


2021-2022学年河南省平顶山市郏县八年级(下)期末数学试卷(Word解析版)
展开
这是一份2021-2022学年河南省平顶山市郏县八年级(下)期末数学试卷(Word解析版),共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2021-2022学年河南省平顶山市郏县八年级(下)期末数学试卷 题号一二三总分得分 一、选择题(本大题共10小题,共30分。在每小题列出的选项中,选出符合题目的一项)下列图形不能由旋转得到的是( )A. B. C. D. 下列各分式中,最简分式是( )A. B. C. D. 将长度为的线段向上平移后,所得线段的长度是( )A. B. C. D. 无法确定下列说法正确的是( )A. 平行四边形是轴对称图形 B. 平行四边形的邻边相等
C. 平行四边形的对角线互相垂直 D. 平行四边形的对角线互相平分边形的内角和比边形的内角和大( )A. B. C. D. 如图,在中,,是的角平分线,若,,则的长为( )A.
B.
C.
D. 我国古代著作四元玉鉴记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为文.如果每株椽的运费是文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问文能买多少株椽?设这批椽的数量为株,则符合题意的方程是( )A. B.
C. D. 对于实数,我们规定表示不大于的最大整数,例如若,则的取值范围是( )A. B. C. D. 如图所示,平面直角坐标系中,已知三点,,,若以、、、为顶点的四边形是平行四边形,则点的坐标不可能是( )
A. B. C. D. 如图,四边形中.,,为的平分线,,、分别是、的中点,则的长为( )
A. B. C. D. 二、填空题(本大题共5小题,共15分)分式中的取值范围是______.直角三角形中,两个锐角度数之比为:,则较小的锐角度数为______.我们知道,正五边形不能进行平面镶嵌.如图,将三个全等的正五边形拼接在一起,则度数是______.
若三角形的三边长,,满足,则三角形的形状是______.如图,,点为的平分线上的一个定点,且与互补,若在绕点旋转的过程中,其两边分别与、相交于、两点,则以下结论:;;四边形的面积保持不变;的周长保持不变.其中说法正确的是______填序号.
三、解答题(本大题共8小题,共75分。解答应写出文字说明,证明过程或演算步骤)分解因式;
解方程:.先化简,再求值:,其中是不等式组的整数解.如图,在网格中有一个四边形图案.
请你在网格中画出此四边形绕点顺时针方向旋转,,后的图案,你会得到一个美丽的图形.千万不要将阴影位置涂错;
若网格中每个小正方形的边长为,旋转后点的对应点依次为,,,求四边形的面积.
证明:两条边上的高相等的三角形是等腰三角形.“要致富,先修路”甲乙两地相距千米,为更好的促进甲、乙两地经济往来,新修的高速公路开通后,在甲乙两地间行驶的客运车辆平均车速提高了,而从甲到乙的时间比原来缩短了小时,求原来车辆的平均速度是多少?在坐标系中作出函数的图象,根据图象回答下列问题:
方程的解是______;
不等式的解______;
若,则的取值范围是______.
阅读下列材料:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替即换元,不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.下面是小涵同学用换元法对多项式进行因式分解的过程.解:设原式第一步第二步第三步第四步请根据上述材料回答下列问题:小涵同学的解法中,第二步到第三步运用了因式分解的____;A.提取公因式法 平方差公式法 完全平方公式法老师说,小涵同学因式分解的结果不彻底,请你写出该因式分解的最后结果:____;请你用换元法对多项式进行因式分解.如图,是的中线,是线段上一动点不与点重合交于点,,连接.
如图,当点与重合时,求证:四边形是平行四边形;
如图,当点不与重合时,交于点,中的结论还成立吗?请说明理由.
如图,延长交于点,若,且,则______.
答案和解析 1.【答案】 【解析】解:正方体不能由旋转得到,符合题意;
B.圆柱可以由长方形绕着一边所在直线旋转得到,不合题意;
C.圆锥可以由直角三角形绕着一直角边所在直线旋转得到,不合题意;
D.球可以由半圆绕着直径所在直线旋转得到,不合题意;
故选:.
根据面动成体进行判断,即可得到答案.
此题主要考查了旋转变换以及点线面体,关键是掌握点动成线,线动成面,面动成体.
2.【答案】 【解析】解:、分子、分母中含有公因式,不是最简分式,故该选项不符合题意;
B、分子、分母中含有公因式,不是最简分式,故该选项不符合题意;
C、分子、分母中含有公因式,不是最简分式,故该选项不符合题意;
D、分子、分母中不含有公因式,是最简分式,故该选项符合题意.
