2017-2021年山东中考数学真题分类汇编之图形的性质
展开这是一份2017-2021年山东中考数学真题分类汇编之图形的性质,共46页。试卷主要包含了下列命题等内容,欢迎下载使用。
2017-2021年山东中考数学真题分类汇编之图形的性质
一.选择题(共15小题)
1.(2020•枣庄)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为( )
A.10° B.15° C.18° D.30°
2.(2021•烟台)一副三角板如图放置,两三角板的斜边互相平行,每个三角板的直角顶点都在另一个三角板的斜边上,图中∠α的度数为( )
A.45° B.60° C.75° D.85°
3.(2021•济南)如图,AB∥CD,∠A=30°,DA平分∠CDE,则∠DEB的度数为( )
A.45° B.60° C.75° D.80°
4.(2021•滨州)在Rt△ABC中,若∠C=90°,AC=3,BC=4,则点C到直线AB的距离为( )
A.3 B.4 C.5 D.2.4
5.(2021•烟台)由12个有公共顶点O的直角三角形拼成的图形如图所示,∠AOB=∠BOC=…=∠LOM=30°.若OA=16,则OG的长为( )
A. B. C. D.
6.(2019•烟台)如图,面积为24的▱ABCD中,对角线BD平分∠ABC,过点D作DE⊥BD交BC的延长线于点E,DE=6,则sin∠DCE的值为( )
A. B. C. D.
7.下列命题:①的算术平方根是2;②菱形既是中心对称图形又是轴对称图形;③天气预报说明天的降水概率是95%,则明天一定会下雨;④若一个多边形的各内角都等于108°,则它是正五边形,其中真命题的个数是( )
A.0 B.1 C.2 D.3
8.(2021•滨州)在锐角△ABC中,分别以AB和AC为斜边向△ABC的外侧作等腰Rt△ABM和等腰Rt△ACN,点D、E、F分别为边AB、AC、BC的中点,连接MD、MF、FE、FN.根据题意小明同学画出草图(如图所示),并得出下列结论:①MD=FE,②∠DMF=∠EFN,③FM⊥FN,④S△CEF=S四边形ABFE,其中结论正确的个数为( )
A.4 B.3 C.2 D.1
9.(2021•滨州)如图,⊙O是△ABC的外接圆,CD是⊙O的直径.若CD=10,弦AC=6,则cos∠ABC的值为( )
A. B. C. D.
10.(2019•莱芜区)如图,点A、B,C,D在⊙O上,AB=AC,∠A=40°,BD∥AC,若⊙O的半径为2.则图中阴影部分的面积是( )
A.﹣ B.﹣ C.﹣ D.﹣
11.(2021•德州)将含有30°的三角板ABC按如图所示放置,点A在直线DE上,其中∠BAD=15°,分别过点B,C作直线DE的平行线FG,HI,点B到直线DE,HI的距离分别为h1,h2,则的值为( )
A.1 B. C. D.
12.(2021•枣庄)如图,正方形ABCD的边长为2,O为对角线的交点,点E,F分别为BC,AD的中点.以C为圆心,2为半径作圆弧BD,再分别以E,F为圆心,1为半径作圆弧BO,OD,则图中阴影部分的面积为( )
A.π﹣1 B.π﹣3 C.π﹣2 D.4﹣π
13.(2019•莱芜区)如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45°,AE、AF分别交BD于M、N,连接EN、EF,有以下结论:
①AN=EN
②当AE=AF时,=2﹣
③BE+DF=EF
④存在点E、F,使得NF>DF
其中正确的个数是( )
A.1 B.2 C.3 D.4
14.(2019•烟台)如图,AB是⊙O的直径,直线DE与⊙O相切于点C,过A,B分别作AD⊥DE,BE⊥DE,垂足为点D,E,连接AC,BC,若AD=,CE=3,则的长为( )
A. B.π C.π D.π
15.(2019•济南)如图,在菱形ABCD中,点E是BC的中点,以C为圆心、CE为半径作弧,交CD于点F,连接AE、AF.若AB=6,∠B=60°,则阴影部分的面积为( )
A.9﹣3π B.9﹣2π C.18﹣9π D.18﹣6π
二.填空题(共4小题)
16.(2019•济南)一个n边形的内角和等于720°,则n= .
17.(2019•日照)如图,已知AB=8cm,BD=3cm,C为AB的中点,则线段CD的长为 cm.
18.(2019•烟台)如图,分别以边长为2的等边三角形ABC的三个顶点为圆心,以边长为半径作弧,三段弧所围成的图形是一个曲边三角形,已知⊙O是△ABC的内切圆,则阴影部分面积为 .
19.(2020•枣庄)如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是 .
三.解答题(共5小题)
20.(2019•莱芜区)如图,已知等边△ABC,CD⊥AB于D,AF⊥AC,E为线段CD上一点,且CE=AF,连接BE,BF,EG⊥BF于G,连接DG.
(1)求证:BE=BF;
(2)试说明DG与AF的位置关系和数量关系.
21.(2019•济南)如图,在▱ABCD中,E、F分别是AD和BC上的点,∠DAF=∠BCE.求证:BF=DE.
22.(2019•泰安)如图,四边形ABCD是正方形,△EFC是等腰直角三角形,点E在AB上,且∠CEF=90°,FG⊥AD,垂足为点G.
(1)试判断AG与FG是否相等?并给出证明;
(2)若点H为CF的中点,GH与DH垂直吗?若垂直,给出证明;若不垂直,说明理由.
23.(2019•济南)如图,AB、CD是⊙O的两条直径,过点C的⊙O的切线交AB的延长线于点E,连接AC、BD.
(1)求证;∠ABD=∠CAB;
(2)若B是OE的中点,AC=12,求⊙O的半径.
24.(2019•威海)(1)方法选择
如图①,四边形ABCD是⊙O的内接四边形,连接AC,BD,AB=BC=AC.求证:BD=AD+CD.
小颖认为可用截长法证明:在DB上截取DM=AD,连接AM…
小军认为可用补短法证明:延长CD至点N,使得DN=AD…
请你选择一种方法证明.
(2)类比探究
【探究1】
如图②,四边形ABCD是⊙O的内接四边形,连接AC,BD,BC是⊙O的直径,AB=AC.试用等式表示线段AD,BD,CD之间的数量关系,并证明你的结论.
【探究2】
如图③,四边形ABCD是⊙O的内接四边形,连接AC,BD.若BC是⊙O的直径,∠ABC=30°,则线段AD,BD,CD之间的等量关系式是 .
(3)拓展猜想
如图④,四边形ABCD是⊙O的内接四边形,连接AC,BD.若BC是⊙O的直径,BC:AC:AB=a:b:c,则线段AD,BD,CD之间的等量关系式是 .
