![人教版数学九上17《圆的基本概念和性质》知识讲解+巩固练习(基础版)(含答案)第1页](http://img-preview.51jiaoxi.com/2/3/13397973/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![人教版数学九上17《圆的基本概念和性质》知识讲解+巩固练习(基础版)(含答案)第2页](http://img-preview.51jiaoxi.com/2/3/13397973/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![人教版数学九上17《圆的基本概念和性质》知识讲解+巩固练习(基础版)(含答案)第3页](http://img-preview.51jiaoxi.com/2/3/13397973/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2020-2021学年24.1.1 圆学案设计
展开
这是一份2020-2021学年24.1.1 圆学案设计,共8页。学案主要包含了学习目标,要点梳理,典型例题,思路点拨,答案与解析,总结升华,巩固练习等内容,欢迎下载使用。
圆的基本概念和性质—知识讲解(基础) 【学习目标】1.知识目标:在探索过程中认识圆,理解圆的本质属性;2.能力目标:了解圆及其有关概念,理解弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,理解概念之间的区别和联系;3.情感目标:通过圆的学习养成学生之间合作的习惯. 【要点梳理】要点一、圆的定义及性质1. 圆的定义
【高清ID号:356996 关联的位置名称(播放点名称):概念、性质的要点回顾】(1)动态:如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径. 以点O为圆心的圆,记作“⊙O”,读作“圆O”.
要点诠释:
①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;
②圆是一条封闭曲线.(2)静态:圆心为O,半径为r的圆是平面内到定点O的距离等于定长r的点的集合.
要点诠释:
①定点为圆心,定长为半径;
②圆指的是圆周,而不是圆面;
③强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.2.圆的性质
①旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心;
②圆是轴对称图形:任何一条直径所在直线都是它的对称轴.或者说,经过圆心的任何一条直线都是圆的对称轴.要点诠释:
①圆有无数条对称轴;
②因为直径是弦,弦又是线段,而对称轴是直线,所以不能说“圆的对称轴是直径”,而应该说“圆的对称轴是直径所在的直线”.
3.两圆的性质
两个圆组成的图形是一个轴对称图形,对称轴是两圆连心线(经过两圆圆心的直线叫做两圆连心线).要点二、与圆有关的概念1. 弦弦:连结圆上任意两点的线段叫做弦.
直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.
要点诠释:
直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.
为什么直径是圆中最长的弦?如图,AB是⊙O的直径,CD是⊙O中任意一条弦,求证:AB≥CD.
证明:连结OC、OD
∵AB=AO+OB=CO+OD≥CD(当且仅当CD过圆心O时,取“=”号)
∴直径AB是⊙O中最长的弦.
2. 弧
弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.
半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;
优弧:大于半圆的弧叫做优弧;
劣弧:小于半圆的弧叫做劣弧.
要点诠释:
①半圆是弧,而弧不一定是半圆;
②无特殊说明时,弧指的是劣弧.
3.同心圆与等圆
圆心相同,半径不等的两个圆叫做同心圆.
圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.
【高清ID号:356996 关联的位置名称(播放点名称):概念、性质的要点回顾】4.等弧
在同圆或等圆中,能够完全重合的弧叫做等弧.
要点诠释:
①等弧成立的前提条件是在同圆或等圆中,不能忽视;
②圆中两平行弦所夹的弧相等. 【典型例题】类型一、圆的定义1.(2014秋•邳州市校级月考)如图所示,BD,CE是△ABC的高,求证:E,B,C,D四点在同一个圆上.【思路点拨】要证几个点在同一个圆上,就是证明这几个点到同一点的距离都相等即可.【答案与解析】证明:如图所示,取BC的中点F,连接DF,EF.∵BD,CE是△ABC的高,∴△BCD和△BCE都是直角三角形.∴DF,EF分别为Rt△BCD和Rt△BCE斜边上的中线,∴DF=EF=BF=CF.∴E,B,C,D四点在以F点为圆心,BC为半径的圆上.【总结升华】要证几个点在同一个圆上,只能依据圆的定义,去说明这些点到平面内某一点的距离相等.举一反三:【变式】下列命题中,正确的个数是( )
⑴直径是弦,但弦不一定是直径; ⑵半圆是弧,但弧不一定是半圆;
⑶半径相等且圆心不同的两个圆是等圆 ; ⑷一条弦把圆分成的两段弧中,至少有一段是优弧.