故选:.
根据最简分式的定义逐个判断即可.
本题考查了最简分式的定义,能熟记最简分式的定义是解此题的关键,分式的分子和分母除了公因式,再没有其它的公因式,这样的分式叫最简分式.
3.【答案】 【解析】解:线段长度不变,还是.
故选B.
根据平移的性质:平移不改变图形的形状和大小;经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.
此题主要考查平移的基本性质,题目比较基础,把握平移的性质即可.
4.【答案】 【解析】解:、平行四边形不是轴对称图形而是中心对称图形,故原命题错误,不符合题意;
B、平行四边形的邻边不等,对边相等,故原命题错误,不符合题意;
C、平行四边形对角线互相平分,错误,故本选项符合题意;
D、平行四边形对角线互相平分,正确,故本选项不符合题意.
故选:.
根据平行四边形的性质以及平行四边形的对称性对各选项分析判断即可得解.
本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转度后两部分重合.
5.【答案】 【解析】解:边形的内角和:,
边形的内角和,
边形的内角和比边形的内角和大,
故选:.
根据多边形内角和定理:且为整数分别表示出内角和即可.
此题主要考查了多边形的内角和,关键是掌握多边形内角和定理:.
6.【答案】 【解析】解:在中,,是角平分线,,
,.
在中,,即,解得,
.
故选:.
先根据等腰三角形的性质得出,再由勾股定理求出的长,进而可得出结论.
本题考查的是等腰三角形的性质,勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.
7.【答案】 【解析】【分析】
本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.
根据单价总价数量,结合少拿一株椽后剩下的椽的运费恰好等于一株椽的价钱,即可得出关于的分式方程,此题得解.
【解答】
解:依题意,得:.
故选:. 8.【答案】 【解析】解:由,得,
解得,
故选:.
根据对于实数我们规定不大于最大整数,可得答案.
本题考查了解一元一次不等式组,利用不大于最大整数得出不等式组是解题关键.
9.【答案】 【解析】解:当以为对角线时:,此时;
当以为对角线时,,此时;
当以为对角线时,,此时点.
点的坐标不可能是:.
故选:.
根据平行四边形的性质,分别从以为对角线、以为对角线、以为对角线去分析求解即可求得答案.
此题考查了平行四边形的性质.此题难度适中,注意掌握分类讨论思想与数形结合思想的应用.
10.【答案】 【解析】解:,
,
,.
,
,
,
为的平分线,
,
,
,
连接并延长交于,
,
,
是的中点,
,
在和中,
,
≌,
,,
,
是的中点,
.
故选:.
根据勾股定理得到,根据平行线的性质和角平分线的定义得到,求得,连接并延长交于,根据全等三角形的性质得到,,求得,根据三角形中位线定理即可得到结论.
此题考查了三角形的中位线定理,全等三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.
11.【答案】 【解析】解:,
.
故答案为:.
根据分式的分母不等于即可得出答案.
本题考查了分式有意义的条件,掌握分式的分母不等于是解题的关键.
12.【答案】 【解析】解:设较小的一个锐角为,则另一个锐角为,
则,
解得:,
则较小的一个锐角为,
故答案为:.
根据直角三角形的两锐角互余列出方程,解方程得到答案.
本题考查的是直角三角形的性质,掌握直角三角形的两锐角互余是解题的关键.
13.【答案】 【解析】解:正五边形的每个内角,
,
故答案为:.
先求出正五边形的每个内角的度数,根据在顶点处各角之和为即可得出的度数.
本题考查了平面镶嵌密铺,掌握多边形的内角和是解题的关键.
14.【答案】等腰三角形 【解析】解:,
,即.
,,是的边长,
,
,
,
,即三角形的形状是等腰三角形.
故答案为:等腰三角形.
通过对的变形得到,由此求得,易判断的形状.
该题主要考查了因式分解及其应用问题;解题的关键是牢固掌握分组分解法或提公因式法,灵活选用有关方法来变形、化简、求值或证明.
15.【答案】 【解析】【分析】
本题考查了旋转的性质,全等三角形的判定与性质,角平分线的性质,熟练掌握对角互补模型旋转型全等是解题的关键.根据角平分线上的点到角的两边距离相等,想到过点作,垂足为,过点作,垂足为,证明≌,≌,即可一一解答.
