角形的性质.翻折属于全等变换,对应部分相等,这是解题的关键,当点D′恰好落在直角三角形纸片的边上时,要注意分类讨论.
12.(2019•河南)如图,在矩形ABCD中,AB=1,BC=a,点E在边BC上,且BE=a.连接AE,将△ABE沿AE折叠,若点B的对应点B′落在矩形ABCD的边上,则a的值为 或 .
【考点】翻折变换(折叠问题);矩形的性质.版权所有
【专题】平移、旋转与对称.
【分析】分两种情况:①点B′落在AD边上,根据矩形与折叠的性质易得AB=BE,即可求出a的值;②点B′落在CD边上,证明△ADB′∽△B′CE,根据相似三角形对应边成比例即可求出a的值.
【解答】解:分两种情况:
①当点B′落在AD边上时,如图1.
∵四边形ABCD是矩形,
∴∠BAD=∠B=90°,
∵将△ABE沿AE折叠,点B的对应点B′落在AD边上,
∴∠BAE=∠B′AE=∠BAD=45°,
∴AB=BE,
∴a=1,
∴a=;
②当点B′落在CD边上时,如图2.
∵四边形ABCD是矩形,
∴∠BAD=∠B=∠C=∠D=90°,AD=BC=a.
∵将△ABE沿AE折叠,点B的对应点B′落在CD边上,
∴∠B=∠AB′E=90°,AB=AB′=1,EB=EB′=a,
∴DB′==,EC=BC﹣BE=a﹣a=a.
在△ADB′与△B′CE中,
,
∴△ADB′∽△B′CE,
∴=,即=,
解得a1=,a2=﹣(舍去).
综上,所求a的值为或.
故答案为或.
【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质,勾股定理,相似三角形的判定与性质.进行分类讨论与数形结合是解题的关键.
13.(2018•河南)如图,在矩形ABCD中,点E为AB的中点,点F为射线AD上一动点,△A′EF与△AEF关于EF所在直线对称,连接AC,分别交EA′、EF于点M、N,AB=2,AD=2.若△EMN与△AEF相似,则AF的长为 1或3 .
【考点】相似三角形的性质;矩形的性质;轴对称的性质.版权所有
【专题】矩形 菱形 正方形.
【分析】分两种情形①当EM⊥AC时,△EMN∽△EAF.②当EN⊥AC时,△ENM∽△EAF,分别求解.
【解答】解:①当EM⊥AC时,△EMN∽△EAF,
∵四边形ABCD是矩形,
∴AD=BC=2,∠B=90°,
∴tan∠CAB==,
∴∠CAB=30°,
∴∠AEM=60°,
∴∠AEF=30°,
∴AF=AE•tan30°=•=1,
②当EN⊥AC时,△ENM∽△EAF,
可得AF=AE•tan60°=3,
故答案为1或3.
【点评】本题考查翻折变换,矩形的性质,解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
14.(2017•河南)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为 +或1 .
【考点】翻折变换(折叠问题);等腰直角三角形.版权所有
【分析】①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,于是得到结论;②如图2,当∠MB′C=90°,推出△CMB′是等腰直角三角形,得到CM=MB′,列方程即可得到结论.
【解答】解:①如图1,
当∠B′MC=90°,B′与A重合,M是BC的中点,
∴BM=BC=+;
②如图2,当∠MB′C=90°,
∵∠A=90°,AB=AC,
∴∠C=45°,
∴△CMB′是等腰直角三角形,
∴CM=MB′,
∵沿MN所在的直线折叠∠B,使点B的对应点B′,
∴BM=B′M,
∴CM=BM,
∵BC=+1,
∴CM+BM=BM+BM=+1,
∴BM=1,
综上所述,若△MB′C为直角三角形,则BM的长为+或1,
故答案为:+或1.
【点评】本题考查了翻折变换﹣折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.
三.解答题(共6小题)
15.(2021•河南)开凿于北魏孝文帝年间的龙门石窟是中国石刻艺术瑰宝,卢舍那佛像是石窟中最大的佛像.某数学活动小组到龙门石窟景区测量这尊佛像的高度.如图,他们选取的测量点A与佛像BD的底部D在同一水平线上.已知佛像头部BC为4m,在A处测得佛像头顶部B的仰角为45°,头底部C的仰角为37.5°,求佛像BD的高度(结果精确到0.1m.参考数据:sin37.5°≈0.61,cos37.5°≈0.79,tan37.5°≈0.77).
