高考数学统考一轮复习第8章平面解析几何第7节抛物线学案
展开抛物线
[考试要求] 1.掌握抛物线的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率).
2.理解数形结合思想.
3.了解抛物线的实际背景及抛物线的简单应用.
1.抛物线的定义
满足以下三个条件的点的轨迹是抛物线:
(1)在平面内;
(2)动点到定点F的距离与到定直线l的距离相等;
(3)定点不在定直线上.
2.抛物线的标准方程与几何性质
标准方程 | y2=2px(p>0) | y2=-2px(p>0) | x2=2py(p>0) | x2=-2py(p>0) |
p的几何意义:焦点F到准线l的距离 | ||||
图形 | ||||
顶点 | O(0,0) | |||
对称轴 | y=0 | x=0 | ||
焦点 | F | F | F | F |
离心率 | e=1 | |||
准线方程 | x=- | x= | y=- | y= |
范围 | x≥0,y∈R | x≤0,y∈R | y≥0,x∈R | y≤0,x∈R |
焦半径(其中 P(x0,y0)) | |PF|=x0+ | |PF|=-x0+ | |PF|=y0+ | |PF|=-y0+ |
1.设AB是过抛物线y2=2px(p>0)焦点F的弦.
(1)以弦AB为直径的圆与准线相切.
(2)以AF或BF为直径的圆与y轴相切.
(3)通径:过焦点垂直于对称轴的弦,长等于2p,通径是过焦点最短的弦.
2.过x2=2py的准线上任意一点D作抛物线的两条切线,切点分别为A,B,则直线AB过点.
一、易错易误辨析(正确的打“√”,错误的打“×”)
(1)平面内与一个定点F和一条定直线l的距离相等的点的轨迹一定是抛物线.( )
(2)若直线与抛物线只有一个交点,则直线与抛物线一定相切. ( )
(3)方程y=ax2(a≠0)表示的曲线是焦点在x轴上的抛物线,且其焦点坐标是,准线方程是x=-. ( )
(4)抛物线既是中心对称图形,又是轴对称图形. ( )
[答案] (1)× (2)× (3)× (4)×
二、教材习题衍生
1.抛物线y=x2的准线方程是( )
A.y=-1 B.y=-2
C.x=-1 D.x=-2
A [∵y=x2,∴x2=4y,∴准线方程为y=-1.]
2.若抛物线y=4x2上的一点M到焦点的距离为1,则点M的纵坐标是( )
A. B. C. D.0
B [M到准线的距离等于M到焦点的距离,又准线方程为y=-,设M(x,y),则y+=1,
∴y=.]
3.过抛物线y2=4x的焦点的直线l交抛物线于P(x1,y1),Q(x2,y2)两点,如果x1+x2=6,则|PQ|等于( )
A.9 B.8 C.7 D.6
B [抛物线y2=4x的焦点为F(1,0),准线方程为x=-1.根据题意可得,|PQ|=|PF|+|QF|=x1+1+x2+1=x1+x2+2=8.]
4.已知抛物线的顶点是原点,对称轴为坐标轴,并且经过点P(-2,-4),则该抛物线的标准方程为 .
y2=-8x或x2=-y [设抛物线方程为y2=2px(p≠0)或x2=2py(p≠0).将P(-2,-4)代入,分别得方程为y2=-8x或x2=-y.]
考点一 抛物线的定义及其应用
抛物线定义的应用
(1)利用抛物线的定义解决问题,应灵活地进行抛物线上的点到焦点的距离与到准线距离的等价转化.即“看到准线想到焦点,看到焦点想到准线”.
(2)注意灵活运用抛物线上一点P(x,y)到焦点F的距离|PF|=|x|+或|PF|=|y|+.
[典例1] (1)(2020·全国卷Ⅰ)已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=( )
A.2 B.3 C.6 D.9
(2)设P是抛物线y2=4x上的一个动点,若B(3,2),则|PB|+|PF|的最小值为 .
