2020-2021学年4.1 指数课文课件ppt
展开
这是一份2020-2021学年4.1 指数课文课件ppt,共35页。PPT课件主要包含了实例1,指数增长,实例2,指数衰减,指数函数,练习1,答案C,练习2等内容,欢迎下载使用。
增长率约为1.11-1=0.11,是一个常数.
你能否用函数解析式刻画B地景区游客人次随时间指数增长的变化规律?
当生物死后,它机体内原有的碳14含量会按确定的比率衰减(称为衰减率),大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”. 按照上述变化规律,死亡生物体内碳14含量与死亡年数之间有怎样的关系?
实际上科学研究表明,宇宙射线在大气中能产生包括碳14在内的放射性物质.碳14的衰减非常有规律,其准确性可以称为自然界的“准确时钟”,动植物在生长过程中衰减的碳14,可以通过与大气的相互作用得到补充,所以活着的动植物体内的碳14含量不变.死亡后的动植物停止了与外界的相互作用,体内原有的碳14按确定的规律衰减,半衰期为5730年,这也是考古中常用碳14来推断年代的原因.
死亡生物体内碳14含量的年衰减率为多少?能否用函数解析式刻画死亡生物体内碳14含量随时间的变化情况?
设死亡生物体内碳14含量的年衰减率为p,刚死亡时碳14含量为1个单位,
所以设生物死亡年数为x,死亡生物体内碳14含量为y,则
比较上述两个实例,B地景区游客人次增长与碳14衰减,它们所反映的变化规律有什么共同特征?
从数据看,它们的变化率(增长率、衰减率)是常数.
从解析式看,如果用a代替底数,则它们都是y=ax的形式.
一般地,函数y=ax(a>0且a≠1)叫做指数函数,其中x为自变量,定义域为R.
在指数函数中,当x∈N时,y=ax(a>1)还可以表示为y=(1+p)x,其中p(p>0)表示增长率;y=ax(0
相关课件
这是一份数学3.1 函数的概念及其表示示范课课件ppt,共30页。PPT课件主要包含了数集A1,数集B1,工资w天数d,数集A2,数集B2,数集A3,数集B3,数集A4,数集B4,表31-1等内容,欢迎下载使用。
这是一份2020-2021学年4.1 指数教案配套课件ppt,共24页。PPT课件主要包含了复习上节课内容等内容,欢迎下载使用。
这是一份人教A版 (2019)4.1 指数课前预习课件ppt,共21页。PPT课件主要包含了复习回顾,指数函数的定义,0+∞,2减函数,2增函数,例题讲解,增函数,用函数观点解决问题,巩固提升,∴b-1等内容,欢迎下载使用。