【考点】解直角三角形的应用﹣仰角俯角问题.版权所有
【专题】应用题;解直角三角形及其应用;运算能力;推理能力.
【分析】根据tan∠DAC==tan37.5°≈0.77,列出方程即可解决问题.
【解答】解:根据题意可知:∠DAB=45°,
∴BD=AD,
在Rt△ADC中,DC=BD﹣BC=(AD﹣4)m,∠DAC=37.5°,
∵tan∠DAC=,
∴tan37.5°=≈0.77,
解得AD≈17.4m,
∴BD=AD≈17.4m,
答:佛像的高度约为17.4 m.
【点评】本题考查解直角三角形的应用﹣仰角俯角问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用构建方程的思想思考问题.
16.(2019•河南)数学兴趣小组到黄河风景名胜区测量炎帝塑像(塑像中高者)的高度.如图所示,炎帝塑像DE在高55m的小山EC上,在A处测得塑像底部E的仰角为34°,再沿AC方向前进21m到达B处,测得塑像顶部D的仰角为60°,求炎帝塑像DE的高度.
(精确到1m.参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67,≈1.73)
【考点】解直角三角形的应用﹣仰角俯角问题.版权所有
【专题】解直角三角形及其应用.
【分析】由三角函数求出AC=≈82.1m,得出BC=AC﹣AB=61.1m,在Rt△BCD中,由三角函数得出CD=BC≈105.7m,即可得出答案.
【解答】解:∵∠ACE=90°,∠CAE=34°,CE=55m,
∴tan∠CAE=,
∴AC==≈82.1m,
∵AB=21m,
∴BC=AC﹣AB=61.1m,
在Rt△BCD中,tan60°==,
∴CD=BC≈1.73×61.1≈105.7m,
∴DE=CD﹣EC=105.7﹣55≈51m,
答:炎帝塑像DE的高度约为51m.
【点评】本题考查了解直角三角形的应用,解答本题的关键是根据仰角和俯角构造直角三角形,利用三角函数的知识求解,难度适中.
17.(2018•河南)2018年5月13日清晨,我国第一艘自主研制的001A型航空母舰从大连造船厂码头启航,赴相关海域执行海上试验任务已知舰长BD约306m,航母前端点E到水平甲板BD的距离DE为6m,舰岛顶端A到BD的距离是AC,经测量,∠BAC=71.6°,∠EAC=80.6°,请计算舰岛AC的高度.(结果精确到1m,参考数据:sin71.6°≈0.95,cos71.6°≈0.32,tan71.6°≈3.01,sin80.6°≈0.99,cos80.6°≈0.16,tan80.6°≈6.04)
【考点】解直角三角形的应用.版权所有
【专题】解直角三角形及其应用.
【分析】设AC=xm.作EH⊥AC于H,则四边形EHCD是矩形.根据BD=306,构建方程即可解决问题.
【解答】解:设AC=xm.作EH⊥AC于H,则四边形EHCD是矩形.
∴DE=CH=6m,CD=EH=AH•tan80.6°=6.04(x﹣6),BC=AC•tan71.6°=3.01x,
∵BD=306m,
∴3.01x+6.04(x﹣6)=306,
解得:x≈38,
答:岛AC的高度为38米.
【点评】本题考查解直角三角形的应用,具体的关键性学会添加常用辅助线构造直角三角形解决问题,属于中考常考题型.
18.(2020•河南)位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.
某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道MP上架设测角仪,先在点M处测得观星台最高点A的仰角为22°,然后沿MP方向前进16m到达点N处,测得点A的仰角为45°.测角仪的高度为1.6m.
(1)求观星台最高点A距离地面的高度(结果精确到0.1m.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,≈1.41);
(2)“景点简介”显示,观星台的高度为12.6m.请计算本次测量结果的误差,并提出一条减小误差的合理化建议.
【考点】解直角三角形的应用﹣仰角俯角问题.版权所有
【专题】解直角三角形及其应用;应用意识.
【分析】(1)过A作AD⊥PM于D,延长BC交AD于E,则四边形BMNC,四边形BMDE是矩形,于是得到BC=MN=16m,DE=CN=BM=1.6m,求得CE=AE,设AE=CE=x,得到BE=16+x,解直角三角形即可得到结论;
(2)建议为:为了减小误差可以通过多次测量取平均值的方法.
