还剩29页未读,
继续阅读
2017-2021年山东中考数学真题分类汇编之统计与概率
展开这是一份2017-2021年山东中考数学真题分类汇编之统计与概率,共32页。
2017-2021年山东中考数学真题分类汇编之统计与概率
一.选择题(共16小题)
1.(2019•日照)下列事件中,是必然事件的是( )
A.掷一次骰子,向上一面的点数是6
B.13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月
C.射击运动员射击一次,命中靶心
D.经过有交通信号灯的路口,遇到红灯
2.(2021•淄博)小明收集整理了本校八年级1班20名同学的定点投篮比赛成绩(每人投篮10次),并绘制了折线统计图,如图所示.那么这次比赛成绩的中位数、众数分别是( )
A.6,7 B.7,7 C.5,8 D.7,8
3.(2020•日照)下列调查中,适宜采用全面调查的是( )
A.调查全国初中学生视力情况
B.了解某班同学“三级跳远”的成绩情况
C.调查某品牌汽车的抗撞击情况
D.调查2019年央视“主持人大赛”节目的收视率
4.(2020•淄博)李老师为了解学生家务劳动时间情况,更好地弘扬“热爱劳动”的民族传统美德,随机调查了本校10名学生在上周参加家务劳动的时间,收集到如下数据(单位:小时):4,3,4,6,5,5,6,5,4,5.则这组数据的中位数和众数分别是( )
A.4,5 B.5,4 C.5,5 D.5,6
5.(2021•日照)袁隆平院士被誉为“世界杂交水稻之父”,他研究的水稻,不仅高产,而且抗倒伏.在某次实验中,他的团队对甲、乙两种水稻品种进行产量稳定实验,各选取了8块条件相同的试验田,同时播种并核定亩产,结果甲、乙两种水稻的平均产量均为1200千克/亩,方差为S甲2=186.9,S乙2=325.3.为保证产量稳定,适合推广的品种为( )
A.甲 B.乙 C.甲、乙均可 D.无法确定
6.(2020•东营)如图.随机闭合开关K1、K2、K3中的两个,则能让两盏灯泡L1、L2同时发光的概率为( )
A. B. C. D.
7.(2020•临沂)如图是甲、乙两同学五次数学测试成绩的折线图.比较甲、乙的成绩,下列说法正确的是( )
A.甲平均分高,成绩稳定
B.甲平均分高,成绩不稳定
C.乙平均分高,成绩稳定
D.乙平均分高,成绩不稳定
8.(2019•东营)从1,2,3,4中任取两个不同的数,分别记为a和b,则a2+b2>19的概率是( )
A. B. C. D.
9.(2021•德州)八年级二班在一次体重测量中,小明体重54.5kg,低于全班半数学生的体重,分析得到结论所用的统计量是( )
A.中位数 B.众数 C.平均数 D.方差
10.(2021•滨州)在四张反面无差别的卡片上,其正面分别印有线段、等边三角形、平行四边形和正六边形.现将四张卡片的正面朝下放置,混合均匀后从中随机抽取两张,则抽到的卡片正面图形都是轴对称图形的概率为( )
A. B. C. D.
11.(2020•威海)为了调查疫情对青少年人生观、价值观产生的影响,某学校团委对初二级部学生进行了问卷调查,其中一项是:疫情期间出现的哪一个高频词汇最触动你的内心?针对该项调查结果制作的两个统计图(不完整)如图.由图中信息可知,下列结论错误的是( )
A.本次调查的样本容量是600
B.选“责任”的有120人
C.扇形统计图中“生命”所对应的扇形圆心角度数为64.8°
D.选“感恩”的人数最多
12.(2019•济南)在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是( )
A.9.7m,9.9m B.9.7m,9.8m C.9.8m,9.7m D.9.8m,9.9m
13.(2019•烟台)将一枚飞镖任意投掷到如图所示的正六边形镖盘上,飞镖落在白色区域的概率为( )
A. B. C. D.无法确定
14.(2021•济南)某学校组织学生到社区开展公益宣传活动,成立了“垃圾分类”“文明出行”“低碳环保”三个宣传队,如果小华和小丽每人随机选择参加其中一个宣传队,则她们恰好选到同一个宣传队的概率是( )
A. B. C. D.
15.(2021•潍坊)如图为2021年第一季度中国工程机械出口额TOP10国家的相关数据(同比增速是指相对于2020年第一季度出口额的增长率),下列说法正确的是( )
A.对10个国家出口额的中位数是26201万美元
B.对印度尼西亚的出口额比去年同期减少
C.去年同期对日本的出口额小于对俄罗斯联邦的出口额
D.出口额同比增速中,对美国的增速最快
16.(2019•烟台)某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试,因此计算其他39人的平均分为90分,方差s2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是( )
A.平均分不变,方差变大 B.平均分不变,方差变小
C.平均分和方差都不变 D.平均分和方差都改变
二.填空题(共4小题)
17.(2019•日照)已知一组数据8,3,m,2的众数为3,则这组数据的平均数是 .