(1)C (2)4 [法一:因为点A到y轴的距离为9,所以可设点A(9,yA),所以y=18p.又点A到焦点的距离为12,所以=12,所以+18p=122,即p2+36p-252=0,解得p=-42(舍去)或p=6.故选C.
法二:根据抛物线的定义及题意得,点A到C的准线x=-的距离为12,因为点A到y轴的距离为9,所以=12-9,解得p=6.故选C.
(2)如图,过点B作BQ垂直准线于点Q,交抛物线于点P1,则|P1Q|=|P1F|.则有|PB|+|PF|≥|P1B|+|P1Q|=|BQ|=4,即|PB|+|PF|的最小值为4.]
[母题变迁]
1.若将例(2)中的B点坐标改为(3,4),试求|PB|+|PF|的最小值.
[解] 由题意可知点B(3,4)在抛物线的外部.
∵|PB|+|PF|的最小值即为B,F两点间的距离,F(1,0),
∴|PB|+|PF|≥|BF|
==2,
即|PB|+|PF|的最小值为2.
2.若将例(2)中的条件改为:已知抛物线方程为y2=4x,直线l的方程为x-y+5=0,在抛物线上有一动点P到y轴的距离为d1,到直线l的距离为d2,求d1+d2的最小值.
[解] 由题意知,抛物线的焦点为F(1,0).
点P到y轴的距离d1=|PF|-1,
所以d1+d2=d2+|PF|-1.
易知d2+|PF|的最小值为点F到直线l的距离,
故d2+|PF|的最小值为=3,
所以d1+d2的最小值为3-1.
点评:与抛物线有关的最值问题的转换方法
(1)将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解.
(2)将抛物线上的点到焦点的距离转化为该点到准线的距离,利用“与直线上所有点的连线中垂线段最短”原理解决.
1.已知F是抛物线y2=x的焦点,A,B是该抛物线上的两点且|AF|+|BF|=3,则线段AB的中点到准线的距离为( )
A. B. C.1 D.3
B [∵F是抛物线y2=x的焦点,
∴F,准线方程x=-,
设A(x1,y1),B(x2,y2),根据抛物线的定义可得
|AF|=x1+,|BF|=x2+,
∴|AF|+|BF|=x1++x2+=3.
解得x1+x2=,∴线段AB中点的横坐标为,
∴线段AB的中点到准线的距离为+=.故选B.]
2.已知动圆P与定圆C:(x-2)2+y2=1相外切,又与定直线l:x=-1相切,那么动圆的圆心P的轨迹方程是( )
A.y2=4x B.y2=-4x
C.y2=8x D.y2=-8x
C [令P点坐标为(x,y),A(2,0),动圆的半径为r,
则根据两圆相外切及直线与圆相切的性质可得,|PA|=1+r,d=r,
P在直线的右侧,故P到定直线的距离是d=x+1,
所以|PA|-d=1,即-(x+1)=1,
化简得y2=8x.故选C.]
考点二 抛物线的标准方程及其性质
1.求抛物线标准方程的方法
(1)先定位:根据焦点或准线的位置.
(2)再定形:即根据条件求p.
2.抛物线性质的应用技巧
(1)利用抛物线方程确定及应用其焦点、准线时,关键是将抛物线方程化成标准方程.
(2)要结合图形分析,灵活运用平面图形的性质简化运算.
[典例2] (1)(2020·全国卷Ⅲ)设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于D,E两点,若OD⊥OE,则C的焦点坐标为( )
A. B. C.(1,0) D.(2,0)
(2)如图所示,过抛物线y2=2px(p>0)的焦点F的直线依次交抛物线及准线于点A,B,C,若|BC|=2|BF|,且|AF|=4,则抛物线的方程为( )
A.y2=8x
B.y2=4x
C.y2=2x
D.y2=x
(1)B (2)B [(1)将直线方程与抛物线方程联立,可得y=±2,不妨设D(2,2),E(2,-2),由OD⊥OE,可得·=4-4p=0,解得p=1,所以抛物线C的方程为y2=2x,其焦点坐标为.故选B.
