沪科版九年级上册21.1 二次函数公开课教案
展开教学目标
【知识与技能】
以实际问题为例理解二次函数的概念,并掌握二次函数关系式的特点.
【过程与方法】
能够根据实际问题熟练地列出二次函数的关系式,并求出函数的自变量的取值范围.
【情感、态度与价值观】
联系学生已有知识,让学生积极参与函数的学习过程,使学生体会函数的思想.
重点难点
【重点】
二次函数的概念.
【难点】
能够根据实际问题熟练地列出二次函数的关系式,并求出函数的自变量的取值范围.
教学过程
一、问题引入
1.一次函数和反比例函数是如何表示变量之间的关系的?
[一次函数的表达式是y=kx+b(k≠0),反比例函数的表达式是y=eq \f(k,x)(k≠0)]
2.如果改变正方体的棱长x,那么正方体的表面积y会随之改变,y和x之间有什么关系?
(正方体的表面积y与棱长x之间的关系式是y=6x2.)
上面问题2中变量之间的关系可以用哪一种函数来表示?这种函数有哪些性质?它的图象是什么?它与以前学过的函数、方程等有哪些关系?
这就是本节课要学习的二次函数.(教师板书课题)
二、新课教授
师:我们再来看下面这个问题.
某水产养殖户用长40 m的围网,在水库中围一块矩形的水面,投放鱼苗.要使围成的水面面积最大,则它的边长应是多少m?
这个问题首先要找出围成的矩形水面面积与其边长之间的关系.设围成的矩形水面的一边长为x m,那么,矩形水面的另一边长应为(20-x)m.若它的面积为S m2,则有S=x(20-x)=-x2+20x.
这个问题中,函数关系式都是用自变量的二次式表示的.
二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数叫做二次函数.其中,x是自变量,a叫做二次项的系数,b叫做一次项的系数,c叫做常数项.
二次函数的自变量的取值范围一般都是全体实数,但是在实际问题中,自变量的取值范围应使实际问题有意义.如上面问题中,0
【例1】 判断下列函数是否为二次函数?如果是,指出其中常数a、b、c的值.
(1)y=1-3x2; (2)y=x(x-5);
(3)y=eq \f(1,2)x-eq \f(3,2)x+1; (4)y=3x(2-x)+3x2;
(5)y=eq \f(1,3x2+2x+1); (6)y=eq \r(x2+5x+6);
(7)y=x4+2x2-1.
解:(1)、(2)是二次函数.(1)中,a=-3,b=0,c=1;(2)中,a=1,b=-5,c=0.
【例2】 当k为何值时,函数y=(k-1)xk2+k+1为二次函数?
解:令k2+k=2,得k1=-2,k2=1.
当k1=-2时,k-1=-2-1=-3≠0;
当k2=1时,k-1=1-1=0.
所以当k=-2时,函数y=-3x2+1为二次函数.
四、课堂小结
本节课主要学习了以下内容:
1.二次函数的概念:形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数叫做二次函数.
2.能够根据实际问题熟练地列出二次函数的关系式,并求出函数的自变量的取值范围.
初中数学沪科版九年级上册21.1 二次函数教案及反思: 这是一份初中数学沪科版九年级上册21.1 二次函数教案及反思,共4页。教案主要包含了基础练习,合作交流,展评提升,课堂总结函数解析式等内容,欢迎下载使用。
沪科版九年级上册第21章 二次函数与反比例函数21.1 二次函数教案及反思: 这是一份沪科版九年级上册第21章 二次函数与反比例函数21.1 二次函数教案及反思,共3页。教案主要包含了新授课,巩固提高等内容,欢迎下载使用。
沪科版九年级上册21.1 二次函数教学设计: 这是一份沪科版九年级上册21.1 二次函数教学设计,共3页。