年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2017-2021年山东中考数学真题分类汇编之方程与不等式

    2017-2021年山东中考数学真题分类汇编之方程与不等式第1页
    2017-2021年山东中考数学真题分类汇编之方程与不等式第2页
    2017-2021年山东中考数学真题分类汇编之方程与不等式第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2017-2021年山东中考数学真题分类汇编之方程与不等式

    展开

    这是一份2017-2021年山东中考数学真题分类汇编之方程与不等式,共27页。
    2017-2021年山东中考数学真题分类汇编之方程与不等式
    一.选择题(共15小题)
    1.(2021•聊城)若﹣3<a≤3,则关于x的方程x+a=2解的取值范围为(  )
    A.﹣1≤x<5 B.﹣1<x≤1 C.﹣1≤x<1 D.﹣1<x≤5
    2.(2021•烟台)已知关于x的一元二次方程x2﹣mnx+m+n=0,其中m,n在数轴上的对应点如图所示,则这个方程的根的情况是(  )

    A.有两个不相等的实数根 B.有两个相等的实数根
    C.没有实数根 D.无法确定
    3.(2021•潍坊)不等式组的解集在数轴上表示正确的是(  )
    A. B.
    C. D.
    4.(2021•淄博)甲、乙两人沿着总长度为10km的“健身步道”健步走,甲的速度是乙的1.2倍,甲比乙提前12分钟走完全程.设乙的速度为xkm/h,则下列方程中正确的是(  )
    A.﹣=12 B.﹣=0.2
    C.﹣=12 D.﹣=0.2
    5.(2021•滨州)把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的为(  )
    A. B.
    C. D.
    6.(2021•聊城)关于x的方程x2+4kx+2k2=4的一个解是﹣2,则k值为(  )
    A.2或4 B.0或4 C.﹣2或0 D.﹣2或2
    7.(2021•菏泽)关于x的方程(k﹣1)2x2+(2k+1)x+1=0有实数根,则k的取值范围是(  )
    A.k且k≠1 B.k≥且k≠1 C.k D.k≥
    8.(2021•临沂)已知a>b,下列结论:①a2>ab;②a2>b2;③若b<0,则a+b<2b;④若b>0,则<,其中正确的个数是(  )
    A.1 B.2 C.3 D.4
    9.(2021•临沂)某工厂生产A、B两种型号的扫地机器人.B型机器人比A型机器人每小时的清扫面积多50%;清扫100m2所用的时间A型机器人比B型机器人多用40分钟.两种型号扫地机器人每小时分别清扫多少面积?若设A型扫地机器人每小时清扫xm2,根据题意可列方程为(  )
    A.=+ B.+=
    C.+= D.=+
    10.(2020•东营)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.则此人第三天走的路程为(  )
    A.96里 B.48里 C.24里 D.12里
    11.(2020•潍坊)关于x的一元二次方程x2+(k﹣3)x+1﹣k=0根的情况,下列说法正确的是(  )
    A.有两个不相等的实数根 B.有两个相等的实数根
    C.无实数根 D.无法确定
    12.(2020•泰安)将一元二次方程x2﹣8x﹣5=0化成(x+a)2=b(a,b为常数)的形式,则a,b的值分别是(  )
    A.﹣4,21 B.﹣4,11 C.4,21 D.﹣8,69
    13.(2020•聊城)用配方法解一元二次方程2x2﹣3x﹣1=0,配方正确的是(  )
    A.(x﹣)2= B.(x﹣)2=
    C.(x﹣)2= D.(x﹣)2=
    14.(2020•枣庄)对于实数a、b,定义一种新运算“⊗”为:a⊗b=,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)=﹣1的解是(  )
    A.x=4 B.x=5 C.x=6 D.x=7
    15.(2019•日照)某省加快新旧动能转换,促进企业创新发展.某企业一月份的营业额是1000万元,月平均增长率相同,第一季度的总营业额是3990万元.若设月平均增长率是x,那么可列出的方程是(  )
    A.1000(1+x)2=3990
    B.1000+1000(1+x)+1000(1+x)2=3990
    C.1000(1+2x)=3990
    D.1000+1000(1+x)+1000(1+2x)=3990
    二.填空题(共7小题)
    16.(2021•济南)关于x的一元二次方程x2+x﹣a=0的一个根是2,则另一个根是    .
    17.(2021•烟台)幻方历史悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方.将数字1~9分别填入如图所示的幻方中,要求每一横行,每一竖行以及两条对角线上的数字之和都是15,则a的值为    .