【解答】解:(1)过A作AD⊥PM于D,延长BC交AD于E,
则四边形BMNC,四边形BMDE是矩形,
∴BC=MN=16m,DE=CN=BM=1.6m,
∵∠AEC=90°,∠ACE=45°,
∴△ACE是等腰直角三角形,
∴CE=AE,
设AE=CE=x,
∴BE=16+x,
∵∠ABE=22°,
∴AE=BE•tan22°,即x=(16+x)×0.40,
∴x≈10.7(m),
∴AD=10.7+1.6=12.3(m),
答:观星台最高点A距离地面的高度约为12.3m;
(2)∵“景点简介”显示,观星台的高度为12.6m,
∴本次测量结果的误差为12.6﹣12.3=0.3(m),
减小误差的合理化建议为:为了减小误差可以通过多次测量取平均值的方法.
【点评】本题考查了解直角三角形的应用﹣﹣仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.
19.(2019•河南)在△ABC中,CA=CB,∠ACB=α.点P是平面内不与点A,C重合的任意一点.连接AP,将线段AP绕点P逆时针旋转α得到线段DP,连接AD,BD,CP.
(1)观察猜想
如图1,当α=60°时,的值是 1 ,直线BD与直线CP相交所成的较小角的度数是 60° .
(2)类比探究
如图2,当α=90°时,请写出的值及直线BD与直线CP相交所成的较小角的度数,并就图2的情形说明理由.
(3)解决问题
当α=90°时,若点E,F分别是CA,CB的中点,点P在直线EF上,请直接写出点C,P,D在同一直线上时的值.
【考点】相似形综合题.版权所有
【专题】几何综合题.
【分析】(1)如图1中,延长CP交BD的延长线于E,设AB交EC于点O.证明△CAP≌△BAD(SAS),即可解决问题.
(2)如图2中,设BD交AC于点O,BD交PC于点E.证明△DAB∽△PAC,即可解决问题.
(3)分两种情形:①如图3﹣1中,当点D在线段PC上时,延长AD交BC的延长线于H.证明AD=DC即可解决问题.
②如图3﹣2中,当点P在线段CD上时,同法可证:DA=DC解决问题.
【解答】解:(1)如图1中,延长CP交BD的延长线于E,设AB交EC于点O.
∵∠PAD=∠CAB=60°,
∴∠CAP=∠BAD,
∵CA=BA,PA=DA,
∴△CAP≌△BAD(SAS),
∴PC=BD,∠ACP=∠ABD,
∵∠AOC=∠BOE,
∴∠BEO=∠CAO=60°,
∴=1,直线BD与直线CP相交所成的较小角的度数是60°,
故答案为1,60°.
(2)如图2中,设BD交AC于点O,BD交PC于点E.
∵∠PAD=∠CAB=45°,
∴∠PAC=∠DAB,
∵==,
∴△DAB∽△PAC,
∴∠PCA=∠DBA,==,
∵∠EOC=∠AOB,
∴∠CEO=∠OAB=45°,
∴直线BD与直线CP相交所成的较小角的度数为45°.
(3)如图3﹣1中,当点D在线段PC上时,延长AD交BC的延长线于H.
∵CE=EA,CF=FB,
∴EF∥AB,
∴∠EFC=∠ABC=45°,
∵∠PAO=45°,
∴∠PAO=∠OFH,
∵∠POA=∠FOH,
∴∠H=∠APO,
∵∠APC=90°,EA=EC,
∴PE=EA=EC,
∴∠EPA=∠EAP=∠BAH,
∴∠H=∠BAH,
∴BH=BA,
∵∠ADP=∠BDC=45°,
∴∠ADB=90°,
∴BD⊥AH,
∴∠DBA=∠DBC=22.5°,
∵∠ADB=∠ACB=90°,
∴A,D,C,B四点共圆,
∠DAC=∠DBC=22.5°,∠DCA=∠ABD=22.5°,
∴∠DAC=∠DCA=22.5°,
∴DA=DC,设AD=a,则DC=AD=a,PD=a,
∴==2﹣.
解法二:在Rt△PAD中,∵E是AC的中点,
∴PE=EA=EC,
∴∠EPC=∠ECP,
∵∠CEF=45°=∠EPC+∠ECP,
∴∠EPC=∠ECP=22.5°,
∵∠PDA=45°=∠ACD+∠DAC,
∴∠DAC=22.5°,
∴AD=DC,
设PD=a,则AD=DC=a,
∴==2﹣
如图3﹣2中,当点P在线段CD上时,同法可证:DA=DC,设AD=a,则CD=AD=a,PD=a,
∴PC=a﹣a,
∴==2+.
