高中数学人教A版 (2019)必修 第二册10.1 随机事件与概率教案及反思
展开10.1.4 概率的基本性质
教学设计(人教A版)
教材分析
概率的基本是继事件的关系与运算的后续部分,本节课主要讲解了概率的基本性质.
【学习目标】
素 养 目 标 | 学 科 素 养 |
1.通过实例,理解概率的性质. 2.掌握随机事件概率的运算法则. | 1.数学抽象; 2.数学运算 |
教学重难点
重点:理解概率的性质.
难点:会求事件的概率.
课前准备
教学方法:以学生为主体,小组为单位,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
教学过程:
一、新知探究
知识点 概率的基本性质
性质1 对任意的事件A,都有P(A)≥0.
性质2 必然事件的概率为1,不可能事件的概率为0,即P(Ω)=1,P(∅)=0.
性质3 如果事件A与事件B互斥,那么P(A∪B)=P(A)+P(B).
性质4 如果事件A与事件B互为对立事件,那么P(B)=1-P(A),P(A)=1-P(B).
性质5 如果A⊆B,那么P(A)≤P(B).
性质6 设A,B是一个随机试验中的两个事件,我们有P(A∪B)=P(A)+P(B)-P(A∩B).
思考 (1)如果事件A1,A2,…,An两两互斥,那么事件A1,A2,…,An的和事件的概率等于事件A1,A2,…,An的概率和吗?
答案 相等.P(A1∪A2∪…∪An)=P(A1)+P(A2)+…+P(An).
(2)对于任意事件A,事件A的概率的范围是多少?
答案 因∅⊆A⊆Ω,∴0≤P(A)≤1.
一、互斥事件与对立事件概率公式的应用
例1 某射手在一次射击中射中10环、9环、8环、7环、7环以下的概率分别为0.24,0.28,0.19,0.16,0.13.计算这个射手在一次射击中:
(1)射中10环或9环的概率;
(2)至少射中7环的概率;
(3)射中8环以下的概率.
解 “射中10环”“射中9环”“射中8环”“射中7环”“射中7环以下”是彼此互斥的,可运用互斥事件的概率加法公式求解.
设“射中10环”“射中9环”“射中8环”“射中7环”“射中7环以下”的事件分别为事件A,B,C,D,E,则
(1)P(A+B)=P(A)+P(B)=0.24+0.28=0.52,所以射中10环或9环的概率为0.52.
(2)方法一 P(A+B+C+D)=P(A)+P(B)+P(C)+P(D)=0.24+0.28+0.19+0.16=0.87,所以至少射中7环的概率为0.87.
方法二 事件“至少射中7环”的对立事件是“射中7环以下”,其概率为0.13,则至少射中7环的概率为1-0.13=0.87.
(3)P(D+E)=P(D)+P(E)=0.16+0.13=0.29,所以射中8环以下的概率为0.29.
反思感悟 运用互斥事件的概率加法公式解题的一般步骤
(1)确定各事件彼此互斥.
(2)求各事件分别发生的概率,再求其和.
注意:(1)是公式使用的前提条件,不符合这点,是不能运用互斥事件的概率加法公式的.
跟踪训练1 在数学考试中,小明的成绩在90分及90分以上的概率是0.18,在80~89分(包括80分与89分,下同)的概率是0.51,在70~79分的概率是0.15,在60~69分的概率是0.09,60分以下的概率是0.07.计算下列事件的概率:
(1)小明在数学考试中取得80分及80分以上的成绩;
(2)小明考试及格(60分及60分以上为及格).
解 分别记小明的成绩“在90分及90分以上”,“在80~89分”,“在70~79分”,“在60~69分”为事件B,C,D,E,显然这四个事件彼此互斥.
(1)小明的成绩在80分及80分以上的概率是
P(B+C)=P(B)+P(C)=0.18+0.51=0.69.
(2)方法一 小明考试及格的概率是
P(B+C+D+E)=P(B)+P(C)+P(D)+P(E)=0.18+0.51+0.15+0.09=0.93.
方法二 因为小明考试不及格的概率是0.07,所以小明考试及格的概率是1-0.07=0.93.
二、互斥、对立事件与古典概型的综合应用
例2 一盒中装有各色球12个,其中5个红球、4个黑球、2个白球、1个绿球,从中随机取出1球,求:
(1)取出1球是红球或黑球的概率;
(2)取出1球是红球或黑球或白球的概率.
解 记事件A1={任取1球为红球};A2={任取1球为黑球};A3={任取1球为白球};A4={任取1球为绿球},则
P(A1)=,P(A2)=,P(A3)=,P(A4)=.
