华师大版九年级上册23.4 中位线练习
展开数学九年级上学期《23.4中位线》同步练习
一.选择题(共9小题)
1.如图,在△ABC中,D,E分别是AB,AC的中点,AC=10,F是DE上一点,连接AF,CF,DF=1.若∠AFC=90°,则BC的长度为( )
A.10 B.12 C.14 D.16
2.如图,△ABC的周长为32,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=12,则PQ的长为( )
A.2 B.3 C.4 D.5
3.如图,在四边形ABCD中,已知AB=CD,M、N、P分别是AD、BC、BD的中点∠ABD=20°,∠BDC=70°,则∠NMP的度数为( )
A.50° B.25° C.15° D.20
4.已知:四边形ABCD中,AB=2,CD=3,M、N分别是AD,BC的中点,则线段MN的取值范围是( )
A.1<MN<5 B.1<MN≤5 C.<MN< D.<MN≤
5.如图,点D、E、F分别是△ABC的边AB、BC、CA的中点,连接DE、EF、FD得△DEF,如果△ABC的周长是24cm,那么△DEF的周长是( )
A.6cm B.12cm C.18cm D.48cm
6.如图,△ABC中,M是BC的中点,AD平分∠BAC,BD⊥AD于点D,若AB=12,AC=16,则MD等于( )
A.4 B.3 C.2 D.1
7.如图,在四边形ABCD中,AD=BC,E,F,G分别是AB,CD,AC的中点,若∠DAC=20°,∠ACB=84°,则∠FEG等于( )
A.32° B.38° C.64° D.30°
8.已知△ABC的周长为1,连接其三边中点构成第二个三角形,再连接第二个三角形的中点构成第三个三角形,以此类推,则第2012个三角形的周长为( )
A. B. C. D.
9.如图,在▱ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE=3cm,则AB的长为( )
A.3cm B.6cm C.9cm D.12cm
二.填空题(共5小题)
10.如图,在△ABC中,D,E分别是AB,AC的中点,F是线段DE上一点,连接AF,BF,若AB=16,EF=1,∠AFB=90°,则BC的长为 .
11.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.∠BAD=60°,AC平分∠BAD,AC=2,BN的长为 .
12.如图,在Rt△ABC中,∠ACB=90°,点E、Q,F分别是边 AC、AB、BC的中点、若EF+CQ=5,则EF= .
13.如图,△ABC中,AB=10,AC=7,AD平分∠BAC,AE是BC边上的中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为 .
14.如图,在四边形ABCD中,∠D=90°,AD=4,CD=3,连接AC,M,N分别为AB,BC的中点,连接MN,则线段MN的长为 .
三.解答题(共6小题)
15.如图,在△ABC中,AE平分∠BAC,BE⊥AE于点E,点F是BC的中点.
(1)如图1,BE的延长线与AC边相交于点D,求证:EF=(AC﹣AB);
(2)如图2,请直接写出线段AB、AC、EF的数量关系.
16.如图,△ABC中,∠C=90°,CA=CB,E、F分别为CA、CB上一点,CE=CF,M、N分别为AF、BE的中点.求证:AE=MN.
17.如图所示,AB,CD交于点E,AD=AE,CE=BC,F,G,H分别是DE,BE,AC的中点.求证:(1)AF⊥DE.(2)∠HFG=∠FGH.
18.在矩形ABCD中,点EFGH分别是边ABBCCDDA的中点,顺次连接E1F1G1H1所得的四边形我们称之为中点四边形,如图
(1)求证:四边形E1F1G1H1是菱形;
(2)设E1F1G1H1的中点四边形是E2F2G2H2,E2F2G2H2的中点四边形是E3F3G3H3….En﹣1Fn﹣1Gn﹣1Hn﹣1的中点四边形是EnFnGnHn,那么这些中点四边形形状的变化有没有规律性? (填“有”或“无”)若有,说出其中的规律性 ;
(3)进一步:如果我们规定:矩形=0,菱形=1,并将矩形ABCD的中点四边形用f(0)表示;菱形的中点四边形用f(1)表示,由题(1)知,f(0)=1,那么f(1)= .
19.如图,在四边形ABCD中,M是对角线AC的中点,E、F分别是边AD、BC的中点.
①请补充一个条件: ,使得∠MEF=∠MFE;
②根据题意结合你补充的条件,证明∠MEF=∠MFE.
20.如图,D、E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB、AC的中点.O是△ABC平面上的一动点,连接OB、OC,G、F分别是OB、OC的中点,顺次连接点D、G、F、E.
(1)如图,当点O在△ABC内时,求证:四边形DGFE是平行四边形;
(2)若连接AO,且满足AO=BC,AO⊥BC.问此时四边形DGFE又是什么形状?并请说明理由.