(2)如图,分别过点A,B作准线的垂线,交准线于点E,D,设准线与x轴交于点G,设|BF|=a,则由已知得|BC|=2a,由定义得|BD|=a,故∠BCD=30° ,
则在Rt△ACE中,2|AE|=|AC|,又|AF|=4,∴|AC|=4+3a,|AE|=4,∴4+3a=8,从而得a=,∵AE∥FG,
∴=,即=,p=2.∴抛物线的方程为y2=4x.故选B.]
点评:在解决与抛物线的性质有关的问题时,要注意利用几何图形形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此.
1.在平面直角坐标系xOy中,设抛物线y2=4x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的倾斜角为120°,那么|PF|= .
4 [法一:抛物线y2=4x的焦点为F(1,0),准线方程为x=-1.因为直线AF的倾斜角为120°,所以∠AFO=60°.又tan 60°=,所以yA=2.因为PA⊥l,所以yP=yA=2.将其代入y2=4x,得xP=3,所以|PF|=|PA|=3-(-1)=4.
法二:抛物线y2=4x的焦点为F(1,0),准线方程为x=-1.因为PA⊥l,所以|PA|=|PF|.又因为直线AF的倾斜角为120°,所以∠AFO=60°,所以∠PAF=60°,所以△PAF为等边三角形,所以|PF|=|AF|==4.]
2.已知抛物线x2=2py(p>0)的焦点为F,点P为抛物线上的动点,点M为其准线上的动点,若△FPM为边长是4的等边三角形,则此抛物线的方程为 .
x2=4y [由△FPM为等边三角形,得|PM|=|PF|,由抛物线的定义得PM垂直于抛物线的准线,设P,则点M,因为焦点F,△FPM是等边三角形,所以
解得因此抛物线方程为x2=4y.]
考点三 直线与抛物线的位置关系
求解抛物线综合问题的方法
(1)研究直线与抛物线的位置关系与研究直线与椭圆、双曲线的位置关系的方法类似,一般是用方程法,但涉及抛物线的弦长、中点、距离等问题时,要注意“设而不求”“整体代入”“点差法”以及定义的灵活应用.
(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p(焦点在x轴正半轴),若不过焦点,则必须用弦长公式.
提醒:涉及弦的中点、弦所在直线的斜率时一般用“点差法”求解.
[典例3] (1)过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有 条.
(2)(2019·全国卷Ⅰ)已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P.
①若|AF|+|BF|=4,求l的方程;
②若=3,求|AB|.
(1)3 [结合图形分析可知(图略),满足题意的直线共有3条:直线x=0,过点(0,1)且平行于x轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x=0).]
(2)[解] 设直线l:y=x+t,A,B.
①由题设得F,故|AF|+|BF|=x1+x2+,
由题设可得x1+x2=.
由 ,可得9x2+12(t-1)x+4t2=0,则x1+x2=-.
从而由-=,得t=-.
所以l的方程为y=x-.
②由=3得y1=-3y2.
由得y2-2y+2t=0.
所以y1+y2=2.
从而-3y2+y2=2,故y2=-1,y1=3.
代入C的方程得x1=3,x2=.
故|AB|=.
点评:解答本例(2)第②问的关键是从条件“=3”中发现变量间的关系“y1=-3y2”,从而为方程组的消元提供明确的方向.
(2017·全国卷Ⅰ)设A,B为曲线C:y=上两点,A与B的横坐标之和为4.
(1)求直线AB的斜率;
(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.
[解] (1)设A(x1,y1),B(x2,y2),
则x1≠x2,y1=,y2=,x1+x2=4,
于是直线AB的斜率k===1.
(2)由 y=,得y′=.
设M(x3,y3),由题设知=1,解得x3=2,于是M(2,1).