【解答】
解:过点作,垂足为,过点作,垂足为,
,,
,
,
,
,
,
,
平分,,,
,
在和中,
≌,
,,
故正确;
在和中,
≌,
,
,
平分,
,
,
,
,
故正确;
≌,
四边形的面积四边形的面积,
四边形的面积保持不变,
故正确;
,,
是等边三角形,
的长度是变化的,
的周长是变化的,
故错误;
所以,说法正确的是:,
故答案为:. 16.【答案】解:原式
;
去分母得:,
解得:,
检验:把代入得:,
是增根,分式方程无解. 【解析】原式提取公因式,再利用完全平方公式分解即可;
分式方程去分母转化为整式方程,求出整式方程的解得到的值,经检验即可得到分式方程的解.
此题考查了解分式方程,以及提公因式法与公式法的综合运用,熟练掌握因式分解的方法及分式方程的解法是解本题的关键.
17.【答案】解:
,
由不等式组,得,
是不等式组的整数解,
,,
当时,原分式无意义,
,
当时,原式. 【解析】本题考查分式的化简求值、一元一次不等式组的整数解,解答本题的关键是明确分式化简求值的方法.
根据分式的加法和乘法可以化简题目中的式子,再根据是不等式组的整数解,然后即可得到的值,再将使得原分式有意义的整数值代入化简后的式子即可解答本题.
18.【答案】解:所画图形如下所示:
.
由格点图形,可判断四边形是正方形,
,
故四边形的面积为. 【解析】将此图案的各顶点绕点顺时针方向旋转,,后找到它们的对应点,顺次连接得到的图案,就是所要求画的图案.
连接、、、,可判断四边形是正方形,利用勾股定理求出一条边,即可得到的面积.
本题考查了利用旋转设计图案的知识,注意寻找旋转的三要素,找到旋转后各主要点的对应点,要求准确作图.
19.【答案】已知:如图,在中,,,且.
求证:是等腰三角形.
证明:,,
,
在与中,
,
≌,
,
,即是等腰三角形. 【解析】本题主要考查了数学文字证明的过程,直角三角形的判定与性质,属于基础题.
通过证得≌得到,则等角对等边:,即是等腰三角形.
20.【答案】解:设原来车辆的平均速度为千米小时.
由题意可得:.
解这个方程得:.
经检验:是原方程的解.
答:原来车辆的平均速度为千米小时. 【解析】根据题目中的“从甲到乙的时间比原来缩短了小时”可得出相等关系,从而只要表示出原来与现在所需的时间即可列出方程.
找到合适的等量关系是解决问题的关键.利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.
21.【答案】 【解析】解:
列表如下:
图象如下图所示:
由图形可得,方程的解是,
故答案为;
由图象可得,不等式的解是,
故答案为;
若,则的取值范围是,
故答案为.
先画出函数图象,然后根据函数图象可以解答三个小题.
本题考查一次函数的图象、一次函数与一元一次方程,一次函数与一元一次不等式,解题的关键是利用数形结合的思想解答问题.
22.【答案】解: ;
;
设,
原式,
,
【解析】【分析】
本题考查了因式分解换元法,公式法,也是阅读材料问题,熟练掌握利用公式法分解因式是解题的关键.
根据完全平方公式进行分解因式;
最后再利用完全平方公式将结果分解到不能分解为止;
根据材料,用换元法进行分解因式.
【解答】
解:.
故选:;
,
设,
原式,
,
,
,
;
故答案为:;
见答案. 23.【答案】 【解析】证明:,
,
,
,
是的中线,且与重合,
,
≌,
,
,
四边形是平行四边形;
解:结论成立,理由如下:如图,
,,
四边形是平行四边形,
,且,
由知,,,
,,
四边形是平行四边形;
解:如图,取线段的中点,连接,
,
是的中位线,
,,
,且,
,,
.
故答案为:.
先判断出,进而判断出≌,即可得出结论;
先判断出四边形是平行四边形,借助的结论即可得出结论;
先判断出,,进而利用直角三角形的性质即可得出结论.
此题是四边形综合题,主要考查了三角形的中线,中位线的性质和判定,平行四边形的平行和性质,直角三角形的性质,正确作出辅助线是解题的关键.
相关试卷
这是一份2023-2024学年河南省平顶山市郏县八年级(下)期末数学试卷(含答案),共10页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
这是一份2022-2023学年河南省平顶山市郏县七年级(下)期末数学试卷(含解析),共20页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
这是一份2021-2022学年河南省平顶山市郏县八年级(上)期中数学试卷(含答案),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
