资料中包含下列文件,点击文件名可预览资料内容


当前文件暂不支持在线预览,请下载使用
还剩3页未读,
继续阅读
所属成套资源:【最新版】高中数学(新教材人教版)必修第一册【教案+同步课件+习题】
成套系列资料,整套一键下载
人教A版 (2019)必修 第一册1.5 全称量词与存在量词习题课件ppt
展开
这是一份人教A版 (2019)必修 第一册1.5 全称量词与存在量词习题课件ppt,文件包含限时小练8全称量词与存在量词pptx、限时小练8全称量词与存在量词DOCX等2份课件配套教学资源,其中PPT共5页, 欢迎下载使用。
限时小练8 全称量词与存在量词1.下列全称量词命题中真命题的个数为( )①对于任意实数x,都有x+2>x;②对任意的实数a,b,都有若|a|>|b|,则a2>b2成立;③二次函数y=x2-ax-1与x轴恒有交点;④∀x∈R,y∈R,都有x2+|y|>0.A.1 B.2 C.3 D.4答案 C解析 ①②③为真命题.2.已知命题p:∃x∈R,x2+2x-a=0,若p为假命题,则实数a的取值范围是________.答案 {a|a<-1}解析 依题意,方程x2+2x-a=0无实根,∴Δ=4+4a<0,解得a<-1.3.设语句q(x):|x-1|=1-x.(1)写出q(1),q(2),并判断它们是不是真命题;(2)写出“∀a∈R,q(a)”,并判断它是不是真命题;(3)写出“∃a∈R,q(a)”,并判断它是不是真命题.解 (1)q(1):|1-1|=1-1,真命题.q(2):|2-1|=1-2,因为|2-1|=1,1-2=-1,所以|2-1|≠1-2,假命题.(2)∀a∈R,|a-1|=1-a,由(1)知,q(2)为假命题,所以“∀a∈R,|a-1|=1-a”为假命题.(3)∃a∈R,|a-1|=1-a,由(1)知,q(1)为真命题,所以“∃a∈R,|a-1|=1-a”为真命题.