18.(2020•青岛)某公司要招聘一名职员,根据实际需要,从学历、经验和工作态度三个方面对甲、乙两名应聘者进行了测试,测试成绩如下表所示.如果将学历、经验和工作态度三项得分按2:1:3的比例确定两人的最终得分,并以此为依据确定录用者,那么 将被录用(填甲或乙).
应聘者
项目
甲
乙
学历
9
8
经验
7
6
工作态度
5
7
19.(2019•淄博)某校欲从初三级部3名女生,2名男生中任选两名学生代表学校参加全市举办的“中国梦•青春梦“演讲比赛,则恰好选中一男一女的概率是 .
20.(2019•济南)如图,一个可以自由转动的转盘,被分成了6个相同的扇形,转动转盘,转盘停止时,指针落在红色区域的概率等于 .
三.解答题(共3小题)
21.(2020•威海)小伟和小梅两位同学玩掷骰子的游戏,两人各掷一次均匀的骰子.以掷出的点数之差的绝对值判断输赢.若所得数值等于0,1,2,则小伟胜;若所得数值等于3,4,5,则小梅胜.
(1)请利用表格分别求出小伟、小梅获胜的概率;
(2)判断上述游戏是否公平.如果公平,请说明理由;如果不公平,请利用表格修改游戏规则,以确保游戏的公平性.
22.(2020•临沂)2020年是脱贫攻坚年.为实现全员脱贫目标,某村贫困户在当地政府支持帮助下,办起了养鸡场.经过一段时间精心饲养,总量为3000只的一批鸡可以出售.现从中随机抽取50只,得到它们质量的统计数据如下:
质量/kg
组中值
频数(只)
0.9≤x<1.1
1.0
6
1.1≤x<1.3
1.2
9
1.3≤x<1.5
1.4
a
1.5≤x<1.7
1.6
15
1.7≤x<1.9
1.8
8
根据以上信息,解答下列问题:
(1)表中a= ,补全频数分布直方图;
(2)这批鸡中质量不小于1.7kg的大约有多少只?
(3)这些贫困户的总收入达到54000元,就能实现全员脱贫目标.按15元/kg的价格售出这批鸡后,该村贫困户能否脱贫?
23.(2020•烟台)奥体中心为满足暑期学生对运动的需求,欲开设球类课程,该中心随机抽取部分学生进行问卷调查,被调查学生须从“羽毛球”、“篮球”、“足球”、“排球”、“乒乓球”中选择自己最喜欢的一项.根据调查结果绘制了不完整的条形统计图和扇形统计图,请根据图中信息,解答下列问题:
(1)此次共调查了多少名学生?
(2)将条形统计图补充完整;
(3)我们把“羽毛球”、“篮球”、“足球”、“排球”、“乒乓球”分别用A,B,C,D,E表示.小明和小亮分别从这些项目中任选一项进行训练,利用树状图或表格求出他俩选择不同项目的概率.
2017-2021年山东中考数学真题分类汇编之统计与概率
参考答案与试题解析
一.选择题(共16小题)
1.(2019•日照)下列事件中,是必然事件的是( )
A.掷一次骰子,向上一面的点数是6
B.13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月
C.射击运动员射击一次,命中靶心
D.经过有交通信号灯的路口,遇到红灯
【考点】随机事件.版权所有
【专题】概率及其应用.
【分析】事先能肯定它一定会发生的事件称为必然事件,即发生的概率是1的事件.
【解答】解:A.掷一次骰子,向上一面的点数是6,属于随机事件;
B.13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月,属于必然事件;
C.射击运动员射击一次,命中靶心,属于随机事件;
D.经过有交通信号灯的路口,遇到红灯,属于随机事件;
故选:B.
【点评】该题考查的是对必然事件的概念的理解,事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.
2.(2021•淄博)小明收集整理了本校八年级1班20名同学的定点投篮比赛成绩(每人投篮10次),并绘制了折线统计图,如图所示.那么这次比赛成绩的中位数、众数分别是( )
A.6,7 B.7,7 C.5,8 D.7,8
【考点】折线统计图;中位数;众数.版权所有
【专题】数据的收集与整理;数据分析观念.
【分析】将八年级1班20名同学的定点投篮比赛成绩按照从小到大的顺序排列,根据众数、中位数的定义求解即可.
【解答】解:八年级1班20名同学的定点投篮比赛成绩按照从小到大的顺序排列如下:
3,3,5,5,5,5,6,6,6,7,7,7,7,7,7,8,8,8,9,9,
这次比赛成绩的中位数是=7,众数是7,
故选:B.
【点评】此题考查了折线统计图、中位数以及众数,根据折线统计图得出解题所需数据并熟练掌握众数、中位数定义是解题的关键.
3.(2020•日照)下列调查中,适宜采用全面调查的是( )
A.调查全国初中学生视力情况
B.了解某班同学“三级跳远”的成绩情况
C.调查某品牌汽车的抗撞击情况
D.调查2019年央视“主持人大赛”节目的收视率
【考点】全面调查与抽样调查.版权所有
【专题】推理能力.