【点评】本题属于相似形综合题,考查了旋转变换,等边三角形的性质,等腰直角三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.
20.(2017•河南)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.
(1)观察猜想:图1中,线段PM与PN的数量关系是 PM=PN ,位置关系是 PM⊥PN ;
(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;
(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.
【考点】几何变换综合题.版权所有
【专题】综合题.
【分析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;
(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出结论;
(3)方法1、先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.
方法2、先判断出BD最大时,△PMN的面积最大,而BD最大是AB+AD=14,即可.
【解答】解:(1)∵点P,N是BC,CD的中点,
∴PN∥BD,PN=BD,
∵点P,M是CD,DE的中点,
∴PM∥CE,PM=CE,
∵AB=AC,AD=AE,
∴BD=CE,
∴PM=PN,
∵PN∥BD,
∴∠DPN=∠ADC,
∵PM∥CE,
∴∠DPM=∠DCA,
∵∠BAC=90°,
∴∠ADC+∠ACD=90°,
∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,
∴PM⊥PN,
故答案为:PM=PN,PM⊥PN,
(2)△PMN是等腰直角三角形,理由如下:
由旋转知,∠BAD=∠CAE,
∵AB=AC,AD=AE,
∴△ABD≌△ACE(SAS),
∴∠ABD=∠ACE,BD=CE,
同(1)的方法,利用三角形的中位线得,PN=BD,PM=CE,
∴PM=PN,
∴△PMN是等腰三角形,
同(1)的方法得,PM∥CE,
∴∠DPM=∠DCE,
同(1)的方法得,PN∥BD,
∴∠PNC=∠DBC,
∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,
∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC
=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC
=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,
∵∠BAC=90°,
∴∠ACB+∠ABC=90°,
∴∠MPN=90°,
∴△PMN是等腰直角三角形,
(3)方法1、如图2,同(2)的方法得,△PMN是等腰直角三角形,
∴MN最大时,△PMN的面积最大,
∴DE∥BC且DE在顶点A上面,
∴MN最大=AM+AN,
连接AM,AN,
在△ADE中,AD=AE=4,∠DAE=90°,
∴AM=2,
在Rt△ABC中,AB=AC=10,AN=5,
∴MN最大=2+5=7,
∴S△PMN最大=PM2=×MN2=×(7)2=.
方法2、由(2)知,△PMN是等腰直角三角形,PM=PN=BD,
∴PM最大时,△PMN面积最大,
∴点D在BA的延长线上,
∴BD=AB+AD=14,
∴PM=7,
∴S△PMN最大=PM2=×72=
【点评】此题是几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质,解(1)的关键是判断出PM=CE,PN=BD,解(2)的关键是判断出△ABD≌△ACE,解(3)的关键是判断出BD最大时,△PMN的面积最大,是一道中考常考题.
考点卡片
1.规律型:点的坐标
规律型:点的坐标.
2.坐标与图形性质
1、点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.
2、有图形中一些点的坐标求面积时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.
3、若坐标系内的四边形是非规则四边形,通常用平行于坐标轴的辅助线用“割、补”法去解决问题.
3.含30度角的直角三角形
(1)含30度角的直角三角形的性质:
在直角三角形中,30°角所对的直角边等于斜边的一半.
(2)此结论是由等边三角形的性质推出,体现了直角三角形的性质,它在解直角三角形的相关问题中常用来求边的长度和角的度数.
(3)注意:①该性质是直角三角形中含有特殊度数的角(30°)的特殊定理,非直角三角形或一般直角三角形不能应用;
②应用时,要注意找准30°的角所对的直角边,点明斜边.
4.等腰直角三角形
(1)两条直角边相等的直角三角形叫做等腰直角三角形.
(2)等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.即:两个锐角都是45°,斜边上中线、角平分线、斜边上的高,三线合一,等腰直角三角形斜边上的高为外接圆的半径R,而高又为内切圆的直径(因为等腰直角三角形的两个小角均为45°,高又垂直于斜边,所以两个小三角形均为等腰直角三角形,则两腰相等);
(3)若设等腰直角三角形内切圆的半径r=1,则外接圆的半径R=+1,所以r:R=1:+1.
5.平行四边形的性质
(1)平行四边形的概念:有两组对边分别平行的四边形叫做平行四边形.
(2)平行四边形的性质:
①边:平行四边形的对边相等.
②角:平行四边形的对角相等.
③对角线:平行四边形的对角线互相平分.
(3)平行线间的距离处处相等.
(4)平行四边形的面积:
①平行四边形的面积等于它的底和这个底上的高的积.