设直线AB的方程为y=x+m,
故线段AB的中点为N(2,2+m),|MN|=|m+1|.
将y=x+m代入y=得x2-4x-4m=0.
当Δ=16(m+1)>0,即m>-1时,x1,2=2±2.
从而|AB|=|x1-x2|=4.
由题设知|AB|=2|MN|,即4=2(m+1),
解得m=7.
所以直线AB的方程为y=x+7.
备考技法5 活用抛物线焦点弦的四个结论 |
抛物线的焦点弦问题一直是高考命题的一个热点,该问题常与弦长、三角形面积、向量、不等式等知识相融合,考查学生的转化与化归意识和灵活解题能力.命题点主要体现在焦点弦的四个结论上: 设AB是过抛物线y2=2px(p>0)焦点F的弦,若A(x1,y1),B(x2,y2),则 (1)x1·x2=. (2)y1·y2=-p2. (3)|AB|=x1+x2+p=(α是直线AB的倾斜角). (4)+=为定值(F是抛物线的焦点). |
过抛物线y2=4x的焦点F的直线l与抛物线交于A,B两点,若|AF|=2|BF|,则|AB|等于( )
A.4 B. C.5 D.6
B [法一:(通性通法)易知直线l的斜率存在,设为k,则其方程为y=k(x-1).
由得k2x2-(2k2+4)x+k2=0,
得xA·xB=1,①
因为|AF|=2|BF|,由抛物线的定义得xA+1=2(xB+1),
即xA=2xB+1,②
由①②解得xA=2,xB=,
所以|AB|=|AF|+|BF|=xA+xB+p=.
法二:(巧用结论)由对称性不妨设点A在x轴的上方,如图设A,B在准线上的射影分别为D,C,作BE⊥AD于E,
设|BF|=m,直线l的倾斜角为θ,则|AB|=3m,
由抛物线的定义知
|AD|=|AF|=2m,|BC|=|BF|=m,
所以cos θ==,所以tan θ=2.则sin2θ=8cos2θ,∴sin2θ=.又y2=4x,知2p=4,故利用弦长公式|AB|==.
法三:(巧用结论)因为|AF|=2|BF|,所以+=+===1,解得|BF|=,|AF|=3,
故|AB|=|AF|+|BF|=.]
[评析] 本例给出了三种解法,既有通性通法又有秒杀绝技,学习中要多总结,提升自己灵活解题的素养.
如图,过抛物线y2=2px(p>0)的焦点F的直线交抛物线于点A,B,交其准线l于点C,若F是AC的中点,且|AF|=4,则线段AB的长为( )
A.5 B.6
C. D.
C [法一:(通性通法)如图,设l与x轴交于点M,过点A作AD⊥l交l于点D,由抛物线的定义知,|AD|=|AF|=4,由F是AC的中点,
知|AD|=2|MF|=2p,所以2p=4,解得p=2,所以抛物线的方程为y2=4x.
设A(x1,y1),B(x2,y2),则|AF|=x1+=x1+1=4,所以x1=3,可得y1=2,所以A(3,2),又F(1,0),所以直线AF的斜率k==,所以直线AF的方程为y=(x-1),代入抛物线方程y2=4x得3x2-10x+3=0,所以x1+x2=,|AB|=x1+x2+p=.故选C.
法二:(巧用结论)如上解得p=2,设A(x1,y1),B(x2,y2),
则|AF|=x1+=x1+1=4,p=2,
所以x1=3,又x1x2==1,所以x2=,
所以|AB|=x1+x2+p=3++2=.
法三:(巧用结论)因为+=,|AF|=4,p=2,
所以|BF|=,所以|AB|=|AF|+|BF|=4+=.]
设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为( )
A. B. C. D.
D [法一:(通性通法)由已知得焦点坐标为F,因此直线AB的方程为y=,即4x-4y-3=0.
与抛物线方程联立,化简得4y2-12y-9=0,
故|yA-yB|==6.
因此S△OAB=|OF||yA-yB|=××6=.