【分析】根据全面调查和抽样调查的适用条件即可求解.
【解答】解:对于调查方式,适宜于全面调查的常见存在形式有:范围小或准确性要求高的调查,
A.调查全国初中学生视力情况没必要用全面调查,只需抽样调查即可,
B.了解某班同学“三级跳远”的成绩情况,因调查范围小且需要具体到某个人,适宜全面调查,
C.调查某品牌汽车的抗撞击情况,此调查兼破坏性,显然不能适宜全面调查,
D.调查2019年央视“主持人大赛”节目的收视率,因调查受众广范围大,故不适宜全面调查,
故选:B.
【点评】本题考查了全面调查和抽样调查的适用条件,解题关键是要知道这个适用条件.
4.(2020•淄博)李老师为了解学生家务劳动时间情况,更好地弘扬“热爱劳动”的民族传统美德,随机调查了本校10名学生在上周参加家务劳动的时间,收集到如下数据(单位:小时):4,3,4,6,5,5,6,5,4,5.则这组数据的中位数和众数分别是( )
A.4,5 B.5,4 C.5,5 D.5,6
【考点】众数;中位数.版权所有
【专题】数据的收集与整理;统计的应用;数据分析观念;模型思想;应用意识.
【分析】根据中位数、众数的意义和计算方法进行计算即可.
【解答】解:这组数据4,3,4,6,5,5,6,5,4,5中,出现次数最多的是5,因此众数是5,
将这组数据从小到大排列为:3,4,4,4,5,5,5,5,6,6,处在第5、6位的两个数都是5,因此中位数是5.
故选:C.
【点评】本题考查中位数、众数的意义和计算方法,理解中位数、众数的意义是正确解答的前提,掌握计算方法是解决问题的关键.
5.(2021•日照)袁隆平院士被誉为“世界杂交水稻之父”,他研究的水稻,不仅高产,而且抗倒伏.在某次实验中,他的团队对甲、乙两种水稻品种进行产量稳定实验,各选取了8块条件相同的试验田,同时播种并核定亩产,结果甲、乙两种水稻的平均产量均为1200千克/亩,方差为S甲2=186.9,S乙2=325.3.为保证产量稳定,适合推广的品种为( )
A.甲 B.乙 C.甲、乙均可 D.无法确定
【考点】方差.版权所有
【专题】统计的应用;数据分析观念.
【分析】根据方差的意义求解即可.
【解答】解:∵S甲2=186.9,S乙2=325.3,
∴S甲2<S乙2,
∴为保证产量稳定,适合推广的品种为甲,
故选:A.
【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
6.(2020•东营)如图.随机闭合开关K1、K2、K3中的两个,则能让两盏灯泡L1、L2同时发光的概率为( )
A. B. C. D.
【考点】列表法与树状图法.版权所有
【专题】概率及其应用;运算能力.
【分析】找出随机闭合开关K1、K2、K3中的两个的情况数以及能让两盏灯泡L1、L2同时发光的情况数,即可求出所求概率.
【解答】解:画树状图,如图所示:
随机闭合开关K1、K2、K3中的两个有六种情况:闭合K1K2,闭合K1K3,闭合K2K1,闭合K2K3,闭合K3K1,闭合K3K2,
能让两盏灯泡L1、L2同时发光的有两种情况:闭合K2K3,闭合K3K2,
则P(能让两盏灯泡L1、L2同时发光)==.
故选:D.
【点评】此题考查了列表法与树状图法,弄清题中的电路图是解本题的关键.
7.(2020•临沂)如图是甲、乙两同学五次数学测试成绩的折线图.比较甲、乙的成绩,下列说法正确的是( )
A.甲平均分高,成绩稳定
B.甲平均分高,成绩不稳定
C.乙平均分高,成绩稳定
D.乙平均分高,成绩不稳定
【考点】折线统计图;方差.版权所有
【专题】数据的收集与整理;统计的应用;数据分析观念;应用意识.
【分析】分别求出甲、乙的平均数、方差,比较得出答案.
【解答】解:乙==90,甲==84,因此乙的平均数较高;
S2乙=[(100﹣90)2+(85﹣90)2+(80﹣90)2+(95﹣90)2]=50,
S2甲=[(85﹣84)2+(90﹣84)2+(80﹣84)2+(80﹣84)2+(85﹣84)2]=14,
∵50>14,
∴乙的离散程度较高,不稳定,甲的离散程度较低,比较稳定;
故选:D.
【点评】本题考查平均数、方差的计算方法,从统计图中获取数据,是正确计算的前提.
8.(2019•东营)从1,2,3,4中任取两个不同的数,分别记为a和b,则a2+b2>19的概率是( )
A. B. C. D.
【考点】列表法与树状图法.版权所有
【专题】概率及其应用.
【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与a2+b2>19的情况,再利用概率公式即可求得答案.
【解答】解:画树状图得:
∵共有12种等可能的结果,任取两个不同的数,a2+b2>19的有4种结果,
∴a2+b2>19的概率是=,
故选:D.