2017-2021年山东中考数学真题分类汇编之图形的性质
参考答案与试题解析
一.选择题(共15小题)
1.(2020•枣庄)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为( )
A.10° B.15° C.18° D.30°
【考点】平行线的性质. 版权所有
【专题】线段、角、相交线与平行线.
【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.
【解答】解:由题意可得:∠EDF=45°,∠ABC=30°,
∵AB∥CF,
∴∠ABD=∠EDF=45°,
∴∠DBC=45°﹣30°=15°.
故选:B.
【点评】此题主要考查了平行线的性质,根据题意得出∠ABD的度数是解题关键.
2.(2021•烟台)一副三角板如图放置,两三角板的斜边互相平行,每个三角板的直角顶点都在另一个三角板的斜边上,图中∠α的度数为( )
A.45° B.60° C.75° D.85°
【考点】平行线的性质;三角形的外角性质. 版权所有
【专题】线段、角、相交线与平行线;推理能力.
【分析】根据EF∥BC得出∠FDC=∠F=30°,进而得出∠α=∠FDC+∠C即可.
【解答】解:如图,
∵EF∥BC,
∴∠FDC=∠F=30°,
∴∠α=∠FDC+∠C=30°+45°=75°,
故选:C.
【点评】此题考查平行线的性质,关键是根据EF∥BC得出∠FDC的度数和三角形外角性质分析.
3.(2021•济南)如图,AB∥CD,∠A=30°,DA平分∠CDE,则∠DEB的度数为( )
A.45° B.60° C.75° D.80°
【考点】平行线的性质. 版权所有
【专题】线段、角、相交线与平行线;推理能力.
【分析】由平行线的性质得∠ADC=∠A=30°,再由角平分线得∠CDE=60°,再次利用平行线的性质可得∠DEB=∠CDE=60°.
【解答】解:∵AB∥CD,∠A=30°,
∴∠ADC=∠A=30°,∠CDE=∠DEB,
∵DA平分∠CDE,
∴∠CDE=2∠ADC=60°,
∴∠DEB=60°.
故选:B.
【点评】本题主要考查平行线的性质,解答的关键是熟记并运用平行线的性质:两直线平行,内错角相等.
4.(2021•滨州)在Rt△ABC中,若∠C=90°,AC=3,BC=4,则点C到直线AB的距离为( )
A.3 B.4 C.5 D.2.4
【考点】勾股定理;三角形的面积. 版权所有
【专题】三角形;等腰三角形与直角三角形;运算能力;推理能力;应用意识.
【分析】根据题意画出图形,然后作CD⊥AB于点D,根据勾股定理可以求得AB的长,然后根据面积法,可以求得CD的长.
【解答】解:作CD⊥AB于点D,如右图所示,
∵∠C=90°,AC=3,BC=4,
∴AB===5,
∵,
∴,
解得CD=2.4,
故选:D.
【点评】本题考查勾股定理、三角形的面积,解答本题的关键是明确题意,画出相应的图形,利用勾股定理和面积法解答.
5.(2021•烟台)由12个有公共顶点O的直角三角形拼成的图形如图所示,∠AOB=∠BOC=…=∠LOM=30°.若OA=16,则OG的长为( )
A. B. C. D.
【考点】勾股定理;规律型:图形的变化类;含30度角的直角三角形. 版权所有
【专题】三角形;运算能力.
【分析】由∠AOB=∠BOC=…=∠LOM=30°,∠ABO=∠BCO=…=∠LMO=90°,可知AB:OB:OA=BC:OC:OB=…=FG:OG:OF=1::2,由此可求出OG的长.
【解答】解:由图可知,∠ABO=∠BCO=…=∠LMO=90°,
∵∠AOB=∠BOC=…=∠LOM=30°,
∴∠A=∠OBC=∠OCD=…=∠OLM=60°,
∴AB=OA,OB=AB=OA,
同理可得,OC=OB=()2OA,
OD=OC=()3OA,
…
OG=OF=()6OA=()6×16=.
故选:A.
【点评】本题主要考查含30°角的直角三角形的三边关系,属于基础题,掌握含30°角的直角三角形的三边关系是解题基础.
6.(2019•烟台)如图,面积为24的▱ABCD中,对角线BD平分∠ABC,过点D作DE⊥BD交BC的延长线于点E,DE=6,则sin∠DCE的值为( )
A. B. C. D.
【考点】平行四边形的性质;解直角三角形. 版权所有
【专题】计算题;多边形与平行四边形;矩形 菱形 正方形.
【分析】可证明四边形ABCD是菱形,由面积可求出BD长,连接AC,过点D作DF⊥BE于点E,求出菱形的边长CD=5,由勾股定理可求出CF、DF长,则sin∠DCE的值可求出.
【解答】解:连接AC,过点D作DF⊥BE于点F,
∵BD平分∠ABC,
∴∠ABD=∠DBC,
∵▱ABCD中,AD∥BC,
∴∠ADB=∠DBC,
∴∠ADB=∠ABD,
∴AB=AD,
∴四边形ABCD是菱形,
∴AC⊥BD,OB=OD,
∵DE⊥BD,
∴OC∥ED,
∵DE=6,
∴OC=DE=3,
∵▱ABCD的面积为24,
∴BD•AC=24,
∴BD=8,
∴BC=CD===5,
∵S平行四边形ABCD=BC•DF=24,
∴DF=,
∴sin∠DCE=.
故选:A.
【点评】本题考查菱形的判定与性质、平行四边形的性质、解直角三角形、锐角三角函数等知识,解题的关键是熟练掌握菱形的判定,正确作出辅助线思考问题.
7.下列命题:①的算术平方根是2;②菱形既是中心对称图形又是轴对称图形;③天气预报说明天的降水概率是95%,则明天一定会下雨;④若一个多边形的各内角都等于108°,则它是正五边形,其中真命题的个数是( )
A.0 B.1 C.2 D.3
【考点】命题与定理. 版权所有
【专题】实数;概率及其应用;矩形 菱形 正方形;推理能力.
【分析】利用算术平方根的定义、菱形的对称性、概率的意义及多边形的内角和等知识分别判断后即可确定正确的选项.
【解答】解:①的算术平方根是,故原命题错误,是假命题,不符合题意;
②菱形既是中心对称图形又是轴对称图形,正确,是真命题,符合题意;
③天气预报说明天的降水概率是95%,则明天下雨可能性很大,但不确定是否一定下雨,故原命题错误,是假命题,不符合题意;
④若一个多边形的各内角都等于108°,各边也相等,则它是正五边形,故原命题错误,是假命题,不符合题意;
真命题有1个,
故选:B.
