开学活动
搜索
    上传资料 赚现金

    高中数学必修第一册 1.2.2空间向量基本定理(第二课时)教案

    1.2.2空间向量基本定理(第二课时)第1页
    1.2.2空间向量基本定理(第二课时)第2页
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021学年1.2 空间向量基本定理第二课时教学设计

    展开

    这是一份2021学年1.2 空间向量基本定理第二课时教学设计,共5页。教案主要包含了教学目标,教学重难点,教学过程,课外作业等内容,欢迎下载使用。
    1.2.2空间向量基本定理(第二课时)(人教A版普通高中教科书数学选择性必修第一册章)一、教学目标1.能用向量语言表述直线与直线的夹角以及垂直与平行的关系.2.掌握利用空间向量基本定理中的基底法证明两直线的垂直和平行,求异面直线成角的三角函数值以及空间两点间距离.3.让学生体验向量方法在解决立体几何问题中的作用提升学生的直观想象、数学运算、逻辑推理和数学抽象等数学学科核心素养.二、教学重难点1.应用空间向量基本定理证明异面直线的垂直、两直线平行,求异面直线成角以及空间两点间距离是本节课的重点内容.2.向量的夹角运算、异面直线所成的角,以及相关向量之间的运算是本节课的难点三、教学过程1.1精简提问,温故知新问题1:上节课我们学习了空间向量基本定理,大家还记得它的内容吗?【预设的答案】如果三个向量不共面,那么对任意一个空间向量 ,存在唯一的有序实数组,使得我们把{}叫做空间的一个基底, 都叫做基向量.问题2在空间中如何选择基底?【预设的答案】(1三个不共面的非零向量;(2)尽量选择已知夹角和模长的向量.【设计意图】本节课以空间向量基本定理为出发点,准确地回顾有利于课程的顺利展开.【教师总结】选定基底之后,利用空间向量基本定理可以将空间向量之间的运算转化为基向量之间的运算.问题3我们学习过的向量之间的运算有哪些?【预设的答案】加法、减法、数量积追问:数量积的定义是什么?【预设的答案】【教师总结】在数量积的运算中有两个经常用到的式子,.【设计意图】为本节课求空间两点间的距离,异面直线的夹角及证异面直线相互垂直做铺垫.1.2探究典例掌握方法
    活动:如图,在平行六面体 ABCDA1B1C1D1中,AB=2,AD=2, AA1=3,∠DAB=60°,∠BAA1=60 ° ,∠DAA1=60 ° ,MN 分别为D1C1C1B1的中点.(1)求证 MNAC1 【活动预设】在学习立体几何的时候,如何证明两条异面直线相互垂直?【设计意图】利用几何法解答有时候比较困难,引入向量法来解决几何问题,通过具体实例,让学生体会利用“基底法”解决异面垂直的证明方法.    【师生活动】教师分析解题思路,讲解如何找到合适的基底,提示相关的计算方法.学生动笔进行求解.然后教师给出规范解答过程.【活动预设】根据第一问的解题过程,能否总结出用向量法解决立体几何问题的思路?【设计意图】通过让学生自己思考,回顾解题过程,探寻用向量法解决立体几何问题的关键,使学生真正理解解答中每一步的具体含义和作用.教师讲授:用向量法解决立体几何的途径如下:  活动:(2)求A 的长.【活动预设】如何将求A 的长转化为向量问题?【设计意图】通过具体实例,让学生体会空间向量法求解空间两点间的距离的方法,加深对用向量法解立体几何问题的理解.【师生活动】学生分析解题过程,教师根据学生的解答进行补充和评价.问题4在立体几何的学习中,如何求两条异面直线所成角的余弦值?异面直线所成角的范围是多少?【预设的答案】利用等角定理,通过平移做出与异面直线所成角相等或互补的角,放在三角形中求解,.【设计意图】回忆异面直线所成角的范围,为接下来用向量法求异面直线所成角的余弦值消除障碍.活动:(3)求A 所成角的余弦值.【活动预设】1)如何用向量表示A所成角的余弦值?2)计算两向量所成角的余弦值的公式是什么?【设计意图】理解两直线所成的角与直线方向向量所成角的大小关系,以及相应的余弦值之间的关系。通过回忆计算向量余弦值的公式为解题扫清障碍.【师生活动】先给学生时间解答,最后教师给出标准解题过程,再次强调大家注意异面直线所成角的余弦值一定是正值.活动:(4)证明MNBD.【活动预设】如何用向量表示MNBD 【设计意图】将立体几何中的平行问题转化为向量问题来解,让学生明确转换方式,进一步掌握转化与化归的思想方法.【师生活动】教师给出标准的解答过程,再次让学生描述将立体几何问题用向量法来解的思路方法.1.3初步应用,牛刀小试
    如图,正方体 ABCD-A'B'C'D'的棱长为1,E, G 分别为C'D'D'D 的中点.求CE AG 所成角的余弦值.【师生活动】学生自主解答,教师提醒题目中出现了单位正交基底,在以后的解题过程中如果遇到正交基底要尽量选择正交基底,便于计算.【设计意图】(1)计算异面直线所成角的余弦值对学生有一定的困难,通过再次练习让学生加深对用向量法解决异面直线所成角的余弦值的理解,强化向量之间的运算.(2)了解正交基底的便捷性.问题5:指数式与对数式是等价的,但在两个式子中的名称一样吗【预设的答案】此处画上连线图,呈现指数式与对数式之间的关系。【设计意图】1)体验对数式与指数式的互相转化;2)理解两个式子从不同角度表示之间的关系;通过图示连线,认识在指数式与对数式中的名称.1.4知识拓展,自主研究事实上,空间中线线、线面位置关系,三种空间角和空间中的距离问题都可以用向量基本定理进行求解.本节主要应用空间向量基本定理证明异面直线的垂直、两直线平行以及求异面直线成角、空间两点间距离.本节没有涉及的其他立体几何中的问题,如何利用空间向量基本定理解决,请学生们课下进行探索和研究.1.5归纳总结,思想渗透思考:本节课大家学到了哪些知识?【预设的答案用向量法证明两直线的垂直和平行、求异面直线成角的余弦值、空间两点间的距离.【设计意图】(1)掌握线线的位置关系及线线角的向量解答方法.2)进行数学思想渗透,体会用代数运算研究几何问题的思想方法.四、课外作业1、教科书14页 练习 2.3.2、教科书15页习题1.2第6题. 

    相关教案

    人教A版 (2019)选择性必修 第一册第一章 空间向量与立体几何1.2 空间向量基本定理教学设计:

    这是一份人教A版 (2019)选择性必修 第一册第一章 空间向量与立体几何1.2 空间向量基本定理教学设计,共5页。

    人教A版 (2019)选择性必修 第一册1.2 空间向量基本定理精品教案设计:

    这是一份人教A版 (2019)选择性必修 第一册1.2 空间向量基本定理精品教案设计,共8页。

    选择性必修 第一册1.2 空间向量基本定理第1课时教学设计:

    这是一份选择性必修 第一册1.2 空间向量基本定理第1课时教学设计,共3页。教案主要包含了教学目标,教学重难点,教学过程,课外作业等内容,欢迎下载使用。

    英语朗读宝
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map