【点评】本题考查了列表法与树状图法:运用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.
9.(2021•德州)八年级二班在一次体重测量中,小明体重54.5kg,低于全班半数学生的体重,分析得到结论所用的统计量是( )
A.中位数 B.众数 C.平均数 D.方差
【考点】统计量的选择;算术平均数;中位数;众数;方差.版权所有
【专题】数据的收集与整理;数据分析观念.
【分析】根据中位数的意义求解可得.
【解答】解:八年级二班在一次体重排列后,最中间一个数或最中间两个体重数的平均数是这组体重数的中位数,
半数学生的体重位于中位数或中位数以下,
小明低于全班半数学生的体重所用的统计量是中位数,
故选:A.
【点评】本题主要考查统计量的选择,解题的关键是掌握中位数、众数、平均数及方差的定义和意义.
10.(2021•滨州)在四张反面无差别的卡片上,其正面分别印有线段、等边三角形、平行四边形和正六边形.现将四张卡片的正面朝下放置,混合均匀后从中随机抽取两张,则抽到的卡片正面图形都是轴对称图形的概率为( )
A. B. C. D.
【考点】列表法与树状图法;轴对称图形;概率公式.版权所有
【专题】概率及其应用;数据分析观念.
【分析】根据题目中给出的图形,可以写出是否轴对称图形,然后根据题意,可以画出相应的树状图,从而可以得到抽到的卡片正面图形都是轴对称图形的概率.
【解答】解:由题意可得,
线段是轴对称图形,等边三角形是轴对称图形,平行四边形不是轴对称图形,正六边形是轴对称图形,
设线段、等边三角形、平行四边形和正六边形分别用字母A、B、C、D表示,
树状图如下图所示:
由上可得,一共有12种可能性,其中抽到的卡片正面图形都是轴对称图形的有6种,
∴抽到的卡片正面图形都是轴对称图形的概率是=,
故选:A.
【点评】本题考查概率公式、轴对称图形、树状图与列表法,解答本题的关键是写出题目中的图形是否为轴对称图形,画出相应的树状图.
11.(2020•威海)为了调查疫情对青少年人生观、价值观产生的影响,某学校团委对初二级部学生进行了问卷调查,其中一项是:疫情期间出现的哪一个高频词汇最触动你的内心?针对该项调查结果制作的两个统计图(不完整)如图.由图中信息可知,下列结论错误的是( )
A.本次调查的样本容量是600
B.选“责任”的有120人
C.扇形统计图中“生命”所对应的扇形圆心角度数为64.8°
D.选“感恩”的人数最多
【考点】条形统计图;总体、个体、样本、样本容量;扇形统计图.版权所有
【专题】统计与概率;数据分析观念.
【分析】根据条形统计图和扇形统计图中的数据,可以判断各个选项中的说法是否正确,从而可以解答本题.
【解答】解:本次调查的样本容量为:108÷18%=600,故选项A中的说法正确;
选“责任”的有600×=120(人),故选项B中的说法正确;
扇形统计图中“生命”所对应的扇形圆心角度数为360°×=79.2°,故选项C中的说法错误;
选“感恩”的人数为:600﹣132﹣600×(16%+18%)﹣120=144,故选“感恩”的人数最多,故选项D中的说法正确;
故选:C.
【点评】本题考查条形统计图、扇形统计图、样本容量,解答本题的关键是明确题意,利用数形结合的思想解答.
12.(2019•济南)在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是( )
A.9.7m,9.9m B.9.7m,9.8m C.9.8m,9.7m D.9.8m,9.9m
【考点】中位数;加权平均数.版权所有
【专题】数据的收集与整理;统计的应用.
【分析】将这7个数据从小到大排序后处在第4位的数是中位数,利用算术平均数的计算公式进行计算即可.
【解答】解:把这7个数据从小到大排列处于第4位的数是9.7m,因此中位数是9.7m,
平均数为:(9.5+9.6+9.7+9.7+9.8+10.1+10.2)÷7=9.8m,
故选:B.
【点评】考查中位数、算术平均数的计算方法,将一组数据从小到大排列后处在中间位置的一个数或两个数的平均数就是这组数据的中位数,平均数则是反映一组数据的集中水平.
13.(2019•烟台)将一枚飞镖任意投掷到如图所示的正六边形镖盘上,飞镖落在白色区域的概率为( )
A. B. C. D.无法确定
【考点】几何概率.版权所有
【专题】概率及其应用.
【分析】随机事件A的概率P(A)=事件A发生时涉及的图形面积÷一次试验涉及的图形面积,因为这是几何概率.
【解答】解:设正六边形边长为a,则灰色部分面积为3×=,
白色区域面积为a×=,
所以正六边形面积为a2,
飞镖落在白色区域的概率P==,
故选:B.
【点评】本题考查了概率,熟练掌握概率公式是解题的关键.
14.(2021•济南)某学校组织学生到社区开展公益宣传活动,成立了“垃圾分类”“文明出行”“低碳环保”三个宣传队,如果小华和小丽每人随机选择参加其中一个宣传队,则她们恰好选到同一个宣传队的概率是( )
A. B. C. D.
【考点】列表法与树状图法.版权所有
【专题】概率及其应用;推理能力.