【点评】考查了命题与定理的知识,解题的关键是了解算术平方根的定义、菱形的对称性、概率的意义及多边形的内角和等知识,难度不大.
8.(2021•滨州)在锐角△ABC中,分别以AB和AC为斜边向△ABC的外侧作等腰Rt△ABM和等腰Rt△ACN,点D、E、F分别为边AB、AC、BC的中点,连接MD、MF、FE、FN.根据题意小明同学画出草图(如图所示),并得出下列结论:①MD=FE,②∠DMF=∠EFN,③FM⊥FN,④S△CEF=S四边形ABFE,其中结论正确的个数为( )
A.4 B.3 C.2 D.1
【考点】全等三角形的判定与性质;等腰直角三角形;平行四边形的判定与性质;相似三角形的判定与性质. 版权所有
【专题】图形的全等;等腰三角形与直角三角形;多边形与平行四边形;图形的相似;推理能力.
【分析】根据直角三角形斜边中线等于斜边的一半和三角形中位线定理判断结论①,连接DF,EN,通过SAS定理证明△MDF≌△FEN判断结论②,利用全等三角形的性质结合平行四边形的判定和性质判断结论③,利用相似三角形的判定和性质判定结论④.
【解答】解:∵D、E、F分别为边AB、AC、BC的中点,且△ABM是等腰直角三角形,
∴DM=,EF=,EF∥AB,∠MDB=90°,
∴DM=EF,∠FEC=∠BAC,故结论①正确;
连接DF,EN,
∵D、E、F分别为边AB、AC、BC的中点,且△ACN是等腰直角三角形,
∴EN=,DF=,DF∥AC,∠NEC=90°,
∴EN=DF,∠BDF=∠BAC,∠BDF=∠FEC,
∴∠BDF+∠MDB=∠FEC+∠NEC,
∴∠MDF=∠FEN,
在△MDF和△FEN中,
∴△MDF≌△FEN(SAS),
∴∠DMF=∠EFN,故结论②正确;
∵EF∥AB,DF∥AC,
∴四边形ADFE是平行四边形,
∴∠DFE=∠BAC,
又∵△MDF≌△FEN,
∴∠DFM=∠ENF,
∴∠EFN+∠DFM=∠EFN+∠ENF=180°﹣∠FEN=180°﹣(∠FEC+∠NEC)=180°﹣(∠BAC+90°)=90°﹣∠BAC,
∴∠MFN=∠DFE+∠EFN+∠DFM=∠BAC+90°﹣∠BAC=90°,
∴MF⊥FN,故结论③正确;
∵EF∥AB,
∴△CEF∽△CAB,
∴,
∴,
∴S△CEF=S四边形ABFE,故结论④错误,
∴正确的结论为①②③,共3个,
故选:B.
【点评】本题考查全等三角形的判定和性质,平行四边形的判定和性质,相似三角形的判定和性质,三角形中位线定理,题目难度适中,有一定的综合性,适当添加辅助线构造全等三角形是解题关键.
9.(2021•滨州)如图,⊙O是△ABC的外接圆,CD是⊙O的直径.若CD=10,弦AC=6,则cos∠ABC的值为( )
A. B. C. D.
【考点】三角形的外接圆与外心;锐角三角函数的定义. 版权所有
【专题】等腰三角形与直角三角形;圆的有关概念及性质;运算能力;应用意识.
【分析】连接AD,根据直径所对的圆周角等于90°和勾股定理,可以求得AD的长,然后即可求得∠ADC的余弦值,再根据同弧所对的圆周角相等,可以得到∠ABC=∠ADC,从而可以得到cos∠ABC的值.
【解答】解:连接AD,如右图所示,
∵CD是⊙O的直径,CD=10,弦AC=6,
∴∠DAC=90°,
∴AD=====8,
∴cos∠ADC===,
∵∠ABC=∠ADC,
∴cos∠ABC的值为,
故选:A.
【点评】本题考查三角形的外接圆与外心、圆周角、锐角三角函数、勾股定理,解答本题的关键是求出cos∠ADC的值,利用数形结合的思想解答.
10.(2019•莱芜区)如图,点A、B,C,D在⊙O上,AB=AC,∠A=40°,BD∥AC,若⊙O的半径为2.则图中阴影部分的面积是( )
A.﹣ B.﹣ C.﹣ D.﹣
【考点】扇形面积的计算;勾股定理;垂径定理;圆周角定理;圆内接四边形的性质. 版权所有
【专题】与圆有关的计算.
【分析】连接BC、OD、OB,先证△BOD是等边三角形,再根据阴影部分的面积是S扇形BOD﹣S△BOD计算可得.
【解答】解:如图所示,连接BC、OD、OB、CD,
∵∠A=40°,AB=AC,
∴∠ACB=70°,
∵BD∥AC,
∴∠ABD=∠A=40°,
∴∠ACD=∠ABD=40°,
∴∠BCD=30°,
则∠BOD=2∠BCD=60°,
又OD=OB,
∴△BOD是等边三角形,
则图中阴影部分的面积是S扇形BOD﹣S△BOD
=﹣×22
=π﹣,
故选:B.
【点评】本题主要考查扇形面积的计算,解题的关键是掌握等腰三角形和等边三角形的判定与性质、圆周角定理、扇形的面积公式等知识点.
11.(2021•德州)将含有30°的三角板ABC按如图所示放置,点A在直线DE上,其中∠BAD=15°,分别过点B,C作直线DE的平行线FG,HI,点B到直线DE,HI的距离分别为h1,h2,则的值为( )
A.1 B. C. D.
【考点】平行线的性质. 版权所有
【专题】线段、角、相交线与平行线;解直角三角形及其应用;推理能力.
【分析】设CE交FG于点M,由∠DAC=∠BAD+∠CAB=45°得三角形BCM为等腰直角三角形,再由含30度角直角三角形三边长比及等腰直角三角形的边长比设BC为x可得MA为x﹣x,再由平行线分线段成比例求解.
【解答】解:设CE交FG于点M,
∵∠CAB=30°,∠BAD=15°,
∴∠DAC=∠BAD+∠CAB=45°,
∵FG∥DE,
∴∠CMB=∠DAC=45°,
∴三角形BCM为等腰直角三角形,
在Rt△ABC中,设BC长为x,则CM=BC=x,
∵∠CAB=30°,
∴CE=BC=x,
∴MA=x﹣x,
∵HI∥FG∥DE,
∴===﹣1,
故选:B.
【点评】本题考查平行线的性质,含特殊角直角三角形的性质及平行线分线段成比例,解题关键是掌握含特殊角的直角三角形的边长比.