    18.(2021•泰安)《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”其大意是:“今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也为50.问甲、乙各有多少钱?”设甲的钱数为x,乙的钱数为y,根据题意,可列方程组为    .
    19.(2021•东营)不等式组的解集为    .
    20.(2020•济南)代数式与代数式的值相等,则x=   .
    21.(2020•济南)如图,在一块长15m、宽10m的矩形空地上,修建两条同样宽的相互垂直的道路,剩余部分栽种花草,要使绿化面积为126m2,则修建的路宽应为    米.

    22.(2020•潍坊)若关于x的分式方程+1有增根,则m=   .
    三.解答题(共3小题)
    23.(2021•济南)端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种畅销口味的粽子.已知购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个,甲种粽子的单价是乙种粽子单价的2倍.
    (1)求甲、乙两种粽子的单价分别是多少元?
    (2)为满足消费者需求,该超市准备再次购进甲、乙两种粽子共200个,若总金额不超过1150元,问最多购进多少个甲种粽子?
    24.(2021•东营)“杂交水稻之父”﹣﹣袁隆平先生所率领的科研团队在增产攻坚第一阶段实现水稻亩产量700公斤的目标,第三阶段实现水稻亩产量1008公斤的目标.
    (1)如果第二阶段、第三阶段亩产量的增长率相同,求亩产量的平均增长率;
    (2)按照(1)中亩产量增长率,科研团队期望第四阶段水稻亩产量达到1200公斤,请通过计算说明他们的目标能否实现.
    25.(2020•泰安)中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界 共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B种茶叶每盒进价是A种茶叶每盒进价的1.4倍.
    (1)A,B两种茶叶每盒进价分别为多少元?
    (2)第一次所购茶叶全部售完后,第二次购进A,B两种茶叶共100盒(进价不变),A种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?

    2017-2021年山东中考数学真题分类汇编之方程与不等式
    参考答案与试题解析
    一.选择题(共15小题)
    1.(2021•聊城)若﹣3<a≤3,则关于x的方程x+a=2解的取值范围为(  )
    A.﹣1≤x<5 B.﹣1<x≤1 C.﹣1≤x<1 D.﹣1<x≤5
    【考点】一元一次方程的解;不等式的性质.版权所有
    【专题】一次方程(组)及应用;一元一次不等式(组)及应用;运算能力.
    【分析】把a看作已知数求出方程的解得到x的值,由﹣3<a≤3代入计算即可.
    【解答】解:x+a=2,
    x=﹣a+2,
    ∵﹣3<a≤3,
    ∴﹣3≤﹣a<3,
    ∴﹣1≤﹣a+2<5,
    ∴﹣1≤x<5,
    故选:A.
    【点评】此题考查了解一元一次等式、一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.
    2.(2021•烟台)已知关于x的一元二次方程x2﹣mnx+m+n=0,其中m,n在数轴上的对应点如图所示,则这个方程的根的情况是(  )

    A.有两个不相等的实数根 B.有两个相等的实数根
    C.没有实数根 D.无法确定
    【考点】根的判别式;实数与数轴.版权所有
    【专题】一元二次方程及应用;运算能力.
    【分析】先由数轴得出m,n与0的关系,再计算判别式的值即可判断.
    【解答】解:由数轴得m>0,n<0,m+n<0,
    ∴mn<0,
    ∴Δ=(mn)2﹣4(m+n)>0,
    ∴方程有两个不相等的实数根.
    故选:A.
    【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.
    3.(2021•潍坊)不等式组的解集在数轴上表示正确的是(  )
    A. B.
    C. D.
    【考点】解一元一次不等式组;在数轴上表示不等式的解集.版权所有
    【专题】一元一次不等式(组)及应用;运算能力.
    【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
    【解答】解:解不等式2x+1≥x,得:x≥﹣1,
    解不等式﹣,得:x<2,
    则不等式组的解集为﹣1≤x<2,
    故选:D.
    【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    4.(2021•淄博)甲、乙两人沿着总长度为10km的“健身步道”健步走,甲的速度是乙的1.2倍,甲比乙提前12分钟走完全程.设乙的速度为xkm/h,则下列方程中正确的是(  )
    A.﹣=12 B.﹣=0.2
    C.﹣=12 D.﹣=0.2
    【考点】由实际问题抽象出分式方程.版权所有
    【专题】分式方程及应用;应用意识.
    【分析】设乙的速度为xkm/h,则甲的速度为1.2xkm/h,根据时间=路程÷速度结合甲比乙提前12分钟走完全程,即可得出关于x的分式方程,此题得解.
    【解答】解:12分钟=h=0.2h,
    设乙的速度为xkm/h,则甲的速度为1.2xkm/h,
    根据题意,得:﹣=0.2,
    故选:D.
    【点评】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.
    5.(2021•滨州)把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的为(  )
    A. B.
    C. D.
    【考点】解一元一次不等式组;在数轴上表示不等式的解集.版权所有
    【专题】一元一次不等式(组)及应用;运算能力.
    【分析】先解出不等式组中的每一个不等式的解集,然后即可写出不等式组的解集,再在数轴上表示出每一个不等式的解集即可.
    【解答】解:,
    解不等式①,得:x>﹣6,
    解不等式②,得:x≤13,
    故原不等式组的解集是﹣6<x≤13,
    其解集在数轴上表示如下:

    故选:B.
    【点评】本题考查解一元一次不等式组、在数轴上表示不等式组的解集,解答本题的关键是明确解一元一次不等式组的方法,会在数轴上表示不等式组的解集.
    6.(2021•聊城)关于x的方程x2+4kx+2k2=4的一个解是﹣2,则k值为(  )
    A.2或4 B.0或4 C.﹣2或0 D.﹣2或2
    【考点】一元二次方程的解.版权所有
    【专题】一元二次方程及应用;运算能力.
    【分析】直接把x=﹣2代入方程x2+4kx+2k2=4得4﹣8k+2k2=4,然后解关于k的一元二次方程即可.
    【解答】解:把x=﹣2代入方程x2+4kx+2k2=4得4﹣8k+2k2=4,
    整理得k2﹣4k=0,解得k1=0,k2=4,
    即k的值为0或4.
    故选:B.
    【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
    7.(2021•菏泽)关于x的方程(k﹣1)2x2+(2k+1)x+1=0有实数根,则k的取值范围是(  )
    A.k且k≠1 B.k≥且k≠1 C.k D.k≥
    【考点】根的判别式;一元二次方程的定义.版权所有
    【专题】一元二次方程及应用;运算能力.
    【分析】分k﹣1=0和k﹣1≠0两种情况,利用根的判别式求解可得.
    【解答】解:当k﹣1≠0,即k≠1时,此方程为一元二次方程.
    ∵关于x的方程(k﹣1)2x2+(2k+1)x+1=0有实数根,
    ∴Δ=(2k+1)2﹣4×(k﹣1)2×1=12k﹣3≥0,
    解得k≥;
    当k﹣1=0,即k=1时,方程为3x+1=0,显然有解;
    综上,k的取值范围是k≥,
    故选:D.
    【点评】本题主要考查根的判别式和一元二次方程的定义,一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:
    ①当Δ>0时,方程有两个不相等的两个实数根;
    ②当Δ=0时,方程有两个相等的两个实数根;
    ③当Δ<0时,方程无实数根.
    8.(2021•临沂)已知a>b,下列结论:①a2>ab;②a2>b2;③若b<0,则a+b<2b;④若b>0,则<,其中正确的个数是(  )
    A.1 B.2 C.3 D.4
    【考点】不等式的性质.版权所有
    【专题】整式;推理能力.
    【分析】根据不等式的性质逐个判断即可.
    【解答】解:a>b,
    ∴当a>0时,a2>ab,
    当a=0时,a2=ab,
    当a<0时,a2<ab,故①结论错误
    ∵a>b,
    ∴当|a|>|b|时,a2>b2,
    当|a|=|b|时,a2=b2,
    当|a|<|b|时,a2<b2,故②结论错误;
    ∵a>b,b<0,
    ∴a+b>2b,故③结论错误;
    ∵a>b,b>0,
    ∴a>b>0,
    ∴,故④结论正确;
    ∴正确的个数是1个.
    故选:A.
    【点评】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.
    9.(2021•临沂)某工厂生产A、B两种型号的扫地机器人.B型机器人比A型机器人每小时的清扫面积多50%;清扫100m2所用的时间A型机器人比B型机器人多用40分钟.两种型号扫地机器人每小时分别清扫多少面积?若设A型扫地机器人每小时清扫xm2,根据题意可列方程为(  )
    A.=+ B.+=
    C.+= D.=+
    【考点】由实际问题抽象出分式方程.版权所有
    【专题】分式方程及应用;应用意识.
    【分析】若设A型扫地机器人每小时清扫xm2,则B型扫地机器人每小时清扫(1+50%)xm2,根据“清扫100m2所用的时间A型机器人比B型机器人多用40分钟”列出方程,此题得解.
    【解答】解:若设A型扫地机器人每小时清扫xm2,则B型扫地机器人每小时清扫(1+50%)xm2,
    根据题意,得=+.
    故选:D.
    【点评】本题主要考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.
    10.(2020•东营)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.则此人第三天走的路程为(  )
    A.96里 B.48里 C.24里 D.12里
    【考点】一元一次方程的应用;数学常识.版权所有
    【专题】一次方程(组)及应用;应用意识.
    【分析】设此人第三天走的路程为x里,则其它五天走的路程分别为4x里,2x里,x里,x里,x里,根据六天共走了378里,即可得出关于x的一元一次方程,解之即可得出结论.
    【解答】解:设此人第三天走的路程为x里,则其它五天走的路程分别为4x里,2x里,x里,x里,x里,
    依题意,得:4x+2x+x+x+x+x=378,
    解得:x=48.
    故选:B.
    【点评】本题考查了一元一次方程的应用以及数学常识,找准等量关系,正确列出一元一次方程是解题的关键.
    11.(2020•潍坊)关于x的一元二次方程x2+(k﹣3)x+1﹣k=0根的情况,下列说法正确的是(  )
    A.有两个不相等的实数根 B.有两个相等的实数根
    C.无实数根 D.无法确定
    【考点】根的判别式.版权所有
