


所属成套资源:华师大版数学九年级上册练习整套
初中数学华师大版九年级上册24.4 解直角三角形练习题
展开
这是一份初中数学华师大版九年级上册24.4 解直角三角形练习题,共17页。
数学九年级上学期《24.4解直角三角形》同步练习 一.选择题(共11小题)1.如图,四边形ABCD中,∠ABC=Rt∠.已知∠A=α,外角∠DCE=β,BC=a,CD=b,则下列结论错误的是( ) A.∠ADC=90°﹣α+β B.点D到BE的距离为b•sinβC.AD= D.点D到AB的距离为a+bcosβ2.在Rt△ABC中,∠C=90°,如果AC=2,cosA=,那么AB的长是( )A.3 B. C. D.3.在Rt△ABC中,∠C=90°,tanA=,若AC=6cm,则BC的长度为( )A.8cm B.7cm C.6cm D.5cm4.如图,△ABC的顶点都在正方形网格的格点上,则tan∠BAC的值为( ) A.2 B. C. D.5.已知BD是△ABC的中线,AC=6,且∠ADB=45°,∠C=30°,则AB=( )A. B.2 C.3 D.66.在Rt△ABC中,∠C=90°,CD是高,如果AD=m,∠A=α,那么BC的长为( )A.m•tanα•cosα B.m•cotα•cosα C. D.7.如图,在Rt△ABC中,∠C=90°,sinA=,D为AB上一点,且AD:DB=3:2,过点D作DE⊥AC于E,连结BE,则tan∠CEB的值等于( ) A. B.2 C. D.8.一个三角形的边长分别为a,a,b,另一个三角形的边长分别为b,b,a,其中a>b,若两个三角形的最小内角相等,的值等于( )A. B. C. D.9.如图,在梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=4,E为BC中点,AE平分∠BAD,连接DE,则sin∠ADE的值为( ) A. B. C. D.10.如图所示,在矩形ABCD中,对角线AC、BD相交于O,OE⊥AC于O交BC于E,连接AE.若AB=1,AD=,则AE=( ) A. B. C. D.211.如图,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔顶端A的仰角为30°,再向电视塔方向前进100米达到F处,又测得电视塔顶端A的仰角为60°,则这个电视塔的高度AB(单位:米)为( ) A.50 B.51 C.50+1 D.101 二.填空题(共6小题)12.在△ABC中,AB=2,AC=3,cos∠ACB=,则∠ABC的大小为 度.13.已知等腰△ABC,AB=AC,BH为腰AC上的高,BH=3,tan∠ABH=,则CH的长为 .14.已知平面直角坐标系xOy中,O为坐标原点,点P的坐标为(5,12),那么OP与x轴正半轴所夹角的余弦值为 . 15.如图,把n个边长为1的正方形拼接成一排,求得tan∠BA1C=1,tan∠BA2C=,tan∠BA3C=,计算tan∠BA4C= ,…按此规律,写出tan∠BAnC= (用含n的代数式表示).16.已知△ABC中,满足+=,AB=10.则AC+BC= 17.在△ABC中,AB=AC,若BD⊥直线AC于点D,若cos∠BAD=,BD=2,则BC为 . 三.解答题(共8小题)18.如图,在Rt△ABC中,∠C=90°,点D是BC边的中点,BD=2,tanB=(1)求AD和AB的长;(2)求sin∠BAD的值.19.如图,四边形ABCD中,AC、BD是它的对角线,∠ABC=∠ADC=90°,∠BCD是锐角.(1)若BD=BC,证明:sin∠BCD=.(2)若AB=BC=4,AD+CD=6,求的值.(3)若BD=CD,AB=6,BC=8,求sin∠BCD的值.(注:本题可根据需要自己画图并解答)20.如图,在Rt△ABC中,∠B=90°,sinA=,点D在AB边上,且∠BDC=45°,BC=5.(1)求AD长;(2)求∠ACD的正弦值.21.在数学活动课上,老师带领学生去测量操场上树立的旗杆的高度,老师为同学们准备了如下工具:①高为m米的测角仪,②长为n米的竹竿,③足够长的皮尺.请你选用以上的工具,设计一个可以通过测量,求出国旗杆高度的方案(不用计算和说明,画出图形并标记可以测量的长度或者角度即可,可测量的角度选用α,β,γ标记,可测量的长度选用a,b,c,d标记,测角仪和竹竿可以用线段表示).(1)你选用的工具为: ;(填序号即可)(2)画出图形.22.如图,某防洪指挥部发现长江边一处长500米,高10米,背水坡的坡角为45°的防洪大堤(横断面为梯形ABCD)急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,并使上底加宽3米,加固后背水坡EF的坡比i=1:.(1)求加固后坝底增加的宽度AF;(2)求完成这项工程需要土石多少立方米?(结果保留根号)23.每年的6至8月份是台风多发季节,某次台风来袭时,一棵大树树干AB(假定树干AB垂直于地面)被刮倾斜15°后折断倒在地上,树的项部恰好接触到地面D(如图所示),量得树干的倾斜角为∠BAC=15°,大树被折断部分和地面所成的角∠ADC=60°,AD=4米,求这棵大树AB原来的高度是多少米?(结果精确到个位,参考数据:≈1.4,≈1.7,≈2.4)24.小明与班级数学兴趣小组的同学在学校操场上测得旗杆BC在地面上的影长AB为12米,同一时刻,测得小明在地面的影长为2.4米,小明的身高为1.6米.(1)求旗杆BC的高度;(2)兴趣小组活动一段时间后,小明站在A,B两点之间的D处(A,D,B三点在一条直线上),测得旗杆BC的顶端C的仰角为α,且tanα=0.8,求此时小明与旗杆之间的距离.25.