12.(2021•枣庄)如图,正方形ABCD的边长为2,O为对角线的交点,点E,F分别为BC,AD的中点.以C为圆心,2为半径作圆弧BD,再分别以E,F为圆心,1为半径作圆弧BO,OD,则图中阴影部分的面积为( )
A.π﹣1 B.π﹣3 C.π﹣2 D.4﹣π
【考点】扇形面积的计算;正方形的性质. 版权所有
【专题】计算题;转化思想;运算能力.
【分析】连接BD,根据在同圆或等圆中,相等的圆心角所对的弧,所对的弦分别相等,利用面积割补法可得阴影部分的面积等于弓形面积,即等于扇形CBD减去直角三角形CBD的面积之差.
【解答】解:连接BD,EF,如图,
∵正方形ABCD的边长为2,O为对角线的交点,
由题意可得:EF,BD经过点O,且EF⊥AD,EF⊥CB.
∵点E,F分别为BC,AD的中点,
∴FD=FO=EO=EB=1,
∴,OB=OD.
∴弓形OB=弓形OD.
∴阴影部分的面积等于弓形BD的面积.
∴S阴影=S扇形CBD﹣S△CBD==π﹣2.
故选:C.
【点评】本题主要考查了正方形的性质,扇形面积的计算.通过添加适当的辅助线将不规则的阴影部分的面积转化成规则图形的面积的差是解题的关键.
13.(2019•莱芜区)如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45°,AE、AF分别交BD于M、N,连接EN、EF,有以下结论:
①AN=EN
②当AE=AF时,=2﹣
③BE+DF=EF
④存在点E、F,使得NF>DF
其中正确的个数是( )
A.1 B.2 C.3 D.4
【考点】正方形的性质;全等三角形的判定与性质. 版权所有
【专题】矩形 菱形 正方形;应用意识.
【分析】①如图1,证明△AMN∽△BME和△AMB∽△NME,可得∠NAE=∠AEN=45°,则△AEN是等腰直角三角形可作判断;
②先证明CE=CF,假设正方形边长为1,设CE=x,则BE=1﹣x,表示AC的长为AO+OC可作判断;
③如图3,将△ADF绕点A顺时针旋转90°得到△ABH,证明△AEF≌△AEH(SAS),则EF=EH=BE+BH=BE+DF,可作判断;
④在△ADN中根据比较对角的大小来比较边的大小.
【解答】解:①如图1,∵四边形ABCD是正方形,
∴∠EBM=∠ADM=∠FDN=∠ABD=45°,
∵∠MAN=∠EBM=45°,∠AMN=∠BME,
∴△AMN∽△BME,
∴,
∵∠AMB=∠EMN,
∴△AMB∽△NME,
∴∠AEN=∠ABD=45°
∴∠NAE=∠AEN=45°,
∴△AEN是等腰直角三角形,
∴AN=EN,
故①正确;
②在△ABE和△ADF中,
∵,
∴Rt△ABE≌Rt△ADF(HL),
∴BE=DF,
∵BC=CD,
∴CE=CF,
假设正方形边长为1,设CE=x,则BE=1﹣x,
如图2,连接AC,交EF于O,
∵AE=AF,CE=CF,
∴AC是EF的垂直平分线,
∴AC⊥EF,OE=OF,
Rt△CEF中,OC=EF=x,
△EAF中,∠EAO=∠FAO=22.5°=∠BAE=22.5°,
∴OE=BE,
∵AE=AE,
∴Rt△ABE≌Rt△AOE(HL),
∴AO=AB=1,
∴AC==AO+OC,
∴1+x=,
x=2﹣,
∴===;
故②不正确;
③如图3,
∴将△ADF绕点A顺时针旋转90°得到△ABH,则AF=AH,∠DAF=∠BAH,
∵∠EAF=45°=∠DAF+∠BAE=∠HAE,
∵∠ABE=∠ABH=90°,
∴H、B、E三点共线,
在△AEF和△AEH中,
,
∴△AEF≌△AEH(SAS),
∴EF=EH=BE+BH=BE+DF,
故③正确;
④△ADN中,∠FND=∠ADN+∠NAD>45°,
∠FDN=45°,
∴DF>FN,
故不存在点E、F,使得NF>DF,
故④不正确;
故选:B.
【点评】本题考查正方形的性质、全等三角形的判定和性质,等腰直角三角形的判定和性质、线段垂直平分线的性质和判定等知识,解题的关键是灵活应用所学知识解决问题,学会添加常用辅助线构造全等三角形,属于中考压轴题.
14.(2019•烟台)如图,AB是⊙O的直径,直线DE与⊙O相切于点C,过A,B分别作AD⊥DE,BE⊥DE,垂足为点D,E,连接AC,BC,若AD=,CE=3,则的长为( )
A. B.π C.π D.π
【考点】切线的性质;弧长的计算. 版权所有
【专题】圆的有关概念及性质.
【分析】根据切线的性质求得∠ACD=30°,解直角三角形求得半径,根据圆周角定理求得∠AOC=60°,根据弧长公式求得即可.
【解答】解:连接OC,
∵AB是⊙O的直径,
∴∠ACB=90°,
∵直线DE与⊙O相切于点C,
∴OC⊥DE,
∵AD⊥DE,BE⊥DE,
∴AD∥OC∥BE,
∵OA=OB,
∴DC=CE=3,
∵AD=,
∴tan∠ACD==,
∴∠ACD=30°,
∴∠ACO=90°﹣30°=60°,
∵OA=OC,
∴△AOC是等边三角形,
∴OA=AC,
∵AC===2,
∴⊙O的半径为2,
∴的长为:=π,
故选:D.
【点评】本题考查了切线的性质,圆周角定理,直角三角函数,30°角的直角三角形的性质等,求得∠ABC=30°是解题的关键.
15.(2019•济南)如图,在菱形ABCD中,点E是BC的中点,以C为圆心、CE为半径作弧,交CD于点F,连接AE、AF.若AB=6,∠B=60°,则阴影部分的面积为( )
A.9﹣3π B.9﹣2π C.18﹣9π D.18﹣6π
【考点】扇形面积的计算;等边三角形的判定与性质;菱形的性质. 版权所有
【专题】矩形 菱形 正方形;与圆有关的计算.
【分析】连接AC,根据菱形的性质求出∠BCD和BC=AB=6,求出AE长,再根据三角形的面积和扇形的面积求出即可.