    【专题】一元二次方程及应用;应用意识.
    【分析】先计算判别式,再进行配方得到Δ=(k﹣1)2+4,然后根据非负数的性质得到Δ>0,再利用判别式的意义即可得到方程总有两个不相等的实数根.
    【解答】解:Δ=(k﹣3)2﹣4(1﹣k)
    =k2﹣6k+9﹣4+4k
    =k2﹣2k+5
    =(k﹣1)2+4,
    ∴(k﹣1)2+4>0,即Δ>0,
    ∴方程总有两个不相等的实数根.
    故选:A.
    【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:①当Δ>0时,方程有两个不相等的实数根;②当Δ=0时,方程有两个相等的实数根;③当Δ<0时,方程无实数根.上面的结论反过来也成立.
    12.(2020•泰安)将一元二次方程x2﹣8x﹣5=0化成(x+a)2=b(a,b为常数)的形式,则a,b的值分别是(  )
    A.﹣4,21 B.﹣4,11 C.4,21 D.﹣8,69
    【考点】解一元二次方程﹣配方法.版权所有
    【专题】一元二次方程及应用;运算能力.
    【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可得出答案.
    【解答】解:∵x2﹣8x﹣5=0,
    ∴x2﹣8x=5,
    则x2﹣8x+16=5+16,即(x﹣4)2=21,
    ∴a=﹣4,b=21,
    故选:A.
    【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.
    13.(2020•聊城)用配方法解一元二次方程2x2﹣3x﹣1=0,配方正确的是(  )
    A.(x﹣)2= B.(x﹣)2=
    C.(x﹣)2= D.(x﹣)2=
    【考点】解一元二次方程﹣配方法.版权所有
    【专题】一元二次方程及应用;运算能力.
    【分析】化二次项系数为1后,把常数项﹣右移,应该在左右两边同时加上一次项系数﹣的一半的平方.
    【解答】解:由原方程,得
    x2﹣x=,
    x2﹣x+=+,
    (x﹣)2=,
    故选:A.
    【点评】本题考查了解一元二次方程﹣﹣配方法.配方法的一般步骤:
    (1)把常数项移到等号的右边;
    (2)把二次项的系数化为1;
    (3)等式两边同时加上一次项系数一半的平方.
    选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
    14.(2020•枣庄)对于实数a、b,定义一种新运算“⊗”为:a⊗b=,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)=﹣1的解是(  )
    A.x=4 B.x=5 C.x=6 D.x=7
    【考点】分式方程的解.版权所有
    【专题】新定义.
    【分析】所求方程利用题中的新定义化简,求出解即可.
    【解答】解:根据题意,得=﹣1,
    去分母得:1=2﹣(x﹣4),
    解得:x=5,
    经检验x=5是分式方程的解.
    故选:B.
    【点评】此题考查了解分式方程,弄清题中的新定义是解本题的关键.
    15.(2019•日照)某省加快新旧动能转换,促进企业创新发展.某企业一月份的营业额是1000万元,月平均增长率相同,第一季度的总营业额是3990万元.若设月平均增长率是x,那么可列出的方程是(  )
    A.1000(1+x)2=3990
    B.1000+1000(1+x)+1000(1+x)2=3990
    C.1000(1+2x)=3990
    D.1000+1000(1+x)+1000(1+2x)=3990
    【考点】由实际问题抽象出一元二次方程.版权所有
    【专题】增长率问题.
    【分析】设月平均增长的百分率是x,则该超市二月份的营业额为1000(1+x)万元,三月份的营业额为1000(1+x)2万元,根据该超市第一季度的总营业额是3990万元,即可得出关于x的一元二次方程,此题得解.
    【解答】解:设月平均增长的百分率是x,则该超市二月份的营业额为1000(1+x)万元,三月份的营业额为1000(1+x)2万元,
    依题意,得1000+1000(1+x)+1000(1+x)2=3990.
    故选:B.
    【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.
    二.填空题(共7小题)
    16.(2021•济南)关于x的一元二次方程x2+x﹣a=0的一个根是2,则另一个根是  ﹣3 .
    【考点】根与系数的关系;一元二次方程的解.版权所有
    【专题】一元二次方程及应用;运算能力.
    【分析】利用根与系数之间的关系求解.
    【解答】解:设另一个根为m,由根与系数之间的关系得,
    m+2=﹣1,
    ∴m=﹣3,
    故答案为﹣3,
    【点评】本题主要考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.
    17.(2021•烟台)幻方历史悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方.将数字1~9分别填入如图所示的幻方中,要求每一横行,每一竖行以及两条对角线上的数字之和都是15,则a的值为  2 .