【分析】画树状图,共有9种等可能的结果,小华和小丽恰好选到同一个宣传队的结果有3种,再由概率公式求解即可.
【解答】解:把“垃圾分类”“文明出行”“低碳环保”三个宣传队分别记为A、B、C,
画树状图如下:
共有9种等可能的结果,小华和小丽恰好选到同一个宣传队的结果有3种,
∴小华和小丽恰好选到同一个宣传队的概率为=,
故选:C.
【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.正确画出树状图是解题的关键.
15.(2021•潍坊)如图为2021年第一季度中国工程机械出口额TOP10国家的相关数据(同比增速是指相对于2020年第一季度出口额的增长率),下列说法正确的是( )
A.对10个国家出口额的中位数是26201万美元
B.对印度尼西亚的出口额比去年同期减少
C.去年同期对日本的出口额小于对俄罗斯联邦的出口额
D.出口额同比增速中,对美国的增速最快
【考点】中位数.版权所有
【专题】统计的应用;数据分析观念.
【分析】根据中位数的定义,求出对10个国家出口额的中位数,即可判断A;
根据折线图可知,对印度尼西亚的出口额比去年同期增长27.3%,即可判断B;
分别求出去年同期对日本的出口额,对俄罗斯联邦的出口额,即可判断C;
根据折线图即可求解根据判断D.
【解答】解:A、将这组数据按从小到大的顺序排列为19677,19791,21126,24268,25855,26547,29285,35581,39513,67366,
位于中间的两个数分别是25855,26547,所以中位数是=26201(万美元),
故本选项说法正确,符合题意;
B、根据折线图可知,对印度尼西亚的出口额比去年同期增长27.3%,故本选项说法错误,不符合题意;
C、去年同期对日本的出口额为:≈27078.4,对俄罗斯联邦的出口额为:≈23803.0,
故本选项说法错误,不符合题意;
D、根据折线图可知,出口额同比增速中,对越南的增速最快,故本选项说法错误,不符合题意;
故选:A.
【点评】考查了中位数.本题为统计题,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.
16.(2019•烟台)某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试,因此计算其他39人的平均分为90分,方差s2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是( )
A.平均分不变,方差变大 B.平均分不变,方差变小
C.平均分和方差都不变 D.平均分和方差都改变
【考点】方差;算术平均数.版权所有
【专题】统计的应用.
【分析】根据平均数,方差的定义计算即可.
【解答】解:∵小亮的成绩和其他39人的平均数相同,都是90分,
∴该班40人的测试成绩的平均分为90分,方差变小,
故选:B.
【点评】本题考查方差,算术平均数等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.
二.填空题(共4小题)
17.(2019•日照)已知一组数据8,3,m,2的众数为3,则这组数据的平均数是 4 .
【考点】众数;算术平均数.版权所有
【专题】统计的应用.
【分析】直接利用众数的定义得出m的值,进而求出平均数;
【解答】解:∵一组数据8,3,m,2的众数为3,
∴m=3,
∴这组数据的平均数:=4,
故答案为:4.
【点评】此题考查了平均数和众数,解题的关键是正确理解各概念的含义.
18.(2020•青岛)某公司要招聘一名职员,根据实际需要,从学历、经验和工作态度三个方面对甲、乙两名应聘者进行了测试,测试成绩如下表所示.如果将学历、经验和工作态度三项得分按2:1:3的比例确定两人的最终得分,并以此为依据确定录用者,那么 乙 将被录用(填甲或乙).
应聘者
项目
甲
乙
学历
9
8
经验
7
6
工作态度
5
7
【考点】加权平均数.版权所有
【专题】统计的应用;数据分析观念.
【分析】根据加权平均数的定义列式计算,比较大小,平均数大者将被录取.
【解答】解:∵==,==,
∴<,
∴乙将被录用,
故答案为:乙.
【点评】本题主要考查加权平均数,若n个数x1,x2,x3,…,xn的权分别是w1,w2,w3,…,wn,则(x1w1+x2w2+…+xnwn)÷(w1+w2+…+wn)叫做这n个数的加权平均数.
19.(2019•淄博)某校欲从初三级部3名女生,2名男生中任选两名学生代表学校参加全市举办的“中国梦•青春梦“演讲比赛,则恰好选中一男一女的概率是 .
【考点】列表法与树状图法.版权所有
【专题】概率及其应用.
【分析】画树状图展示所有20种等可能的结果数,再找出选中一男一女的结果数,然后根据概率公式求解.
【解答】解:画树状图为:
共20种等可能的结果数,其中选中一男一女的结果数为12,
∴恰好选中一男一女的概率是=,
故答案为:.
【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.
20.(2019•济南)如图,一个可以自由转动的转盘,被分成了6个相同的扇形,转动转盘,转盘停止时,指针落在红色区域的概率等于 .
【考点】概率公式.版权所有
【专题】概率及其应用.