【解答】解:连接AC,
∵四边形ABCD是菱形,
∴AB=BC=6,
∵∠B=60°,E为BC的中点,
∴CE=BE=3=CF,△ABC是等边三角形,AB∥CD,
∵∠B=60°,
∴∠BCD=180°﹣∠B=120°,
由勾股定理得:AE==3,
∴S△AEB=S△AEC=×6×3×=4.5=S△AFC,
∴阴影部分的面积S=S△AEC+S△AFC﹣S扇形CEF=4.5+4.5﹣=9﹣3π,
故选:A.
【点评】本题考查了等边三角形的性质和判定,菱形的性质,扇形的面积计算等知识点,能求出△AEC、△AFC和扇形ECF的面积是解此题的关键.
二.填空题(共4小题)
16.(2019•济南)一个n边形的内角和等于720°,则n= 6 .
【考点】多边形内角与外角. 版权所有
【专题】多边形与平行四边形.
【分析】多边形的内角和可以表示成(n﹣2)•180°,依此列方程可求解.
【解答】解:依题意有:
(n﹣2)•180°=720°,
解得n=6.
故答案为:6.
【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.
17.(2019•日照)如图,已知AB=8cm,BD=3cm,C为AB的中点,则线段CD的长为 1 cm.
【考点】两点间的距离. 版权所有
【专题】线段、角、相交线与平行线.
【分析】先根据中点定义求BC的长,再利用线段的差求CD的长.
【解答】解:∵C为AB的中点,AB=8cm,
∴BC=AB=×8=4(cm),
∵BD=3cm,
∴CD=BC﹣BD=4﹣3=1(cm),
则CD的长为1cm;
故答案为:1.
【点评】本题考查了两点的距离和线段中点的定义,熟练掌握线段中点的定义,利用数形结合求解是解答此题的关键.
18.(2019•烟台)如图,分别以边长为2的等边三角形ABC的三个顶点为圆心,以边长为半径作弧,三段弧所围成的图形是一个曲边三角形,已知⊙O是△ABC的内切圆,则阴影部分面积为 π﹣2 .
【考点】三角形的内切圆与内心;扇形面积的计算;等边三角形的性质. 版权所有
【专题】与圆有关的计算.
【分析】连接OB,作OH⊥BC于H,如图,利用等边三角形的性质得AB=BC=AC=2,∠ABC=60°,再根据三角形内切圆的性质得OH为⊙O的半径,∠OBH=30°,再计算出BH=CH=1,OH=BH=,然后根据扇形的面积公式,利用阴影部分面积=3S弓形AB+S△ABC﹣S⊙O=3(S扇形ACB﹣S△ABC)+S△ABC﹣S⊙O进行计算.
【解答】解:连接OB,作OH⊥BC于H,如图,
∵△ABC为等边三角形,
∴AB=BC=AC=2,∠ABC=60°,
∵⊙O是△ABC的内切圆,
∴OH为⊙O的半径,∠OBH=30°,
∵O点为等边三角形的外心,
∴BH=CH=1,
在Rt△OBH中,OH=BH=,
∵S弓形AB=S扇形ACB﹣S△ABC,
∴阴影部分面积=3S弓形AB+S△ABC﹣S⊙O=3(S扇形ACB﹣S△ABC)+S△ABC﹣S⊙O=3S扇形ACB﹣2S△ABC﹣S⊙O=3×﹣2××22﹣π×()2=π﹣2.
故答案为π﹣2.
【点评】本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了等边三角形的性质和扇形面积公式.
19.(2020•枣庄)如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是 8 .
【考点】正方形的性质;全等三角形的判定与性质. 版权所有
【专题】矩形 菱形 正方形.
【分析】连接BD交AC于点O,则可证得OE=OF,OD=OB,可证四边形BEDF为平行四边形,且BD⊥EF,可证得四边形BEDF为菱形;根据勾股定理计算DE的长,可得结论.
【解答】解:如图,连接BD交AC于点O,
∵四边形ABCD为正方形,
∴BD⊥AC,OD=OB=OA=OC,
∵AE=CF=2,
∴OA﹣AE=OC﹣CF,即OE=OF,
∴四边形BEDF为平行四边形,且BD⊥EF,
∴四边形BEDF为菱形,
∴DE=DF=BE=BF,
∵AC=BD=8,OE=OF==2,
由勾股定理得:DE===2,
∴四边形BEDF的周长=4DE=4×=8,
故答案为:8.
【点评】本题主要考查正方形的性质、菱形的判定和性质及勾股定理,掌握对角线互相垂直平分的四边形为菱形是解题的关键.
三.解答题(共5小题)
20.(2019•莱芜区)如图,已知等边△ABC,CD⊥AB于D,AF⊥AC,E为线段CD上一点,且CE=AF,连接BE,BF,EG⊥BF于G,连接DG.
(1)求证:BE=BF;
(2)试说明DG与AF的位置关系和数量关系.
【考点】全等三角形的判定与性质;等边三角形的性质. 版权所有
【专题】图形的全等;等腰三角形与直角三角形.
【分析】(1)由等边三角形的性质可得AB=AC=BC,∠BAC=∠ACB=∠ABC=60°,BD=AD,∠BCD=30°,由“SAS”可证△ABF≌△CBE,可得BF=BE;
(2)通过证明△BEF是等边三角形,可得BG=GF,由三角形中位线定理可得AF=2GD,AF∥DG.
【解答】证明:(1)∵△ABC是等边三角形
∴AB=AC=BC,∠BAC=∠ACB=∠ABC=60°
∵CD⊥AB,AC=BC
∴BD=AD,∠BCD=30°,
∵AF⊥AC
∴∠FAC=90°
∴∠FAB=∠FAC﹣∠BAC=30°
∴∠FAB=∠ECB,且AB=BC,AF=CE
∴△ABF≌△CBE(SAS)
∴BF=BE
(2)AF=2GD,AF∥DG
理由如下:
连接EF,
∵△ABF≌△CBE
∴∠ABF=∠CBE,
∵∠ABE+∠EBC=60°
∴∠ABE+∠ABF=60°,且BE=BF
∴△BEF是等边三角形,且GE⊥BF
∴BG=FG,且BD=AD
∴AF=2GD,AF∥DG
【点评】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,三角形中位线定理,熟练运用三角形中位线定理是本题的关键.
21.(2019•济南)如图,在▱ABCD中,E、F分别是AD和BC上的点,∠DAF=∠BCE.求证:BF=DE.
【考点】平行四边形的性质;全等三角形的判定与性质. 版权所有
【专题】图形的全等;多边形与平行四边形.
【分析】由平行四边形的性质得出∠B=∠D,∠BAD=∠BCD,AB=CD,证出∠BAF=∠DCE,证明△ABF≌△CDE(ASA),即可得出BF=DE.