法二:(巧用结论)由2p=3,及|AB|=,
得|AB|===12.
原点到直线AB的距离d=|OF|·sin 30°=,
故S△AOB=|AB|·d=×12×=.]
[评析] 巧用结论解题避免了通性通法的繁杂计算.解题中务必熟记结论,灵活应用求解.
结论:S△AOB=,其中α为焦点弦AB的倾斜角.
(2020·成都模拟)O为坐标原点,F为抛物线C:y2=4x的焦点,P为C上一点,若|PF|=4,则△POF的面积为( )
A. B. C.2 D.3
B [法一:(通性通法)由y2=4x可得抛物线的焦点F(1,0),准线方程为x=-1,如图,过点P作准线x=-1的垂线,垂足为M,根据抛物线的定义可知PM=PF=4,
设P(x,y),则x-(-1)=4,解得x=3,将x=3代入y2=4x可得y=±2,所以△POF的面积为|y||OF|=×2×1=.故选B.
法二:(巧用结论)设∠PFx=θ,则|PF|===4,∴cos θ=,即θ=60°.
设P(x,y),则|y|=|PF|sin θ=4×=2.
∴S△POF=×|OF|×|y|=×1×2=.故选B.]
备考技法6 “设而不求”在解析几何中的妙用 |
“设而不求”是解析几何解题简化运算的一种重要手段,它的精彩在于通过设出相应的参数,利用题设条件加以巧妙转化,以参数为过渡,最大限度地减少运算;同时,“设而不求”也是比较特殊的一种思想方法,其实质是整体结构意义上的变式和整体思想的应用. |
活用定义,转化坐标 |
在平面直角坐标系xOy中,双曲线-=1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为 .
y=±x [设A(xA,yA),B(xB,yB),由抛物线定义可得|AF|+|BF|=yA++yB+=4×⇒yA+yB=p,
由 可得a2y2-2pb2y+a2b2=0,
所以yA+yB==p,解得a=b,故该双曲线的渐近线方程为y=±x.]
[评析] 设出点的坐标,先通过抛物线的定义,实现点的坐标与几何关系|AF|+|BF|=4|OF|的转换,然后借助根与系数的关系建立参数a,b的等量关系,达到设而不求,从而求得双曲线的渐近线方程.
抛物线y2=4mx(m>0)的焦点为F,点P为该抛物线上的动点,若点A(-m,0),则的最小值为 .
[设点P的坐标为(xP,yP),由抛物线的定义,
知|PF|=xP+m,
又|PA|2=(xP+m)2+y=(xP+m)2+4mxP,
则==≥=(当且仅当xP=m时取等号),
所以≥,
所以的最小值为.]
妙用“点差法”,构造斜率 |
已知椭圆E:+=1(a>b>0)的右焦点为F(3,0),过点F的直线交E于A,B两点.若AB的中点坐标为(1,-1),则椭圆E的标准方程为( )
A.+=1 B.+=1
C.+=1 D.+=1
D [设A(x1,y1),B(x2,y2),
则x1+x2=2,y1+y2=-2,
①-②得+=0,
所以kAB==-=.
又kAB==,所以=.
又9=c2=a2-b2,解得b2=9,a2=18,
所以椭圆E的方程为+=1.]
[评析] 该题目属于中点弦问题,可设出A,B两点的坐标,通过“点差法”,巧妙地表达出直线AB的斜率,通过将直线AB的斜率“算两次”建立几何量之间的关系,从而快速解决问题.
1.抛物线E:y2=2x上存在两点关于直线y=k(x-2)对称,则k的取值范围是 .
(-,) [当k=0时,显然成立.
当k≠0时,设两对称点为B(x1,y1),C(x2,y2),BC的中点为M(x0,y0),由y=2x1,y=2x2,两式相减得(y1+y2)(y1-y2)=2(x1-x2),则直线BC的斜率kBC====,由对称性知kBC=-,点M在直线y=k(x-2)上,所以y0=-k,y0=k(x0-2),所以x0=1.由点M在抛物线内,得y<2x0,即(-k)2<2,所以-<k<,且k≠0.