【分析】首先确定在图中红色区域的面积在整个面积中占的比例,根据这个比例即可求出指针落在红色区域的概率.
【解答】解:由于一个圆平均分成6个相等的扇形,而转动的转盘又是自由停止的,
所以指针指向每个扇形的可能性相等,
即有6种等可能的结果,在这6种等可能结果中,指针指向红色部分区域的有2种可能结果,
所以指针落在红色区域的概率是=;
故答案为.
【点评】此题考查了概率公式,用到的知识点为:概率=相应的面积与总面积之比.
三.解答题(共3小题)
21.(2020•威海)小伟和小梅两位同学玩掷骰子的游戏,两人各掷一次均匀的骰子.以掷出的点数之差的绝对值判断输赢.若所得数值等于0,1,2,则小伟胜;若所得数值等于3,4,5,则小梅胜.
(1)请利用表格分别求出小伟、小梅获胜的概率;
(2)判断上述游戏是否公平.如果公平,请说明理由;如果不公平,请利用表格修改游戏规则,以确保游戏的公平性.
【考点】游戏公平性;绝对值;列表法与树状图法.版权所有
【专题】概率及其应用;模型思想;应用意识.
【分析】(1)利用列表法表示所有可能出现的结果情况,并求出小伟胜、小梅胜的概率;
(2)依据获胜的概率判断游戏的公平性,修改规则时,可使两人获胜的概率相等,或利用积分的形式,使两人的积分相等即可.
【解答】解(1)用列表法表示所有可能出现的结果如下:
表中总共有36种可能的结果,每一种结果出现的可能性相同,“差的绝对值”为0,1,2共有24种,“差的绝对值”为3,4,5的共有12种,
所以,P(小伟胜)==,P(小梅胜)==,
答:P(小伟胜)=,P(小梅胜)=;
(2)∵,
∴游戏不公平;
根据表格中“差的绝对值”的不同情况,要使游戏公平,即两人获胜的概率相等,
于是修改为:两人掷的点数之差的绝对值为1,2,则小伟胜;否则小梅胜.
这样小伟、小梅获胜的概率均为.
【点评】此题主要考查了游戏的公平性,通过列举出所有的可能结果,求出相应的概率是解决问题的关键.
22.(2020•临沂)2020年是脱贫攻坚年.为实现全员脱贫目标,某村贫困户在当地政府支持帮助下,办起了养鸡场.经过一段时间精心饲养,总量为3000只的一批鸡可以出售.现从中随机抽取50只,得到它们质量的统计数据如下:
质量/kg
组中值
频数(只)
0.9≤x<1.1
1.0
6
1.1≤x<1.3
1.2
9
1.3≤x<1.5
1.4
a
1.5≤x<1.7
1.6
15
1.7≤x<1.9
1.8
8
根据以上信息,解答下列问题:
(1)表中a= 12 ,补全频数分布直方图;
(2)这批鸡中质量不小于1.7kg的大约有多少只?
(3)这些贫困户的总收入达到54000元,就能实现全员脱贫目标.按15元/kg的价格售出这批鸡后,该村贫困户能否脱贫?
【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.版权所有
【专题】数据的收集与整理;统计的应用;数据分析观念;应用意识.
【分析】(1)根据频数之和为50,可求出a的值;进而补全频数分布直方图;
(2)样本估计总体,样本中,鸡的质量不小于1.7kg所占的百分比为,因此估计总体3000只的是鸡的质量不小于1.7kg的只数;
(3)计算样本平均数,估计总体平均数,计算出总收入,比较得出答案.
【解答】解:(1)a=50﹣8﹣15﹣9﹣6=12(只),补全频数分布直方图;
故答案为:12;
(2)3000×=480(只)
答:这批鸡中质量不小于1.7kg的大约有480只;
(3)==1.44(千克),
∵1.44×3000×15=64800>54000,
∴能脱贫,
答:该村贫困户能脱贫.
【点评】本题考查频数分布直方图、频数分布表的意义和制作方法,掌握频数、频率、总数之间的关系是正确计算的前提.
23.(2020•烟台)奥体中心为满足暑期学生对运动的需求,欲开设球类课程,该中心随机抽取部分学生进行问卷调查,被调查学生须从“羽毛球”、“篮球”、“足球”、“排球”、“乒乓球”中选择自己最喜欢的一项.根据调查结果绘制了不完整的条形统计图和扇形统计图,请根据图中信息,解答下列问题:
(1)此次共调查了多少名学生?
(2)将条形统计图补充完整;
(3)我们把“羽毛球”、“篮球”、“足球”、“排球”、“乒乓球”分别用A,B,C,D,E表示.小明和小亮分别从这些项目中任选一项进行训练,利用树状图或表格求出他俩选择不同项目的概率.
【考点】列表法与树状图法;扇形统计图;条形统计图.版权所有
【专题】概率及其应用;运算能力.