【解答】证明:∵四边形ABCD是平行四边形,
∴∠B=∠D,∠BAD=∠BCD,AB=CD,
∵∠DAF=∠BCE,
∴∠BAF=∠DCE,
在△ABF和△CDE中,,
∴△ABF≌△CDE(ASA),
∴BF=DE.
【点评】本题考查了平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.
22.(2019•泰安)如图,四边形ABCD是正方形,△EFC是等腰直角三角形,点E在AB上,且∠CEF=90°,FG⊥AD,垂足为点G.
(1)试判断AG与FG是否相等?并给出证明;
(2)若点H为CF的中点,GH与DH垂直吗?若垂直,给出证明;若不垂直,说明理由.
【考点】正方形的性质;全等三角形的判定与性质;等腰直角三角形. 版权所有
【专题】图形的全等;等腰三角形与直角三角形;矩形 菱形 正方形.
【分析】(1)过点F作FM⊥AB交BA的延长线于点M,可证四边形AGFM是矩形,可得AG=MF,AM=FG,由“AAS”可证△EFM≌△CEB,可得BE=MF,ME=BC=AB,可得BE=MA=MF=AG=FG;
(2)延长GH交CD于点N,由平行线分线段成比例可得,且CH=FH,可得GH=HN,NC=FG,即可求DG=DN,由等腰三角形的性质可得DH⊥HG.
【解答】解:(1)AG=FG,
理由如下:如图,过点F作FM⊥AB交BA的延长线于点M
∵四边形ABCD是正方形
∴AB=BC,∠B=90°=∠BAD
∵FM⊥AB,∠MAD=90°,FG⊥AD
∴四边形AGFM是矩形
∴AG=MF,AM=FG,
∵∠CEF=90°,
∴∠FEM+∠BEC=90°,∠BEC+∠BCE=90°
∴∠FEM=∠BCE,且∠M=∠B=90°,EF=EC
∴△EFM≌△CEB(AAS)
∴BE=MF,ME=BC
∴ME=AB=BC
∴BE=MA=MF
∴AG=FG,
(2)DH⊥HG
理由如下:如图,延长GH交CD于点N,
∵FG⊥AD,CD⊥AD
∴FG∥CD
∴,且CH=FH,
∴GH=HN,NC=FG
∴AG=FG=NC
又∵AD=CD,
∴GD=DN,且GH=HN
∴DH⊥GH
【点评】本题考查了正方形的性质,矩形的判定,全等三角形的判定和性质,等腰三角形的性质,证明△EFM≌△CEB是本题的关键.
23.(2019•济南)如图,AB、CD是⊙O的两条直径,过点C的⊙O的切线交AB的延长线于点E,连接AC、BD.
(1)求证;∠ABD=∠CAB;
(2)若B是OE的中点,AC=12,求⊙O的半径.
【考点】切线的性质;圆周角定理. 版权所有
【专题】与圆有关的计算.
【分析】(1)根据半径相等可知∠OAC=∠OCA,∠ODB=∠OBD,再根据对顶角相等和三角形内角和定理证明∠ABD=∠CAB;
(2)连接BC.由CE为⊙O的切线,可得∠OCE=90°,因为B是OE的中点,得BC=OB,又OB=OC,可知△OBC为等边三角形,∠ABC=60°,所以BC=AC=4,即⊙O的半径为4.
【解答】解:(1)证明:∵AB、CD是⊙O的两条直径,
∴OA=OC=OB=OD,
∴∠OAC=∠OCA,∠ODB=∠OBD,
∵∠AOC=∠BOD,
∴∠OAC=∠OCA=∠ODB=∠OBD,
即∠ABD=∠CAB;
(2)连接BC.
∵AB是⊙O的两条直径,
∴∠ACB=90°,
∵CE为⊙O的切线,
∴∠OCE=90°,
∵B是OE的中点,
∴BC=OB,
∵OB=OC,
∴△OBC为等边三角形,
∴∠ABC=60°,
∴∠A=30°,
∴BC=AC=4,
∴OB=4,
即⊙O的半径为4.
【点评】本题考查了切线的性质、圆周角定理、含30°角的直角三角形的性质,正确的作出辅助线是解题的关键.
24.(2019•威海)(1)方法选择
如图①,四边形ABCD是⊙O的内接四边形,连接AC,BD,AB=BC=AC.求证:BD=AD+CD.
小颖认为可用截长法证明:在DB上截取DM=AD,连接AM…
小军认为可用补短法证明:延长CD至点N,使得DN=AD…
请你选择一种方法证明.
(2)类比探究
【探究1】
如图②,四边形ABCD是⊙O的内接四边形,连接AC,BD,BC是⊙O的直径,AB=AC.试用等式表示线段AD,BD,CD之间的数量关系,并证明你的结论.
【探究2】
如图③,四边形ABCD是⊙O的内接四边形,连接AC,BD.若BC是⊙O的直径,∠ABC=30°,则线段AD,BD,CD之间的等量关系式是 BD=CD+2AD .
(3)拓展猜想
如图④,四边形ABCD是⊙O的内接四边形,连接AC,BD.若BC是⊙O的直径,BC:AC:AB=a:b:c,则线段AD,BD,CD之间的等量关系式是 BD=CD+AD .
【考点】圆的综合题. 版权所有
【专题】几何综合题.
【分析】(1)方法选择:根据等边三角形的性质得到∠ACB=∠ABC=60°,如图①,在BD上截取DM=AD,连接AM,由圆周角定理得到∠ADB=∠ACB=60°,得到AM=AD,根据全等三角形的性质得到BM=CD,于是得到结论;
(2)类比探究:如图②,由BC是⊙O的直径,得到∠BAC=90°,根据等腰直角三角形的性质得到∠ABC=∠ACB=45°,过A作AM⊥AD交BD于M,推出△ADM是等腰直角三角形,求得DM=AD根据全等三角形的性质得到结论;
【探究2】如图③,根据圆周角定理和三角形的内角和得到∠BAC=90°,∠ACB=60°,过A作AM⊥AD交BD于M,求得∠AMD=30°,根据直角三角形的性质得到MD=2AD,根据相似三角形的性质得到BM=CD,于是得到结论;
(3)如图④,由BC是⊙O的直径,得到∠BAC=90°,过A作AM⊥AD交BD于M,求得∠MAD=90°,根据相似三角形的性质得到BM=CD,DM=AD,于是得到结论.
