初中数学人教版八年级上册第十一章 三角形11.1 与三角形有关的线段11.1.3 三角形的稳定性教案
展开11.1.1三角形的边和稳定性
[教学目标]
1.了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形;
2.理解三角形三边不等的关系,会判断三条线段能否构成一个三角形,并能运用它解决有关的问题。
3.在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯;
4.体会数学与现实生活的联系,增强克服困难的勇气和信心
[重点难点]
三角形的有关概念和符号表示,三角形三边间的不等关系是重点;用三角形三边不等关系判定三条线段可否组成三角形是难点。
[教学过程]
一、情景导入
三角形是一种最常见的几何图形,[投影1-6]如古埃及金字塔,香港中银大厦,交通标志,等等,处处都有三角形的形象。那么什么叫做三角形呢?
二、三角形及有关概念
不在一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。
注意:三条线段必须①不在一条直线上,②首尾顺次相接。
组成三角形的线段叫做三角形的边,相邻两边所组成的角叫做三角形的内角,简称角,相邻两边的公共端点是三角形的顶点。
三角形ABC用符号表示为△ABC。三角形ABC的顶点C所对的边AB可用c表示,顶点B所对的边AC可用b表示,顶点A所对的边BC可用a表示。
三、三角形三边的不等关系
探究:[投影7]任意画一个△ABC,假设有一只小虫要从B点出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?为什么?
有两条路线:(1)从B→C,(2)从B→A→C;不一样,AB+AC>BC①;因为两点之间线段最短。
同样地有AC+BC>AB②
AB+BC>AC③
由式子①②③我们可以知道什么?
三角形的任意两边之和大于第三边。
四、三角形的分类
我们知道,三角形按角可分为锐角三角形、钝角三角形、直角三角形,我们把锐角三角形、钝角三角形统称为斜三角形。
1.按角分类:三角形直角三角形,斜三角形锐角三角形,钝角三角形。那么三角形按边如何进行分类呢?请你按“有几条边相等”将三角形分类。三边都相等的三角形叫做等边三角形;有两条边相等的三角形叫做等腰三角形;三边都不相等的三角形叫做不等边三角形。显然,等边三角形是特殊的等腰三角形。
2.按边分类:三角形不等边三角形,等腰三角形底和腰不等的等腰三角形,等边三角形
五、例题
例用一条长为18㎝的细绳围成一个等腰三角形。(1)如果腰长是底边的2倍,那么各边的长是多少?(2)能围成有一边长为4㎝的等腰三角形吗?为什么?
分析:(1)等腰三角形三边的长是多少?若设底边长为x㎝,则腰长是多少?(2)“边长为4㎝”是什么意思?
解:(1)设底边长为x㎝,则腰长2x㎝。
x+2x+2x=18
解得x=3。6
所以,三边长分别为3。6㎝,7。2㎝,7。2㎝。
(2)如果长为4㎝的边为底边,设腰长为x㎝,则
4+2x=18
解得x=7
如果长为4㎝的边为腰,设底边长为x㎝,则
2×4+x=18
解得x=10
因为4+4<10,出现两边的和小于第三边的情况,所以不能围成腰长是4㎝的等腰三角形。
由以上讨论可知,可以围成底边长是4㎝的等腰三角形。
六、课堂练习
课本4頁练习1、2题。
七、课堂小结
1、三角形及有关概念;
2、三角形的分类;
3、三角形三边的不等关系及应用。
八、作业:
课本8頁1、2、6;
九、教学反思:
等腰三角形一定要强调学生分两种情况讨论。
人教版八年级上册第十一章 三角形11.1 与三角形有关的线段11.1.3 三角形的稳定性教案及反思: 这是一份人教版八年级上册第十一章 三角形11.1 与三角形有关的线段11.1.3 三角形的稳定性教案及反思,共4页。教案主要包含了 操作演示,观察发现,师生互动,引导探索,实践应用,拓展延伸,练习等内容,欢迎下载使用。
人教版八年级上册第十一章 三角形11.1 与三角形有关的线段11.1.3 三角形的稳定性教学设计: 这是一份人教版八年级上册第十一章 三角形11.1 与三角形有关的线段11.1.3 三角形的稳定性教学设计,共2页。
数学八年级上册第十一章 三角形11.1 与三角形有关的线段11.1.3 三角形的稳定性教案设计: 这是一份数学八年级上册第十一章 三角形11.1 与三角形有关的线段11.1.3 三角形的稳定性教案设计,共6页。教案主要包含了教材分析,学情分析,教学目标,教学重点,教学难点,教学方法,教学手段,教具准备等内容,欢迎下载使用。