综上,k的取值范围为(-,).]
2.已知双曲线x2-=1,过点P(1,1)能否作一条直线l与双曲线交于A,B两点,且点P是线段AB的中点?
[解] 假设存在直线l与双曲线交于A,B两点,且点P是线段AB的中点.
设A(x1,y1),B(x2,y2),易知x1≠x2,由
两式相减得(x1+x2)(x1-x2)-=0,
又=1,=1,所以2(x1-x2)-(y1-y2)=0,所以kAB==2,
故直线l的方程为y-1=2(x-1),即y=2x-1.
由 消去y得2x2-4x+3=0,
因为Δ=16-24=-8<0,方程无解,故不存在一条直线l与双曲线交于A,B两点,且点P是线段AB的中点.
巧引参数,整体代入 |
已知椭圆+y2=1的左顶点为A,过A作两条互相垂直的弦AM,AN交椭圆于M,N两点.
(1)当直线AM的斜率为1时,求点M的坐标;
(2)当直线AM的斜率变化时,直线MN是否过x轴上的一定点?若过定点,请给出证明,并求出该定点;若不过定点,请说明理由.
[解] (1)直线AM的斜率为1时,直线AM的方程为y=x+2,代入椭圆方程并化简得5x2+16x+12=0.
解得x1=-2,x2=-,所以M.
(2)设直线AM的斜率为k,直线AM的方程为y=k(x+2),
联立方程
化简得(1+4k2)x2+16k2x+16k2-4=0.
则xA+xM=,
xM=-xA-=2-=.
同理,可得xN=.
由(1)知若存在定点,则此点必为P.
证明如下:
因为kMP===,
同理可计算得kPN=.
所以直线MN过x轴上的一定点P.
[评析] 第(2)问先设出AM的方程为y=k(x+2),联立方程,利用根与系数的关系求出xM,在此基础上借助kAM·kAN=-1,整体代入求出xN.
已知F为抛物线C:y2=2x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A,B两点,直线l2与C交于D,E两点,求|AB|+|DE|的最小值.
[解] 法一:由题意知,直线l1,l2的斜率都存在且不为0,F,设l1:x=ty+,则直线l1的斜率为,联立方程得 消去x得y2-2ty-1=0.
设A(x1,y1),B(x2,y2),则y1+y2=2t,y1y2=-1.
所以|AB|=|y1-y2|=·=·=2t2+2,
同理得,用替换t可得|DE|=+2,所以|AB|+|DE|=2+4≥4+4=8,当且仅当t2=,即t=±1时等号成立,故|AB|+|DE|的最小值为8.
法二:由题意知,直线l1,l2的斜率都存在且不为0,F,不妨设l1的斜率为k,则l1:y=k,l2:y=-.
由消去y得k2x2-(k2+2)x+=0,
设A(x1,y1),B(x2,y2),
则x1+x2=1+.
由抛物线的定义知,
|AB|=x1+x2+1=1++1=2+.
同理可得,用-替换|AB|中k,可得|DE|=2+2k2,所以|AB|+|DE|=2++2+2k2=4++2k2≥4+4=8,当且仅当=2k2,即k=±1时等号成立,故|AB|+|DE|的最小值为8.
高考数学统考一轮复习第9章9.7抛物线学案: 这是一份高考数学统考一轮复习第9章9.7抛物线学案,共9页。学案主要包含了知识重温,小题热身等内容,欢迎下载使用。
高考数学一轮复习第8章解析几何第7讲抛物线学案: 这是一份高考数学一轮复习第8章解析几何第7讲抛物线学案,共15页。
高考数学统考一轮复习第8章平面解析几何第8节曲线与方程学案: 这是一份高考数学统考一轮复习第8章平面解析几何第8节曲线与方程学案,共7页。