②同底(等底)同高(等高)的平行四边形面积相等.
6.矩形的性质
(1)矩形的定义:有一个角是直角的平行四边形是矩形.
(2)矩形的性质
①平行四边形的性质矩形都具有;
②角:矩形的四个角都是直角;
③边:邻边垂直;
④对角线:矩形的对角线相等;
⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.
(3)由矩形的性质,可以得到直角三角形的一个重要性质,直角三角形斜边上的中线等于斜边的一半.
7.正方形的性质
(1)正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.
(2)正方形的性质
①正方形的四条边都相等,四个角都是直角;
②正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;
③正方形具有四边形、平行四边形、矩形、菱形的一切性质.
④两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.
8.轴对称的性质
(1)如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.
由轴对称的性质得到一下结论:
①如果两个图形的对应点的连线被同一条直线垂直平分,那么这两个图形关于这条直线对称;
②如果两个图形成轴对称,我们只要找到一对对应点,作出连接它们的线段的垂直平分线,就可以得到这两个图形的对称轴.
(2)轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.
9.翻折变换(折叠问题)
1、翻折变换(折叠问题)实质上就是轴对称变换.
2、折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
3、在解决实际问题时,对于折叠较为复杂的问题可以实际操作图形的折叠,这样便于找到图形间的关系.
首先清楚折叠和轴对称能够提供给我们隐含的并且可利用的条件.解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.我们运用方程解决时,应认真审题,设出正确的未知数.
10.平移的性质
(1)平移的条件
平移的方向、平移的距离
(2)平移的性质
①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同. ②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.
11.旋转的性质
(1)旋转的性质:
①对应点到旋转中心的距离相等. ②对应点与旋转中心所连线段的夹角等于旋转角. ③旋转前、后的图形全等. (2)旋转三要素:①旋转中心; ②旋转方向; ③旋转角度. 注意:三要素中只要任意改变一个,图形就会不一样.
12.坐标与图形变化-旋转
(1)关于原点对称的点的坐标
P(x,y)⇒P(﹣x,﹣y)
(2)旋转图形的坐标
图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.
13.几何变换综合题
几何变换综合题.
14.平行线分线段成比例
(1)定理1:三条平行线截两条直线,所得的对应线段成比例.
推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.
(2)推论1:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.
(3)推论2:平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.
15.相似三角形的性质
相似三角形的定义:如果两个三角形的对应边的比相等,对应角相等,那么这两个三角形相似.
(1)相似三角形的对应角相等,对应边的比相等.
(2)相似三角形(多边形)的周长的比等于相似比;
相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比.
(3)相似三角形的面积的比等于相似比的平方.
由三角形的面积公式和相似三角形对应线段的比等于相似比可以推出相似三角形面积的比等于相似比的平方.
16.相似三角形的判定与性质
(1)相似三角形相似多边形的特殊情形,它沿袭相似多边形的定义,从对应边的比相等和对应角相等两方面下定义;反过来,两个三角形相似也有对应角相等,对应边的比相等.
(2)三角形相似的判定一直是中考考查的热点之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;或依据基本图形对图形进行分解、组合;或作辅助线构造相似三角形,判定三角形相似的方法有事可单独使用,有时需要综合运用,无论是单独使用还是综合运用,都要具备应有的条件方可.
17.相似形综合题
相似形综合题.
18.解直角三角形的应用
(1)通过解直角三角形能解决实际问题中的很多有关测量问.
如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.
(2)解直角三角形的一般过程是:
①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).
②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.
19.解直角三角形的应用-仰角俯角问题
(1)概念:仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.
(2)解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.
20.简单几何体的三视图
(1)画物体的主视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.
(2)常见的几何体的三视图:
圆柱的三视图:
21.简单组合体的三视图
(1)画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.
(2)视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.
(3)画物体的三视图的口诀为:
主、俯:长对正;
主、左:高平齐;
俯、左:宽相等.
22.由三视图判断几何体
(1)由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.
(2)由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析:
①根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高;
②从实线和虚线想象几何体看得见部分和看不见部分的轮廓线;
③熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助;
④利用由三视图画几何体与有几何体画三视图的互逆过程,反复练习,不断总结方法.
相关试卷
这是一份2017-2021年四川中考数学真题分类汇编之图形的变化,共41页。
这是一份2017-2021年江苏中考数学真题分类汇编之图形的变化,共42页。
这是一份2017-2021年山东中考数学真题分类汇编之图形的变化,共47页。