    【考点】一元一次方程的应用;数学常识.版权所有
    【专题】一次方程(组)及应用;应用意识.
    【分析】利用幻方中每一横行,每一竖行以及两条对角线上的数字之和都是15,可求出幻方右下角及第二行中间的数字,再利用幻方中对角线上的数字之和为15,即可得出关于a的一元一次方程,解之即可得出结论.
    【解答】解:幻方右下角的数字为15﹣8﹣3=4,
    幻方第二行中间的数字为15﹣6﹣4=5.
    依题意得:8+5+a=15,
    解得:a=2.
    故答案为:2.
    【点评】本题考查了一元一次方程的应用以及数字常识,找准等量关系,正确列出一元一次方程是解题的关键.
    18.(2021•泰安)《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”其大意是:“今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也为50.问甲、乙各有多少钱?”设甲的钱数为x,乙的钱数为y,根据题意,可列方程组为   .
    【考点】由实际问题抽象出二元一次方程组.版权所有
    【专题】一次方程(组)及应用;应用意识.
    【分析】根据乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也为50和题目中所设的未知数,可以列出相应的方程组,从而可以解答本题.
    【解答】解:由题意可得,

    故答案为:.
    【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是找出题目中的等量关系,列出相应的方程组.
    19.(2021•东营)不等式组的解集为  ﹣1≤x<2 .
    【考点】解一元一次不等式组.版权所有
    【专题】计算题;一元一次不等式(组)及应用.
    【分析】先求出两个不等式的解集,再求其公共解.
    【解答】解:解不等式﹣≤1,得:x≥﹣1,
    解不等式5x﹣1<3(x+1),得:x<2,
    则不等式组的解集为﹣1≤x<2,
    故答案为:﹣1≤x<2.
    【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
    20.(2020•济南)代数式与代数式的值相等,则x= 7 .
    【考点】解分式方程.版权所有
    【专题】分式方程及应用;运算能力.
    【分析】根据题意列出分式方程,求出解即可.
    【解答】解:根据题意得:=,
    去分母得:3x﹣9=2x﹣2,
    解得:x=7,
    经检验x=7是分式方程的根.
    故答案为:7.
    【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
    21.(2020•济南)如图,在一块长15m、宽10m的矩形空地上,修建两条同样宽的相互垂直的道路,剩余部分栽种花草,要使绿化面积为126m2,则修建的路宽应为  1 米.