【分析】(1)用羽毛球的人数除以所占的百分比即可得出答案;
(2)用总人数减去其他项目的人数求出足球的人数,从而补全统计图;
(3)根据题意画出树状图得出所有等可能的情况数和他俩选择不同项目的情况数,然后根据概率公式即可得出答案.
【解答】解:(1)此次共调查的学生有:40÷=200(名);
(2)最喜欢足球的人数有:200﹣40﹣60﹣20﹣30=50(人),补全统计图如下:
(3)根据题意画树状图如下:
共有25种等可能的情况数,其中他俩选择不同项目的有20种,
则他俩选择不同项目的概率是=.
【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
考点卡片
1.绝对值
(1)概念:数轴上某个数与原点的距离叫做这个数的绝对值.
①互为相反数的两个数绝对值相等;
②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.
③有理数的绝对值都是非负数.
(2)如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:
①当a是正有理数时,a的绝对值是它本身a;
②当a是负有理数时,a的绝对值是它的相反数﹣a;
③当a是零时,a的绝对值是零.
即|a|={a(a>0)0(a=0)﹣a(a<0)
2.轴对称图形
(1)轴对称图形的概念:
如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.
(2)轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合;轴对称图形的对称轴可以是一条,也可以是多条甚至无数条.
(3)常见的轴对称图形:
等腰三角形,矩形,正方形,等腰梯形,圆等等.
3.全面调查与抽样调查
1、统计调查的方法有全面调查(即普查)和抽样调查.
2、全面调查与抽样调查的优缺点:①全面调查收集的到数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查.②抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.
3、如何选择调查方法要根据具体情况而定.一般来讲:通过普查可以直接得到较为全面、可靠的信息,但花费的时间较长,耗费大,且一些调查项目并不适合普查.其一,调查者能力有限,不能进行普查.如:个体调查者无法对全国中小学生身高情况进行普查.其二,调查过程带有破坏性.如:调查一批灯泡的使用寿命就只能采取抽样调查,而不能将整批灯泡全部用于实验.其三,有些被调查的对象无法进行普查.如:某一天,全国人均讲话的次数,便无法进行普查.
4.总体、个体、样本、样本容量
(1)定义
①总体:我们把所要考察的对象的全体叫做总体;
②个体:把组成总体的每一个考察对象叫做个体;
③样本:从总体中取出的一部分个体叫做这个总体的一个样本;
④样本容量:一个样本包括的个体数量叫做样本容量.
(2)关于样本容量
样本容量只是个数字,没有单位.
5.用样本估计总体
用样本估计总体是统计的基本思想.
1、用样本的频率分布估计总体分布:
从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.
2、用样本的数字特征估计总体的数字特征(主要数据有众数、中位数、平均数、标准差与方差 ).
一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.
6.频数(率)分布表
1、在统计数据时,经常把数据按照不同的范围分成几个组,分成的组的个数称为组数,每一组两个端点的差称为组距,称这样画出的统计图表为频数分布表.
2、列频率分布表的步骤:
(1)计算极差,即计算最大值与最小值的差.
(2)决定组距与组数(组数与样本容量有关,一般来说样本容量越大,分组就越多,样本容量不超过100时,按数据的多少,常分成5~12组).
(3)将数据分组.
(4)列频率分布表.
7.频数(率)分布直方图
画频率分布直方图的步骤:
(1)计算极差,即计算最大值与最小值的差.(2)决定组距与组数(组数与样本容量有关,一般来说样本容量越大,分组就越多,样本容量不超过100时,按数据的多少,常分成5~12组).(3)确定分点,将数据分组.(4)列频率分布表.(5)绘制频率分布直方图.
注:①频率分布表列出的是在各个不同区间内取值的频率,频率分布直方图是用小长方形面积的大小来表示在各个区间内取值的频率.直角坐标系中的纵轴表示频率与组距的比值,即小长方形面积=组距×=频率.②各组频率的和等于1,即所有长方形面积的和等于1.③频率分布表在数量表示上比较确切,但不够直观、形象,不利于分析数据分布的总体态势.④从频率分布直方图可以清楚地看出数据分布的总体态势,但是从直方图本身得不出原始的数据内容.
8.扇形统计图
(1)扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.
(2)扇形图的特点:从扇形图上可以清楚地看出各部分数量和总数量之间的关系.
(3)制作扇形图的步骤
①根据有关数据先算出各部分在总体中所占的百分数,再算出各部分圆心角的度数,公式是各部分扇形圆心角的度数=部分占总体的百分比×360°. ②按比例取适当半径画一个圆;按扇形圆心角的度数用量角器在圆内量出各个扇形的圆心角的度数;
④在各扇形内写上相应的名称及百分数,并用不同的标记把各扇形区分开来.
9.条形统计图
(1)定义:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.
(2)特点:从条形图可以很容易看出数据的大小,便于比较.
(3)制作条形图的一般步骤:
①根据图纸的大小,画出两条互相垂直的射线.
②在水平射线上,适当分配条形的位置,确定直条的宽度和间隔.
③在与水平射线垂直的射线上,根据数据大小的具体情况,确定单位长度表示多少.
④按照数据大小,画出长短不同的直条,并注明数量.