A.1个 B.2个 C.3个 D.4个【答案】⑴、⑵、⑶是正确的,⑷是不正确的.故选C.类型二、圆及有关概念 2.判断题(对的打√,错的打×,并说明理由)
①半圆是弧,但弧不一定是半圆;( )
②弦是直径;( )
③长度相等的两段弧是等弧;( )
④直径是圆中最长的弦. ( )【答案】①√ ②× ③× ④√.
【解析】①因为半圆是弧的一种,弧可分为劣弧、半圆、优弧三种,故正确;②直径是弦,但弦不一定都是直径,只有过圆心的弦才是直径,故错;③只有在同圆或等圆中,长度相等的两段弧才是等弧,故错;④直径是圆中最长的弦,正确.
【总结升华】理解弦与直径的关系,等弧的定义.举一反三:【变式】(2014•长宁区一模)下列说法中,结论错误的是( )A.直径相等的两个圆是等圆B.长度相等的两条弧是等弧C.圆中最长的弦是直径D.一条弦把圆分成两条弧,这两条弧可能是等弧【答案】B.提示:A、直径相等的两个圆是等圆,正确,不符合题意;B、长度相等的两条弧圆周角不一定相等,它们不一定是等弧,原题的说法是错误的,符合题意;C、圆中最长的弦是直径,正确,不符合题意;D、一条直径把圆分成两条弧,这两条弧是等弧,正确,不符合题意,故选:B.3.直角三角形的三个顶点在⊙O上,则圆心O在 . 【答案】斜边的中点.【解析】根据圆的定义知圆心O到三角形的三个顶点距离相等,由三角形斜边的中线等于斜边的一半可知,斜边上的中点到各顶点的距离相等.【总结升华】圆心到圆上各点的距离相等.4.判断正误:有、,的长度为3cm, 的长度为3cm,则与是等弧.【答案】错误.【解析】“能够完全重合的弧叫等弧”.在半径不同的圆中也可以出现弧的长度相等,但它们不会完全重合,因此,只有在同圆或等圆中,长度相等的弧才是等弧.【总结升华】在同圆或等圆中,长度相等的弧才是等弧.举一反三:【变式】有的同学说:“从优弧和劣弧的定义看,大于半圆的弧叫优弧,小于半圆的弧叫劣弧,所以优弧一定比劣弧长.”试分析这个观点是否正确.甲同学:此观点正确,因为优弧大于半圆,劣弧小于半圆,所以优弧比劣弧长.乙同学:此观点不正确,如果两弧存在于半径不相等的两个圆中,如图,⊙O中的优弧,中的劣弧,它们的长度大小关系是不确定的,因此不能说优弧一定比劣弧长.请你判断谁的说法正确? 【答案】弧的大小的比较只能是在同圆或等圆中进行. 乙的观点正确.类型三、圆的对称性5.已知:如图,两个以O为圆心的同心圆中,大圆的弦AB交小圆于C,D.求证:AC=BD. 【答案与解析】证明:过O点作OM⊥AB于M,交大圆与E、F两点.如图,则EF所在的直线是两圆的对称轴,所以AM=BM,CM=DM,故AC=BD.【总结升华】作出与AB垂直的圆的对称轴,由圆的对称性可证得结论. 圆的基本概念和性质—巩固练习(基础)【巩固练习】一、选择题
1.(2015春•张掖校级月考)有下列四个说法:①半径确定了,圆就确定了;②直径是弦;③弦是直径;④半圆是弧,但弧不一定是半圆.其中错误说法的个数是( ) A.1 B. 2 C. 3 D. 42.在⊙O中,,那么( )A.AB=2CD B.AB=CD C.AB<2CD D.AB>2CD3.过圆上一点可以作出圆的最长的弦有( )条. A. 1 B. 2 C. 3 D. 44.等于圆周的弧叫做( ) A.劣弧 B.半圆 C.优弧 D.圆5.已知圆外一点和圆周的最短距离为2,最长距离为8,则该圆的半径是( )A.2 B.3 C.4 D.56.已知圆内一点和圆周的最短距离为2,最长距离为8,则该圆的半径是( )A.2 B.3 C.4 D.57.如图,在5×5正方形网格中,一条圆弧经过A,B,C三点, 那么这条圆弧所在圆的圆心是( )A.点P B.点Q C.点R D.点M8.以已知点O为圆心,已知线段a为半径作圆,可以作( )A.1个 B.2个 C.3个 D.无数个