    【考点】一元二次方程的应用.版权所有
    【专题】一元二次方程及应用;应用意识.
    【分析】把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程求解即可.
    【解答】解:设道路的宽为x m,根据题意得:
    (10﹣x)(15﹣x)=126,
    解得:x1=1,x2=24(不合题意,舍去),
    则道路的宽应为1米;
    故答案为:1.
    【点评】此题主要考查了一元二次方程的应用,把中间修建的两条道路分别平移到矩形地面的最上边和最左边是做本题的关键.
    22.(2020•潍坊)若关于x的分式方程+1有增根,则m= 3 .
    【考点】分式方程的增根.版权所有
    【专题】分式;运算能力.
    【分析】先把分式方程去分母转化为整式方程,然后由分式方程有增根求出x的值,代入到转化以后的整式方程中计算即可求出m的值.
    【解答】解:去分母得:3x=m+3+(x﹣2),整理得:2x=m+1,
    ∵关于x的分式方程有增根,即x﹣2=0,
    ∴x=2,
    把x=2代入到2x=m+1中得:2×2=m+1,
    解得:m=3;
    故答案为:3.
    【点评】本题主要考查了利用增根求字母的值,增根就是使最简公分母为零的未知数的值;解决此类问题的步骤:①化分式方程为整式方程;②让最简公分母等于零求出增根的值;③把增根代入到整式方程中即可求得相关字母的值.
    三.解答题(共3小题)
    23.(2021•济南)端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种畅销口味的粽子.已知购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个,甲种粽子的单价是乙种粽子单价的2倍.
    (1)求甲、乙两种粽子的单价分别是多少元?
    (2)为满足消费者需求,该超市准备再次购进甲、乙两种粽子共200个,若总金额不超过1150元,问最多购进多少个甲种粽子?
    【考点】分式方程的应用;一元一次不等式的应用.版权所有
    【专题】分式方程及应用;一元一次不等式(组)及应用;运算能力;推理能力;应用意识.
    【分析】(1)设乙种粽子的单价为x元,则甲种粽子的单价为2x元,由题意:购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个,列出分式方程,解方程即可;
    (2)设购进甲种粽子m个,则购进乙种粽子(200﹣m)个,由题意:总金额不超过1150元,列出一元一次不等式,解不等式即可.
    【解答】解:(1)设乙种粽子的单价为x元,则甲种粽子的单价为2x元,
    依题意得:﹣=50,
    解得:x=4,
    经检验,x=4是原方程的解,
    则2x=8,
    答:甲种粽子的单价为8元,乙种粽子的单价为4元.
    (2)设购进甲种粽子m个,则购进乙种粽子(200﹣m)个,
    依题意得:8m+4(200﹣m)≤1150,
    解得:m≤87.5,
    答:最多购进87个甲种粽子.
    【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.
    24.(2021•东营)“杂交水稻之父”﹣﹣袁隆平先生所率领的科研团队在增产攻坚第一阶段实现水稻亩产量700公斤的目标,第三阶段实现水稻亩产量1008公斤的目标.
    (1)如果第二阶段、第三阶段亩产量的增长率相同,求亩产量的平均增长率;
    (2)按照(1)中亩产量增长率,科研团队期望第四阶段水稻亩产量达到1200公斤,请通过计算说明他们的目标能否实现.
    【考点】一元二次方程的应用.版权所有
    【专题】一元二次方程及应用;应用意识.
    【分析】(1)设亩产量的平均增长率为x,根据第三阶段水稻亩产量=第一阶段水稻亩产量×(1+增长率)2,即可得出关于x的一元二次方程,解之取其正值即可得出结论;
    (2)利用第四阶段水稻亩产量=第三阶段水稻亩产量×(1+增长率),可求出第四阶段水稻亩产量,将其与1200公斤比较后即可得出结论.
    【解答】解:(1)设亩产量的平均增长率为x,
    依题意得:700(1+x)2=1008,
    解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).
    答:亩产量的平均增长率为20%.
    (2)1008×(1+20%)=1209.6(公斤).
    ∵1209.6>1200,
    ∴他们的目标能实现.
    【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
    25.(2020•泰安)中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界 共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B种茶叶每盒进价是A种茶叶每盒进价的1.4倍.
    (1)A,B两种茶叶每盒进价分别为多少元?
    (2)第一次所购茶叶全部售完后,第二次购进A,B两种茶叶共100盒(进价不变),A种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?
    【考点】分式方程的应用;一元一次方程的应用.版权所有
    【专题】一次方程(组)及应用;分式方程及应用;应用意识.
    【分析】(1)设A种茶叶每盒进价为x元,则B种茶叶每盒进价为1.4x元,根据用8400元购买的B种茶叶比用4000元购买的A种茶叶多10盒,即可得出关于x的分式方程,解之即可得出结论;
    (2)设第二次购进A种茶叶m盒,则购进B种茶叶(100﹣m)盒,根据总利润=每盒的利润×销售数量,即可得出关于m的一元一次方程,解之即可得出结论.
    【解答】解:(1)设A种茶叶每盒进价为x元,则B种茶叶每盒进价为1.4x元,
    依题意,得:﹣=10,
    解得:x=200,
    经检验,x=200是原方程的解,且符合题意,
    ∴1.4x=280.
    答:A种茶叶每盒进价为200元,B种茶叶每盒进价为280元.
    (2)设第二次购进A种茶叶m盒,则购进B种茶叶(100﹣m)盒,
    依题意,得:(300﹣200)×+(300×0.7﹣200)×+(400﹣280)×+(400×0.7﹣280)×=5800,
    解得:m=40,
    ∴100﹣m=60.
    答:第二次购进A种茶叶40盒,B种茶叶60盒.
    【点评】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.