数学九年级上学期《23.4中位线》同步练习
参考答案与试题解析
一.选择题(共9小题)
1.
【解答】解:如图,∵∠AFC=90°,AE=CE,
∴EF=AC=5,
∴DE=1+5=6;
∵D,E分别是AB,AC的中点,
∴DE为△ABC的中位线,
∴BC=2DE=12,
故选:B.
2.
【解答】解:∵BQ平分∠ABC,BQ⊥AE,
∴∠ABQ=∠EBQ,
∵∠ABQ+∠BAQ=90°,∠EBQ+∠BEQ=90°,
∴∠BAQ=∠BEQ,
∴AB=BE,同理:CA=CD,
∴点Q是AE中点,点P是AD中点(三线合一),
∴PQ是△ADE的中位线,
∵BE+CD=AB+AC=32﹣BC=32﹣12=20,
∴DE=BE+CD﹣BC=8,
∴PQ=DE=4.
故选:C.
3.
【解答】解:∵在四边形ABCD中,M、N、P分别是AD、BC、BD的中点,
∴PN,PM分别是△CDB与△DAB的中位线,
∴PM=AB,PN=DC,PM∥AB,PN∥DC,
∵AB=CD,
∴PM=PN,
∴△PMN是等腰三角形,
∵PM∥AB,PN∥DC,
∴∠MPD=∠ABD=20°,∠BPN=∠BDC=70°,
∴∠MPN=∠MPD+∠NPD=20°+(180﹣70)°=130°,
∴∠PMN==25°.
故选:B.
4.
【解答】解:连接BD,过M作MG∥AB,连接NG.
∵M是边AD的中点,AB=2,MG∥AB,
∴MG是△ABD的中位线,BG=GD,MG=AB=×2=1;
∵N是BC的中点,BG=GD,CD=3,
∴NG是△BCD的中位线,NG=CD=×3=,
在△MNG中,由三角形三边关系可知NG﹣MG<MN<MG+NG,即﹣1<MN<+1,
∴<MN<,
当MN=MG+NG,即MN=时,四边形ABCD是梯形,
故线段MN长的取值范围是<MN≤.
故选:D.
5.
【解答】解:∵D、E分别是△ABC的边AB、BC的中点,
∴DE=AC,
同理,EF=AB,DF=BC,
∴C△DEF=DE+EF+DF=AC+BC+AB=(AC+BC+AC)=×24=12cm.
故选:B.
6.
【解答】解:延长BD交AC于H,
∵AD平分∠BAC,BD⊥AD,
∴BD=DH,AH=AB=12,
∴HC=AC﹣AH=4,
∵M是BC中点,BD=DH,
∴MD=CH=2,
故选:C.
7.
【解答】解:∵AD=BC,E,F,G分别是AB,CD,AC的中点,
∴GF是△ACD的中位线,GE是△ACB的中位线,
∴GF=AD,GF∥AD,GE=BC,GE∥BC.
又∵AD=BC,
∴GF=GE,∠FGC=∠DAC=20°,∠AGE=∠ACB=84°,
∴∠EFG=∠FEG,
∵∠FGE=∠FGC+∠EGC=20°+(180°﹣84°)=116°,
∴∠EFG=(180°﹣∠FGE)=32°.
故选:A.
8.
【解答】解:∵连接△ABC三边中点构成第二个三角形,
∴新三角形的三边与原三角形的三边的比值为1:2,
∴它们相似,且相似比为1:2,
同理:第三个三角形与第二个三角形的相似比为1:2,
即第三个三角形与第一个三角形的相似比为:1:22,
以此类推:第2012个三角形与原三角形的相似比为1:22011,
∵△ABC周长为1,
∴第2012个三角形的周长为 1:22011.
故选:C.
9.
【解答】解:∵四边形ABCD是平行四边形,
∴OA=OC;
又∵点E是BC的中点,
∴BE=CE,
∴AB=2OE=2×3=6(cm)
故选:B.
二.填空题(共5小题)
10.
【解答】解:∵∠AFB=90°,点D是AB的中点,
∴DF=AB=8,
∵EF=1,
∴DE=9,
∵D、E分别是AB,AC的中点,
∴BC=2DE=18,
故答案为:18
11.
【解答】解:在△CAD中,∵M、N分别是AC、CD的中点,
∴MN∥AD,MN=AD,
在Rt△ABC中,∵M是AC中点,
∴BM=AC,
∵AC=AD,
∴MN=BM,
∵∠BAD=60°,AC平分∠BAD,
∴∠BAC=∠DAC=30°,
∴BM=AC=AM=MC,
∴∠BMC=∠BAM+∠ABM=2∠BAM=60°,
∵MN∥AD,
∴∠NMC=∠DAC=30°,
∴∠BMN=∠BMC+∠NMC=90°,
∴BN2=BM2+MN2,
∴MN=BM=AC=1,
∴BN=.