【解答】解:(1)方法选择:∵AB=BC=AC,
∴∠ACB=∠ABC=60°,
如图①,在BD上截取DM=AD,连接AM,
∵∠ADB=∠ACB=60°,
∴△ADM是等边三角形,
∴AM=AD,
∵∠ABM=∠ACD,
∵∠AMB=∠ADC=120°,
∴△ABM≌△ACD(AAS),
∴BM=CD,
∴BD=BM+DM=CD+AD;
(2)类比探究:如图②,
∵BC是⊙O的直径,
∴∠BAC=90°,
∵AB=AC,
∴∠ABC=∠ACB=45°,
过A作AM⊥AD交BD于M,
∵∠ADB=∠ACB=45°,
∴△ADM是等腰直角三角形,
∴AM=AD,∠AMD=45°,
∴DM=AD,
∴∠AMB=∠ADC=135°,
∵∠ABM=∠ACD,
∴△ABM≌△ACD(AAS),
∴BM=CD,
∴BD=BM+DM=CD+AD;
【探究2】如图③,∵若BC是⊙O的直径,∠ABC=30°,
∴∠BAC=90°,∠ACB=60°,
过A作AM⊥AD交BD于M,
∵∠ADB=∠ACB=60°,
∴∠AMD=30°,
∴MD=2AD,
∵∠ABD=∠ACD,∠AMB=∠ADC=150°,
∴△ABM∽△ACD,
∴=,
∴BM=CD,
∴BD=BM+DM=CD+2AD;
故答案为:BD=CD+2AD;
(3)拓展猜想:BD=BM+DM=CD+AD;
理由:如图④,∵若BC是⊙O的直径,
∴∠BAC=90°,
过A作AM⊥AD交BD于M,
∴∠MAD=90°,
∴∠BAM=∠DAC,
∴△ABM∽△ACD,
∴=,
∴BM=CD,
∵∠ADB=∠ACB,∠BAC=∠MAD=90°,
∴△ADM∽△ACB,
∴==,
∴DM=AD,
∴BD=BM+DM=CD+AD.
故答案为:BD=CD+AD
【点评】本题考查了圆周角定理,圆内接四边形的性质,相似三角形的判定和性质,等腰直角三角形的性质,等边三角形的性质,正确的作出辅助线是解题的关键.
考点卡片
1.规律型:图形的变化类
图形的变化类的规律题
首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.
2.两点间的距离
(1)两点间的距离
连接两点间的线段的长度叫两点间的距离.
(2)平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度,学习此概念时,注意强调最后的两个字“长度”,也就是说,它是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离.可以说画线段,但不能说画距离.
3.平行线的性质
1、平行线性质定理
定理1:两条平行线被第三条直线所截,同位角相等. 简单说成:两直线平行,同位角相等.
定理2:两条平行线被地三条直线所截,同旁内角互补..简单说成:两直线平行,同旁内角互补.
定理3:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.
2、两条平行线之间的距离处处相等.
4.三角形的面积
(1)三角形的面积等于底边长与高线乘积的一半,即S△=×底×高.
(2)三角形的中线将三角形分成面积相等的两部分.
5.三角形的外角性质
(1)三角形外角的定义:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.
三角形共有六个外角,其中有公共顶点的两个相等,因此共有三对.
(2)三角形的外角性质:
①三角形的外角和为360°.
②三角形的一个外角等于和它不相邻的两个内角的和.
③三角形的一个外角大于和它不相邻的任何一个内角.
(3)若研究的角比较多,要设法利用三角形的外角性质②将它们转化到一个三角形中去.
(4)探究角度之间的不等关系,多用外角的性质③,先从最大角开始,观察它是哪个三角形的外角.
6.全等三角形的判定与性质
(1)全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.
(2)在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.
7.等边三角形的性质
(1)等边三角形的定义:三条边都相等的三角形叫做等边三角形,等边三角形是特殊的等腰三角形.
①它可以作为判定一个三角形是否为等边三角形的方法;
②可以得到它与等腰三角形的关系:等边三角形是等腰三角形的特殊情况.在等边三角形中,腰和底、顶角和底角是相对而言的.
(2)等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.
等边三角形是轴对称图形,它有三条对称轴;它的任意一角的平分线都垂直平分对边,三边的垂直平分线是对称轴.
8.等边三角形的判定与性质
(1)等边三角形是一个非常特殊的几何图形,它的角的特殊性给有关角的计算奠定了基础,它的边角性质为证明线段、角相等提供了便利条件.同是等边三角形又是特殊的等腰三角形,同样具备三线合一的性质,解题时要善于挖掘图形中的隐含条件广泛应用.
(2)等边三角形的特性如:三边相等、有三条对称轴、一边上的高可以把等边三角形分成含有30°角的直角三角形、连接三边中点可以把等边三角形分成四个全等的小等边三角形等.
(3)等边三角形判定最复杂,在应用时要抓住已知条件的特点,选取恰当的判定方法,一般地,若从一般三角形出发可以通过三条边相等判定、通过三个角相等判定;若从等腰三角形出发,则想法获取一个60°的角判定.
9.含30度角的直角三角形
(1)含30度角的直角三角形的性质:
在直角三角形中,30°角所对的直角边等于斜边的一半.
(2)此结论是由等边三角形的性质推出,体现了直角三角形的性质,它在解直角三角形的相关问题中常用来求边的长度和角的度数.
(3)注意:①该性质是直角三角形中含有特殊度数的角(30°)的特殊定理,非直角三角形或一般直角三角形不能应用;
②应用时,要注意找准30°的角所对的直角边,点明斜边.
10.勾股定理
(1)勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.
(2)勾股定理应用的前提条件是在直角三角形中.
(3)勾股定理公式a2+b2=c2 的变形有:a=,b=及c=.
(4)由于a2+b2=c2>a2,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边.
11.等腰直角三角形
(1)两条直角边相等的直角三角形叫做等腰直角三角形.
(2)等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.即:两个锐角都是45°,斜边上中线、角平分线、斜边上的高,三线合一,等腰直角三角形斜边上的高为外接圆的半径R,而高又为内切圆的直径(因为等腰直角三角形的两个小角均为45°,高又垂直于斜边,所以两个小三角形均为等腰直角三角形,则两腰相等);
(3)若设等腰直角三角形内切圆的半径r=1,则外接圆的半径R=+1,所以r:R=1:+1.
12.多边形内角与外角
(1)多边形内角和定理:(n﹣2)•180° (n≥3且n为整数)
此公式推导的基本方法是从n边形的一个顶点出发引出(n﹣3)条对角线,将n边形分割为(n﹣2)个三角形,这(n﹣2)个三角形的所有内角之和正好是n边形的内角和.除此方法之和还有其他几种方法,但这些方法的基本思想是一样的.即将多边形转化为三角形,这也是研究多边形问题常用的方法.
(2)多边形的外角和等于360°.