    考点卡片
    1.数学常识
    数学常识
    此类问题要结合实际问题来解决,生活中的一些数学常识要了解.比如给出一个物体的高度要会选择它合适的单位长度等等.
    平时要注意多观察,留意身边的小知识.
    2.实数与数轴
    (1)实数与数轴上的点是一一对应关系.
    任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.数轴上的任一点表示的数,不是有理数,就是无理数.
    (2)在数轴上,表示相反数的两个点在原点的两旁,并且两点到原点的距离相等,实数a的绝对值就是在数轴上这个数对应的点与原点的距离.
    (3)利用数轴可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.
    3.一元一次方程的解
    定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.
    把方程的解代入原方程,等式左右两边相等.
    4.一元一次方程的应用
    (一)一元一次方程解应用题的类型有:
    (1)探索规律型问题;
    (2)数字问题;
    (3)销售问题(利润=售价﹣进价,利润率=×100%);(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);
    (5)行程问题(路程=速度×时间);
    (6)等值变换问题;
    (7)和,差,倍,分问题;
    (8)分配问题;
    (9)比赛积分问题;
    (10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).
    (二)利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.
    列一元一次方程解应用题的五个步骤
    1.审:仔细审题,确定已知量和未知量,找出它们之间的等量关系.
    2.设:设未知数(x),根据实际情况,可设直接未知数(问什么设什么),也可设间接未知数.
    3.列:根据等量关系列出方程.
    4.解:解方程,求得未知数的值.
    5.答:检验未知数的值是否正确,是否符合题意,完整地写出答句.
    5.由实际问题抽象出二元一次方程组
    (1)由实际问题列方程组是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系.
    (2)一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量;②同类量的单位要统一;③方程两边的数值要相符.
    (3)找等量关系是列方程组的关键和难点,有如下规律和方法:
    ①确定应用题的类型,按其一般规律方法找等量关系.②将问题中给出的条件按意思分割成两个方面,有“;”时一般“;”前后各一层,分别找出两个等量关系.③借助表格提供信息的,按横向或纵向去分别找等量关系.④图形问题,分析图形的长、宽,从中找等量关系.
    6.一元二次方程的定义
    (1)一元二次方程的定义:
    只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.
    (2)概念解析:
    一元二次方程必须同时满足三个条件:
    ①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;
    ②只含有一个未知数;
    ③未知数的最高次数是2.
    (3)判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.
    7.一元二次方程的解
    (1)一元二次方程的解(根)的意义:
    能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.
    (2)一元二次方程一定有两个解,但不一定有两个实数解.这x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两实数根,则下列两等式成立,并可利用这两个等式求解未知量.
    ax12+bx1+c=0(a≠0),ax22+bx2+c=0(a≠0).
    8.解一元二次方程-配方法
    (1)将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.
    (2)用配方法解一元二次方程的步骤:
    ①把原方程化为ax2+bx+c=0(a≠0)的形式;
    ②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;
    ③方程两边同时加上一次项系数一半的平方;
    ④把左边配成一个完全平方式,右边化为一个常数;
    ⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.
    9.根的判别式
    利用一元二次方程根的判别式(△=b2﹣4ac)判断方程的根的情况.
    一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:
    ①当△>0时,方程有两个不相等的两个实数根;
    ②当△=0时,方程有两个相等的两个实数根;
    ③当△<0时,方程无实数根.
    上面的结论反过来也成立.
    10.根与系数的关系
    (1)若二次项系数为1,常用以下关系:x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q,反过来可得p=﹣(x1+x2),q=x1x2,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数.
    (2)若二次项系数不为1,则常用以下关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=,反过来也成立,即=﹣(x1+x2),=x1x2.
    (3)常用根与系数的关系解决以下问题:
    ①不解方程,判断两个数是不是一元二次方程的两个根.②已知方程及方程的一个根,求另一个根及未知数.③不解方程求关于根的式子的值,如求,x12+x22等等.④判断两根的符号.⑤求作新方程.⑥由给出的两根满足的条件,确定字母的取值.这类问题比较综合,解题时除了利用根与系数的关系,同时还要考虑a≠0,△≥0这两个前提条件.
    11.由实际问题抽象出一元二次方程
    在解决实际问题时,要全面、系统地审清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系,设出未知数,用方程表示出已知量与未知量之间的等量关系,即列出一元二次方程.
    12.一元二次方程的应用
    1、列方程解决实际问题的一般步骤是:审清题意设未知数,列出方程,解所列方程求所列方程的解,检验和作答.
    2、列一元二次方程解应用题中常见问题:
    (1)数字问题:个位数为a,十位数是b,则这个两位数表示为10b+a.
    (2)增长率问题:增长率=增长数量/原数量×100%.如:若原数是a,每次增长的百分率为x,则第一次增长后为a(1+x);第二次增长后为a(1+x)2,即 原数×(1+增长百分率)2=后来数.