二、填空题9.(2014春•定陶县期末)下列说法正确的是 (填序号).①半径不等的圆叫做同心圆; ②优弧一定大于劣弧; ③不同的圆中不可能有相等的弦; ④直径是同一个圆中最长的弦.10.过已知⊙O上一定点P,可以画半径_____条;弦____条;直径____条.11.圆是____ ___对称图形.12. 在平面内到定点A的距离等于3的点组成的图形是 .13.已知⊙O中最长的弦为16cm,则⊙O的半径为________cm.14. 在同圆或等圆中,能够互相________的弧叫做等弧.15.一个圆的圆心决定这个圆的_________,圆的半径决定这个圆的_________. 三、解答题16.某市承办一项大型比赛,在市内有三个体育馆承接所有比赛,现要修建一个运动员公寓,使得运动员公寓到三个体育馆的距离相等,若三个体育馆的位置如图27-11所示,那么运动员公寓应建立在何处? 17.(2014秋•江宁区校级期中)如图,BD=OD,∠AOC=114°,求∠AOD的度数. 18.已知MN=6cm,画出到M点的距离等于4cm的所有点,再画出到N点的距离等于5cm的所有点,指出既到点M的距离等于4cm,又到点N的距离等于5cm的点有几个?试说明你的结论. 19.已知:如图,C是⊙O直径AB上一点,过C作弦DE,使DC=EC,∠AOD=60°,求∠BOE的度数. 【答案与解析】一、选择题
1.【答案】B;【解析】①圆确定的条件是确定圆心与半径,是假命题,故此说法错误;②直径是弦,直径是圆内最长的弦,是真命题,故此说法正确;③弦是直径,只有过圆心的弦才是直径,是假命题,故此说法错误;④半圆是弧,但弧不一定是半圆,圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫半圆,所以半圆是弧.但比半圆大的弧是优弧,比半圆小的弧是劣弧,不是所有的弧都是半圆,是真命题,故此说法正确.其中错误说法的是①③两个.故选:B.2.【答案】C;【解析】把两条弦转化到一个三角形中,由三角形两边之和大于第三边得到结论. 3.【答案】A;【解析】圆的最长的弦是过该点的直径,只有一条. 4.【答案】C;【解析】等于圆周的弧是大于半圆弧,是优弧.5.【答案】B;【解析】如图,连结PO并延长交圆O于A、B两点,则PA、PB即为最短弦2、最长弦8,故该圆的半径可求. 6.【答案】D;7.【答案】B;【解析】观察网格图不难发现AQ=BQ=CQ,所以圆弧所在的圆心是点Q, 故选B. 8.【答案】A;【解析】以定点为圆心,定长为半径作圆,只能作一个,故选A.二、填空题9.【答案】④;【解析】①半径不等的圆叫做同心圆,错误;②优弧一定大于劣弧,错误; ③不同的圆中不可能有相等的弦,错误;④直径是同一个圆中最长的弦,正确.故答案为:④.10.【答案】1;无数;1;11.【答案】轴对称图形也是中心;12.【答案】以A为圆心3为半径的圆; 13.【答案】8;14.【答案】重合;15.【答案】位置,大小.三、解答题16. 【答案与解析】任意作连结A、B、C三点中的两点所成的线段的中垂线的交点.17.【答案与解析】解:设∠B=x,∵BD=OD,∴∠DOB=∠B=x,∴∠ADO=∠DOB+∠B=2x,∵OA=OD,∴∠A=∠ADO=2x,∵∠AOC=∠A+∠B,∴2x+x=114°,解得x=38°,∴∠AOD=180°﹣∠OAD﹣∠ADO=180°﹣4x=180°﹣4×38°=28°.18. 【答案与解析】分别画以M为圆心、以4cm为半径的圆,画以N为圆心、以5cm为半径的圆,两圆交于A、B两点,则A、B两点即为所求的2个点.19.【答案与解析】∵C是⊙O直径AB上一点, DE是弦,DC=EC,∴由圆的对称性可得点D、E关于直线AB对称,∵∠AOD=60°,∴∠AOE=∠AOD=60°,∴∠BOE =180°-60°=120°.
相关学案
这是一份初中数学苏科版九年级上册2.1 圆导学案及答案,共8页。学案主要包含了学习目标,要点梳理,典型例题,思路点拨,答案与解析,总结升华等内容,欢迎下载使用。
这是一份数学九年级上册22.1.1 二次函数导学案,共13页。学案主要包含了学习目标,要点梳理,典型例题,答案与解析,总结升华,思路点拨,巩固练习等内容,欢迎下载使用。
这是一份初中数学25.2 用列举法求概率学案,共9页。学案主要包含了学习目标,要点梳理,典型例题,总结升华,思路点拨,答案与解析,巩固练习等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)