①多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和永远为360°.
②借助内角和和邻补角概念共同推出以下结论:外角和=180°n﹣(n﹣2)•180°=360°.
13.平行四边形的性质
(1)平行四边形的概念:有两组对边分别平行的四边形叫做平行四边形.
(2)平行四边形的性质:
①边:平行四边形的对边相等.
②角:平行四边形的对角相等.
③对角线:平行四边形的对角线互相平分.
(3)平行线间的距离处处相等.
(4)平行四边形的面积:
①平行四边形的面积等于它的底和这个底上的高的积.
②同底(等底)同高(等高)的平行四边形面积相等.
14.平行四边形的判定与性质
平行四边形的判定与性质的作用
平行四边形对应边相等,对应角相等,对角线互相平分及它的判定,是我们证明直线的平行、线段相等、角相等的重要方法,若要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.
运用定义,也可以判定某个图形是平行四边形,这是常用的方法,不要忘记平行四边形的定义,有时用定义判定比用其他判定定理还简单.
凡是可以用平行四边形知识证明的问题,不要再回到用三角形全等证明,应直接运用平行四边形的性质和判定去解决问题.
15.菱形的性质
(1)菱形的定义:有一组邻边相等的平行四边形叫做菱形.
(2)菱形的性质
①菱形具有平行四边形的一切性质;
②菱形的四条边都相等;
③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;
④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.
(3)菱形的面积计算
①利用平行四边形的面积公式.
②菱形面积=ab.(a、b是两条对角线的长度)
16.正方形的性质
(1)正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.
(2)正方形的性质
①正方形的四条边都相等,四个角都是直角;
②正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;
③正方形具有四边形、平行四边形、矩形、菱形的一切性质.
④两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.
17.垂径定理
(1)垂径定理
垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.
(2)垂径定理的推论
推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧.
推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.
18.圆周角定理
(1)圆周角的定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角.
注意:圆周角必须满足两个条件:①顶点在圆上.②角的两条边都与圆相交,二者缺一不可.
(2)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
(3)在解圆的有关问题时,常常需要添加辅助线,构成直径所对的圆周角,这种基本技能技巧一定要掌握.
(4)注意:①圆周角和圆心角的转化可通过作圆的半径构造等腰三角形.利用等腰三角形的顶点和底角的关系进行转化.②圆周角和圆周角的转化可利用其“桥梁”﹣﹣﹣圆心角转化.③定理成立的条件是“同一条弧所对的”两种角,在运用定理时不要忽略了这个条件,把不同弧所对的圆周角与圆心角错当成同一条弧所对的圆周角和圆心角.
19.圆内接四边形的性质
(1)圆内接四边形的性质:
①圆内接四边形的对角互补.
②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).
(2)圆内接四边形的性质是沟通角相等关系的重要依据,在应用此性质时,要注意与圆周角定理结合起来.在应用时要注意是对角,而不是邻角互补.
20.三角形的外接圆与外心
(1)外接圆:经过三角形的三个顶点的圆,叫做三角形的外接圆.
(2)外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.
(3)概念说明:
①“接”是说明三角形的顶点在圆上,或者经过三角形的三个顶点.
②锐角三角形的外心在三角形的内部;直角三角形的外心为直角三角形斜边的中点;钝角三角形的外心在三角形的外部.
③找一个三角形的外心,就是找一个三角形的三条边的垂直平分线的交点,三角形的外接圆只有一个,而一个圆的内接三角形却有无数个.
21.切线的性质
(1)切线的性质
①圆的切线垂直于经过切点的半径.
②经过圆心且垂直于切线的直线必经过切点.
③经过切点且垂直于切线的直线必经过圆心.
(2)切线的性质可总结如下:
如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:①直线过圆心;②直线过切点;③直线与圆的切线垂直.
(3)切线性质的运用
由定理可知,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.
22.三角形的内切圆与内心
(1)内切圆的有关概念:
与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.
(2)任何一个三角形有且仅有一个内切圆,而任一个圆都有无数个外切三角形.
(3)三角形内心的性质:
三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.
23.弧长的计算
(1)圆周长公式:C=2πR
(2)弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R)
①在弧长的计算公式中,n是表示1°的圆心角的倍数,n和180都不要带单位.
②若圆心角的单位不全是度,则需要先化为度后再计算弧长.
③题设未标明精确度的,可以将弧长用π表示.
④正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一.
24.扇形面积的计算
(1)圆面积公式:S=πr2
(2)扇形:由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.
(3)扇形面积计算公式:设圆心角是n°,圆的半径为R的扇形面积为S,则
S扇形=πR2或S扇形=lR(其中l为扇形的弧长)
(4)求阴影面积常用的方法:
①直接用公式法;
②和差法;
③割补法.
(5)求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.
25.圆的综合题
圆的综合题.
26.命题与定理
1、判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.
2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.
3、定理是真命题,但真命题不一定是定理.
4、命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.
5、命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.
27.相似三角形的判定与性质
(1)相似三角形相似多边形的特殊情形,它沿袭相似多边形的定义,从对应边的比相等和对应角相等两方面下定义;反过来,两个三角形相似也有对应角相等,对应边的比相等.
(2)三角形相似的判定一直是中考考查的热点之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;或依据基本图形对图形进行分解、组合;或作辅助线构造相似三角形,判定三角形相似的方法有事可单独使用,有时需要综合运用,无论是单独使用还是综合运用,都要具备应有的条件方可.
28.锐角三角函数的定义
在Rt△ABC中,∠C=90°.
(1)正弦:我们把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sinA.
即sinA=∠A的对边除以斜边=.
(2)余弦:锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cosA.
即cosA=∠A的邻边除以斜边=.
(3)正切:锐角A的对边a与邻边b的比叫做∠A的正切,记作tanA.
即tanA=∠A的对边除以∠A的邻边=.
(4)三角函数:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.
29.解直角三角形
(1)解直角三角形的定义
在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.
(2)解直角三角形要用到的关系
①锐角、直角之间的关系:∠A+∠B=90°;
②三边之间的关系:a2+b2=c2;
③边角之间的关系:
sinA==,cosA==,tanA==.
(a,b,c分别是∠A、∠B、∠C的对边)
声明:试题解析著作权属 所有,未经书面同意,不得复制发布
日期:2022/3/17 9:14:30;用户:组卷1;邮箱:zyb001@xyh.com;学号:41418964
相关试卷
这是一份2017-2021年江苏中考数学真题分类汇编之图形的性质,共38页。
这是一份2017-2021年山东中考数学真题分类汇编之图形的变化,共47页。
这是一份2017-2021年湖南中考数学真题分类汇编之图形的性质,共39页。