    (3)形积问题:①利用勾股定理列一元二次方程,求三角形、矩形的边长.②利用三角形、矩形、菱形、梯形和圆的面积,以及柱体体积公式建立等量关系列一元二次方程.③利用相似三角形的对应比例关系,列比例式,通过两内项之积等于两外项之积,得到一元二次方程.
    (4)运动点问题:物体运动将会沿着一条路线或形成一条痕迹,运行的路线与其他条件会构成直角三角形,可运用直角三角形的性质列方程求解.
    【规律方法】列一元二次方程解应用题的“六字诀”
    1.审:理解题意,明确未知量、已知量以及它们之间的数量关系.
    2.设:根据题意,可以直接设未知数,也可以间接设未知数.
    3.列:根据题中的等量关系,用含所设未知数的代数式表示其他未知量,从而列出方程.
    4.解:准确求出方程的解.
    5.验:检验所求出的根是否符合所列方程和实际问题.
    6.答:写出答案.
    13.分式方程的解
    求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.
    注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.
    14.解分式方程
    (1)解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.
    (2)解分式方程时,去分母后所得整式方程的解有可能使原方程中的分母为0,所以应如下检验:
    ①将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解.
    ②将整式方程的解代入最简公分母,如果最简公分母的值为0,则整式方程的解不是原分式方程的解.
    所以解分式方程时,一定要检验.
    15.分式方程的增根
    (1)增根的定义:在分式方程变形时,有可能产生不适合原方程的根,即代入分式方程后分母的值为0或是转化后的整式方程的根恰好是原方程未知数的允许值之外的值的根,叫做原方程的增根.
    (2)增根的产生的原因:对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取哪些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件.当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根.
    (3)检验增根的方法:把由分式方程化成的整式方程的解代入最简公分母,看最简公分母是否为0,如果为0,则是增根;如果不是0,则是原分式方程的根.
    16.由实际问题抽象出分式方程
    由实际问题抽象出分式方程的关键是分析题意找出相等关系.
    (1)在确定相等关系时,一是要理解一些常用的数量关系和一些基本做法,如行程问题中的相遇问题和追击问题,最重要的是相遇的时间相等、追击的时间相等.
    (2)列分式方程解应用题要多思、细想、深思,寻求多种解法思路.
    17.分式方程的应用
    1、列分式方程解应用题的一般步骤:设、列、解、验、答.
    必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.
    2、要掌握常见问题中的基本关系,如行程问题:速度=路程时间;工作量问题:工作效率=工作量工作时间
    等等.
    列分式方程解应用题一定要审清题意,找相等关系是着眼点,要学会分析题意,提高理解能力.
    18.不等式的性质
    (1)不等式的基本性质
    ①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,即:
    若a>b,那么a±m>b±m;
    ②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,即:
    若a>b,且m>0,那么am>bm或>;
    ③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,即:
    若a>b,且m<0,那么am<bm或<;
    (2)不等式的变形:①两边都加、减同一个数,具体体现为“移项”,此时不等号方向不变,但移项要变号;②两边都乘、除同一个数,要注意只有乘、除负数时,不等号方向才改变.
    【规律方法】
    1.应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.
    2.不等式的传递性:若a>b,b>c,则a>c.
    19.在数轴上表示不等式的解集
    用数轴表示不等式的解集时,要注意“两定”:
    一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;
    二是定方向,定方向的原则是:“小于向左,大于向右”.
    【规律方法】不等式解集的验证方法
      某不等式求得的解集为x>a,其验证方法可以先将a代入原不等式,则两边相等,其次在x>a的范围内取一个数代入原不等式,则原不等式成立.
    20.一元一次不等式的应用
    (1)由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.
    (2)列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.
    (3)列一元一次不等式解决实际问题的方法和步骤:
    ①弄清题中数量关系,用字母表示未知数.
    ②根据题中的不等关系列出不等式.
    ③解不等式,求出解集.
    ④写出符合题意的解.
    21.解一元一次不等式组
    (1)一元一次不等式组的解集:几个一元一次不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.
    (2)解不等式组:求不等式组的解集的过程叫解不等式组.
    (3)一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.
    方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.
    解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
    声明:试题解析著作权属所有,未经书面同意,不得复制发布

    相关试卷

    2017-2021年江苏中考数学真题分类汇编之方程与不等式:

    这是一份2017-2021年江苏中考数学真题分类汇编之方程与不等式,共27页。

    2017-2021年四川中考数学真题分类汇编之方程与不等式:

    这是一份2017-2021年四川中考数学真题分类汇编之方程与不等式,共26页。

    2017-2021年河南中考数学真题分类汇编之方程与不等式:

    这是一份2017-2021年河南中考数学真题分类汇编之方程与不等式,共18页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map