甲、乙两条轮船同时从港口A出发,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正东方向行进,1小时后,甲船接到命令要与乙船会合,于是甲船改变了行进的速度,沿着东南方向航行,结果在小岛C处与乙船相遇.假设乙船的速度和航向保持不变,求:(1)港口A与小岛C之间的距离;(2)甲轮船后来的速度. 参考答案 一.选择题1.C.2.A.3.A.4.B.5.C.6.C.7.D.8.B.9.B.10.C.11.C. 二.填空题(共6小题)12.30或150.13.3或14.15.;.16.14.17.2或2. 三.解答题18.解:(1)∵D是BC的中点,BD=2,∴BD=DC=2,BC=4,在Rt△ACB中,由 tanB==,∴=,∴AC=3,由勾股定理得:AD===,AB===5; (2)过点D作DE⊥AB于E,∴∠C=∠DEB=90°,又∠B=∠B,∴△DEB∽△ACB,∴=,∴DE=,∴sin∠BAD===. 19.解:(1)如图1中,过点B作AD的垂线BE交DA的延长线于点E,∵∠ABC=∠ADC=90°,∴∠ADC+∠ABC=180°,∴四边形ABCD四点共圆,∴∠BDE=∠ACB,∠EAB=∠BCD,∵∠BED=∠ABC=90°,∴△BED∽△ABC,∴==sin∠EAB=sin∠BCD; (2)如图2中,过点B作BF⊥BD交DC的延长线于F.∵∠ABC=∠DBF=90°,∠BAD+∠BCD+∠ABC+∠ADC=360°,∠ABC+∠ADC=180°,∴∠BAD=180°﹣∠BCD=∠BCF,∵∠BCF=∠BAD,BC=BA,∴△DAB≌△CBF,∴BD=BF,AD=CF,∵∠DBF=90°,∴△BDF是等腰直角三角形,∴BD=DF,∵AD+CD=6,∴CF+CD=DF=6,∴BD=3,AC==4,∴==. (3)当BD=CD时,如图3中,过点B作MN∥DC,过点C作CN⊥MN,垂足为N,延长DA交MN于点M,则四边形DCNM是矩形,△ABM∽△BCN,∴===,设AM=6y,BN=8y,BM=6x,CN=8x,在Rt△BDM中,BD==10x,∵BD=DC,∴10x=6x+8y,∴x=2y,在Rt△ABM中,AB==6y,∴sin∠BCD=sin∠MAB===. 20.解:(1)∵∠B=90°,∠BDC=45°,∴BC=BD=5,∵sinA=,∴AB=12,∴AD=AB﹣BD=12﹣5=7;(2)过A作AE⊥CE交CD延长线于点E,∵△ADE是等腰直角三角形,∴AE=DE=,则sin∠ACD=. 21.解:(1)选用的工具为:①③;故答案为:①③; (2)如图所示:可以量出AM,AC,AB的长,以及α,β的度数,即可得出DC,NC的长. 22. 解:(1)分别过点E、D作EG⊥AB、DH⊥AB交AB于G、H.∵四边形ABCD是梯形,且AB∥CD,∴DH平行且等于EG. 故四边形EGHD是矩形. ∴ED=GH. 在Rt△ADH中,AH=DH÷tan∠DAH=10÷tan45°=10(米). 在Rt△FGE中,i==,∴FG=EG=10(米). ∴AF=FG+GH﹣AH=10+3﹣10=10﹣7(米); (2)加宽部分的体积V=S梯形AFED×坝长=×(3+10﹣7)×10×500=25000﹣10000(立方米). 答:(1)加固后坝底增加的宽度AF为(10﹣7)米;(2)完成这项工程需要土石(25000﹣10000)立方米. 23.解:过点A作AE⊥CD于点E,∵∠BAC=15°,∴∠DAC=90°﹣15°=75°,∵∠ADC=60°,∴在Rt△AED中,∵cos60°===,∴DE=2,∵sin60°===,∴AE=2,∴∠EAD=90°﹣∠ADE=90°﹣60°=30°,在Rt△AEC中,∵∠CAE=∠CAD﹣∠DAE=75°﹣30°=45°,∴∠C=90°﹣∠CAE=90°﹣45°=45°,∴AE=CE=2,∴sin45°===,∴AC=2,∴AB=2+2+2≈2×2.4+2×1.7+2=10.2≈10米.答:这棵大树AB原来的高度是10米. 24.解:(1)依题意有:=,即=,解得BC=8.故旗杆BC的高度是8米;(2)如图,在Rt△CFE中,tan∠CEF===0.8,解得EF=8,则BD=8.故此时小明与旗杆之间的距离是8米. 25.解:(1)作BD⊥AC于点D,如图所示:由题意可知:AB=30×1=30海里,∠BAC=30°,∠BCA=45°,在Rt△ABD中,∵AB=30海里,∠BAC=30°,∴BD=15海里,AD=ABcos30°=15海里,在Rt△BCD中,∵BD=15海里,∠BCD=45°,∴CD=15海里,BC=15海里,∴AC=AD+CD=15+15海里,即A、C间的距离为(15+15)海里. (2)∵AC=15+15(海里),轮船乙从A到C的时间为=+1,由B到C的时间为+1﹣1=,∵BC=15海里,∴轮船甲从B到C的速度为=5(海里/小时).
相关试卷
这是一份数学九年级上册24.4 解直角三角形精品课时作业,共11页。试卷主要包含了4 解直角三角形》同步练习,如图,梯子,一个公共房门前的台阶高出地面1等内容,欢迎下载使用。
这是一份数学九年级上册24.4 解直角三角形优秀随堂练习题,共4页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份初中数学华师大版九年级上册24.4 解直角三角形课后测评,共9页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。