10.折线统计图
(1)定义:折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.
(2)特点:折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.
(3)绘制折线图的步骤
①根据统计资料整理数据.
②先画纵轴,后画横轴,纵、横都要有单位,按纸面的大小来确定用一定单位表示一定的数量. ③根据数量的多少,在纵、横轴的恰当位置描出各点,然后把各点用线段顺序连接起来.
11.算术平均数
(1)平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.
(2)算术平均数:对于n个数x1,x2,…,xn,则=(x1+x2+…+xn)就叫做这n个数的算术平均数.
(3)算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数.
12.加权平均数
(1)加权平均数:若n个数x1,x2,x3,…,xn的权分别是w1,w2,w3,…,wn,则x1w1+x2w2+…+xnwnw1+w2+…+wn叫做这n个数的加权平均数.
(2)权的表现形式,一种是比的形式,如4:3:2,另一种是百分比的形式,如创新占50%,综合知识占30%,语言占20%,权的大小直接影响结果.
(3)数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,权的差异对结果会产生直接的影响.
(4)对于一组不同权重的数据,加权平均数更能反映数据的真实信息.
13.中位数
(1)中位数:
将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.
如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
(2)中位数代表了这组数据值大小的“中点”,不易受极端值影响,但不能充分利用所有数据的信息.
(3)中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中也可能不在所给的数据中出现,当一组数据中的个别数据变动较大时,可用中位数描述其趋势.
14.众数
(1)一组数据中出现次数最多的数据叫做众数.
(2)求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.
(3)众数不易受数据中极端值的影响.众数也是数据的一种代表数,反映了一组数据的集中程度,众数可作为描述一组数据集中趋势的量..
15.方差
(1)方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.
(2)用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,通常用s2来表示,计算公式是:
s2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2](可简单记忆为“方差等于差方的平均数”)
(3)方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
16.统计量的选择
(1)一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定.但这并不是绝对的,有时多数数据相对集中,整体波动水平较小,但个别数据的偏离仍可能极大地影响极差、方差或标准差的值.从而导致这些量度数值较大,因此在实际应用中应根据具体问题情景进行具体分析,选用适当的量度刻画数据的波动情况,一般来说,只有在两组数据的平均数相等或比较接近时,才用极差、方差或标准差来比较两组数据的波动大小.
(2)平均数、众数、中位数和极差、方差在描述数据时的区别:①数据的平均数、众数、中位数是描述一组数据集中趋势的特征量,极差、方差是衡量一组数据偏离其平均数的大小(即波动大小)的特征数,描述了数据的离散程度.②极差和方差的不同点:极差表示一组数据波动范围的大小,一组数据极差越大,则它的波动范围越大;方差和标准差反映了一组数据与其平均值的离散程度的大小.方差(或标准差)越大,数据的历算程度越大,稳定性越小;反之,则离散程度越小,稳定性越好.
17.随机事件
(1)确定事件
事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.
(2)随机事件
在一定条件下,可能发生也可能不发生的事件,称为随机事件.
(3)事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,其中,
①必然事件发生的概率为1,即P(必然事件)=1;
②不可能事件发生的概率为0,即P(不可能事件)=0;
③如果A为不确定事件(随机事件),那么0<P(A)<1.
18.概率公式
(1)随机事件A的概率P(A)=.
(2)P(必然事件)=1.
(3)P(不可能事件)=0.
19.几何概率
所谓几何概型的概率问题,是指具有下列特征的一些随机现象的概率问题:设在空间上有一区域G,又区域g包含在区域G内(如图),而区域G与g都是可以度量的(可求面积),现随机地向G内投掷一点M,假设点M必落在G中,且点M落在区域G的任何部分区域g内的概率只与g的度量(长度、面积、体积等)成正比,而与g的位置和形状无关.具有这种性质的随机试验(掷点),称为几何概型.关于几何概型的随机事件“向区域G中任意投掷一个点M,点M落在G内的部分区域g”的概率P定义为:g的度量与G的度量之比,即 P=g的测度G的测度
简单来说:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.
20.列表法与树状图法
(1)当试验中存在两个元素且出现的所有可能的结果较多时,我们常用列表的方式,列出所有可能的结果,再求出概率.
(2)列表的目的在于不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.
(3)列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.
(4)树形图列举法一般是选择一个元素再和其他元素分别组合,依次列出,象树的枝丫形式,最末端的枝丫个数就是总的可能的结果n.
(5)当有两个元素时,可用树形图列举,也可以列表列举.
21.游戏公平性
(1)判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.
(2)概率=.
相关试卷
2017-2021年江苏中考数学真题分类汇编之统计与概率:
这是一份2017-2021年江苏中考数学真题分类汇编之统计与概率,共31页。
2017-2021年山东中考数学真题分类汇编之数与式:
这是一份2017-2021年山东中考数学真题分类汇编之数与式,共26页。
2017-2021年四川中考数学真题分类汇编之统计与概率:
这是一份2017-2021年四川中考数学真题分类汇编之统计与概率,共29页。