根据题意,事件A1,A2,A3,A4彼此互斥.
方法一 由互斥事件概率公式,得
(1)取出1球为红球或黑球的概率为
P(A1+A2)=P(A1)+P(A2)=+=.
(2)取出1球为红球或黑球或白球的概率为
P(A1+A2+A3)=P(A1)+P(A2)+P(A3)=++=.
方法二 (1)取出1球为红球或黑球的对立事件为取出1球为白球或绿球,即A1+A2的对立事件为A3+A4,所以取出1球为红球或黑球的概率为
P(A1+A2)=1-P(A3+A4)=1-P(A3)-P(A4)
=1--==.
(2)A1+A2+A3的对立事件为A4,所以
P(A1+A2+A3)=1-P(A4)=1-=.
反思感悟 求复杂事件的概率通常有两种方法
(1)将所求事件转化成几个彼此互斥的事件的和事件.
(2)若将一个较复杂的事件转化为几个互斥事件的和事件时,需要分类太多,而其对立面的分类较少,可考虑利用对立事件的概率公式,即“正难则反”,它常用来求“至少……”或“至多……”型事件的概率.
跟踪训练2 某学校的篮球队、羽毛球队、乒乓球队各有10名队员,某些队员不止参加了一支球队,具体情况如图所示.现从中随机抽取一名队员,求:
(1)该队员只属于一支球队的概率;
(2)该队员最多属于两支球队的概率.
解 分别令“抽取一名队员只属于篮球队、羽毛球队、乒乓球队”为事件A,B,C.由题图知3支球队共有球员20名.
则P(A)=,P(B)=,P(C)=.
(1)令“抽取一名队员,该队员只属于一支球队”为事件D.
则D=A+B+C,∵事件A,B,C两两互斥,
∴P(D)=P(A+B+C)=P(A)+P(B)+P(C)
=++=.
(2)令“抽取一名队员,该队员最多属于两支球队”为事件E,
则为“抽取一名队员,该队员属于3支球队”,
∴P(E)=1-P()=1-=.
正难则反思想的应用
典例 一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.
(1)求“抽取的卡片上的数字满足a+b=c”的概率;
(2)求“抽取的卡片上的数字a,b,c不完全相同”的概率.
解 (1)由题意知,(a,b,c)所有可能的结果为(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种.
设“抽取的卡片上的数字满足a+b=c”为事件A,
则事件A包含的样本点有(1,1,2),(1,2,3),(2,1,3),共3个.
所以P(A)==.
即“抽取的卡片上的数字满足a+b=c”的概率为.
(2)设“抽取的卡片上的数字a,b,c不完全相同”为事件B,则事件B的对立事件包括的样本点有(1,1,1),(2,2,2),(3,3,3),共3种.
∴P(B)=1-P()=1-=.
即“抽取的卡片上的数字a,b,c不完全相同”的概率为.
[素养提升] 当正面考虑所解决的问题比较繁琐复杂时,可以通过逻辑推理,找到所求事件的对立事件,利用对立事件的概率的公式求解.
五、课堂小结
1.知识清单:
性质1 对任意的事件A,都有P(A)≥0.
性质2 必然事件的概率为1,不可能事件的概率为0,即P(Ω)=1,P(∅)=0.
性质3 如果事件A与事件B互斥,那么P(A∪B)=P(A)+P(B).
性质4 如果事件A与事件B互为对立事件,那么P(B)=1-P(A),P(A)=1-P(B).
性质5 如果A⊆B,那么P(A)≤P(B).
性质6 设A,B是一个随机试验中的两个事件,我们有P(A∪B)=P(A)+P(B)-P(A∩B).
2.方法归纳:
(1)将所求事件转化为互斥事件的并事件.
(2)将求复杂事件的概率转化为求其对立事件的概率.
3.常见误区:将事件拆分成若干个互斥的事件,不能重复和遗漏.
六、板书设计
七、作业
课本238页练习,243页习题10.1的9、10、11题.
人教A版 (2019)第十章 概率10.1 随机事件与概率教学设计: 这是一份人教A版 (2019)第十章 概率10.1 随机事件与概率教学设计,共6页。
人教A版 (2019)第十章 概率10.1 随机事件与概率教案设计: 这是一份人教A版 (2019)第十章 概率10.1 随机事件与概率教案设计,共6页。
数学必修 第二册10.1 随机事件与概率教学设计及反思: 这是一份数学必修 第二册10.1 随机事件与概率教学设计及反思,共7页。教案主要包含了预习课本,引入新课,新知探究,典例分析,课堂小结,板书设计,作业等内容,欢迎下载使用。