故答案为:.
12.
【解答】解:∵点E、F分别是边AC、BC的中点,
∴EF=AB,
∵∠ACB=90°,点Q是边AB的中点,
∴CQ=AB,
∴EF=CQ,
∵EF+CQ=5,
∴EF=,
故答案为:.
13.
【解答】解:∵AD平分∠BAC,
∴∠GAF=∠CAF,
∵CG⊥AD,
∴∠AFG=∠AFC,
在△AGF和△ACF中,,
∴△AGF≌△ACF(ASA),
∴AG=AC=6,GF=CF,
则BG=AB﹣AG=10﹣7=3.
又∵BE=CE,
∴EF是△BCG的中位线,
∴EF=BG=1.5.
故答案是:1.5.
14.
【解答】解:∵∠D=90°,AD=4,CD=3,
∴由勾股定理,得
AC===5.
又M,N分别为AB,BC的中点,
∴MN在△ABC的中位线,
∴MN=AC=.
故答案是:.
三.解答题(共6小题)
15.
【解答】(1)证明:如图1中,
∵AE⊥BD,
∴∠AED=∠AEB=90°,
∴∠BAE+∠ABE=90°,∠DAE+∠ADE=90°,
∵∠BAE=∠DAE,
∴∠ABE=∠ADE,
∴AB=AD,∵AE⊥BD,
∴BE=DE,∵BF=FC,
∴EF=DC==(AC﹣AB).
(2)结论:EF=(AB﹣AC),
理由:如图2中,延长AC交BE的延长线于P.
∵AE⊥BP,
∴∠AEP=∠AEB=90°,
∴∠BAE+∠ABE=90°,∠PAE+∠APE=90°,
∵∠BAE=∠PAE,
∴∠ABE=∠ADE,
∴AB=AP,∵AE⊥BD,
∴BE=PE,∵BF=FC,
∴EF=PC=(AP﹣AC)=(AB﹣AC).
16.
【解答】证明:如图,取AB的中点G,连接MG、NG,
∵M、N分别为AF、BE的中点,
∴NG=AE,NG∥AE,MG=BF,MG∥BF,
∵CE=CF,∠C=90°,
∴AE=BF,∠MGN=∠C=90°,
∴MG=NG,
∴△MNG是等腰直角三角形,
∴NG=MN,
∴AE=2NG=NG=×2MN=MN,
即AE=MN.
17.
【解答】证明:(1)∵F为DE中点,AD=AE,
∴AF为△ADE的高.
即AF⊥DE.
(2)连接CG,
∵CB=CE,G为BE中点,
∴CG⊥BE.
∴∠AFC=∠AGC=90°.
又∵H为AC中点,
∴FH=AC,GH=AC.
∴FH=GH.
∴∠HFG=∠FGH.
18.
【解答】(1)证明:连接AC、BD,
∵点EFGH分别是边ABBCCDDA的中点,
∴E1H1=BD,同理F1G1=BD,H1G1=AC,E1F1=AC,
又∵在矩形ABCD中,AC=BD,
∴E1H1=F1G1=H1G1=E1F1,
∴四边形E1F1G1H1是菱形.
(2)解:有;矩形的中点四边形是菱形,菱形的中点四边形是矩形.
(3)解:∵矩形的中点四边形为菱形,
即:f(0)=1,
∴菱形的中点四边形为矩形可以表示为:f(1)=0.
19.
【解答】解:(1)AB=CD即可使得∠MEF=∠MFE;
(2)∵M、E为AD、AC的中点,
∴ME=CD,
同理MF=AB,
又∵AB=CD,
∴ME=MF,
∴∠MEF=∠MFE.
20.
【解答】(1)证明:∵D、E是AB、AC的中点,
∴DE∥BC且DE=BC,
∵G、F是OB、OC的中点,
∴GF∥BC且GF=BC,
∴DE∥GF且DE=GF,
∴四边形DGFE是平行四边形;
(2)解:∵D、G分别是AB、OB的中点,
∴DG∥AO,DG=AO,
又∵AO=BC,AO⊥BC,
∴DG⊥GF,DG=GF,
∴四边形DGFE正方形.
初中数学华师大版九年级上册23.4 中位线优秀习题: 这是一份初中数学华师大版九年级上册23.4 中位线优秀习题,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初中数学华师大版九年级上册23.4 中位线课时训练: 这是一份初中数学华师大版九年级上册23.4 中位线课时训练,共9页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
初中数学华师大版九年级上册23.4 中位线优秀精练: 这是一份初中数学华师大版九年级上册23.4 中位线优秀精练,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。