所属成套资源:2022年中考数学真题分类汇编
- 2022年中考数学真题汇编:一元二次方程(含解析) 试卷 22 次下载
- 2022年中考数学真题分类汇编:反比例函数1(含答案) 试卷 20 次下载
- 2022年中考数学真题汇编:平行四边形(含解析) 试卷 23 次下载
- 2022年中考数学真题汇编:勾股定理(含解析) 试卷 23 次下载
- 2022年中考数学真题汇编:全等三角形2(含解析) 试卷 23 次下载
2022年中考数学真题汇编:锐角三角函数(含解析)
展开
这是一份2022年中考数学真题汇编:锐角三角函数(含解析),共51页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022年中考数学真题分类练习:锐角三角函数
一、选择题
1.(2022福建)如图所示的衣架可以近似看成一个等腰三角形ABC,其中AB=AC,,BC=44cm,则高AD约为( )(参考数据:,,)
A. 9.90cm B. 11.22cm C. 19.58cm D. 22.44cm
2.(2022云南)如图,已知AB是⊙O的直径,CD是OO的弦,AB⟂CD.垂足为E.若AB=26,CD=24,则∠OCE的余弦值为( )
A. B. C. D.
3.(2022福建)如图,现有一把直尺和一块三角尺,其中,,AB=8,点A对应直尺的刻度为12.将该三角尺沿着直尺边缘平移,使得△ABC移动到,点对应直尺的刻度为0,则四边形的面积是( )
A. 96 B. C. 192 D.
4.(2022北部湾)如图,在中,,将绕点A逆时针旋转,得到,连接并延长交AB于点D,当时,的长是( )
A. B. C. D.
5.(2022贵港)如图,某数学兴趣小组测量一棵树高度,在点A处测得树顶C的仰角为,在点B处测得树顶C的仰角为,且A,B,D三点在同一直线上,若,则这棵树的高度是( )
A. B. C. D.
6.(2022安徽)已知⊙O的半径为7,AB是⊙O的弦,点P在弦AB上.若PA=4,PB=6,则OP=( )
A. B. 4 C. D. 5
7.(2022北部湾)如图,某博物馆大厅电梯的截面图中,AB的长为12米,AB与AC的夹角为,则高BC是( )
A. 米 B. 米 C. 米 D. 米
8(2022毕节)如图,某地修建一座高的天桥,已知天桥斜面的坡度为,则斜坡的长度为( )
A. B. C. D.
9.(2022贵港)如图,在网格正方形中,每个小正方形的边长为1,顶点为格点,若的顶点均是格点,则的值是( )
A. B. C. D.
10.(2022毕节)矩形纸片中,E为的中点,连接,将沿折叠得到,连接.若,,则的长是( )
A. 3 B. C. D.
11.(2022黔东南)如图,已知正六边形内接于半径为的,随机地往内投一粒米,落在正六边形内的概率为( )
A. B. C. D. 以上答案都不对
12.(2022黔东南)如图,、分别与相切于点、,连接并延长与交于点、,若,,则的值为( )
A. B. C. D.
二、填空题
13.(2022广东)sin30°的值为_____.
14.(2022玉林)计算:=_____.
15.(2022甘肃武威)如图,菱形中,对角线与相交于点,若,,则的长为_________cm.
16.(2022安徽)如图,为了测量河对岸A,B两点间的距离,数学兴趣小组在河岸南侧选定观测点C,测得A,B均在C的北偏东37°方向上,沿正东方向行走90米至观测点D,测得A在D的正北方向,B在D的北偏西53°方向上.A,B两点间的距离为 .参考数据:,,.
17.(2022黔东南)如图,校园内有一株枯死的大树,距树12米处有一栋教学楼,为了安全,学校决定砍伐该树,站在楼顶处,测得点的仰角为45°,点的俯角为30°,小青计算后得到如下结论:①米;②米;③若直接从点处砍伐,树干倒向教学楼方向会对教学楼有影响;④若第一次在距点的8米处的树干上砍伐,不会对教学楼造成危害.其中正确的是_______.(填写序号,参考数值:,)
三、解答题
18.(2022北京)计算:
19.(2022贵港)(1)计算:;
(2)解不等式组:
20.(2022黔东南)(1)计算:;
(2)先化简,再求值:,其中.
21.(2022贺州)如图,内接于,AB是直径,延长AB到点E,使得,连接EC,且,点D是上的点,连接AD,CD,且CD交AB于点F.
(1)求证:EC是的切线;
(2)若BC平分,求AD的长.
22.(2022福建)如图,BD是矩形ABCD的对角线.
(1)求作⊙A,使得⊙A与BD相切(要求:尺规作图,不写作法,保留作图痕迹);
(2)在(1)的条件下,设BD与⊙A相切于点E,CF⊥BD,垂足为F.若直线CF与⊙A相切于点G,求的值.
23.(2022贵港)图,在中,,点D是边的中点,点O在边上,⊙经过点C且与边相切于点E,.
(1)求证:是⊙的切线;
(2)若,,求⊙的半径及的长.
24.(2022毕节)如图,在中,,D是边上一点,以为直径的与相切于点E,连接并延长交的延长线于点F.
(1)求证:;
(2)若,求直径.
25.(2022安徽)已知AB为⊙O的直径,C为⊙O上一点,D为BA的延长线上一点,连接CD.
(1)如图1,若CO⊥AB,∠D=30°,OA=1,求AD的长;
(2)如图2,若DC与⊙O相切,E为OA上一点,且∠ACD=∠ACE,求证:CE⊥AB.
26.(2022贺州)如图,在小明家附近有一座废旧的烟囱,为了乡村振兴,美化环境,政府计划把这片区域改造为公园.现决定用爆破的方式拆除该烟囱,为确定安全范围,需测量烟囱的高度AB,因为不能直接到达烟囱底部B处,测量人员用高为的测角器在与烟囱底部B成一直线的C,D两处地面上,分别测得烟囱顶部A的仰角,同时量得CD为.问烟囱AB的高度为多少米?(精确到,参考数据:)
27.(2022梧州)今年,我国“巅峰使命”2022珠峰科考团对珠穆朗玛峰进行综合科学考察,搭建了世界最高海拔的自动气象站,还通过释放气球方式进行了高空探测.某学校兴趣小组开展实践活动,通过观测数据,计算气球升空的高度AB.如图,在平面内,点B,C,D在同一直线上,垂足为点B,,, ,求AB的高度.(精确到)(参考数据:﹐﹐,)
28.(2022海南)无人机在实际生活中应用广泛.如图8所示,小明利用无人机测量大楼的高度,无人机在空中P处,测得楼楼顶D处的俯角为,测得楼楼顶A处的俯角为.已知楼和楼之间的距离为100米,楼的高度为10米,从楼的A处测得楼的D处的仰角为(点A、B、C、D、P在同一平面内).
(1)填空:___________度,___________度;
(2)求楼的高度(结果保留根号);
(3)求此时无人机距离地面的高度.
29.(2022贵阳)交通安全心系千万家.高速公路管理局在某隧道内安装了测速仪,如图所示的是该段隧道的截面示意图.测速仪和测速仪到路面之间的距离,测速仪和之间的距离,一辆小汽车在水平的公路上由西向东匀速行驶,在测速仪处测得小汽车在隧道入口点的俯角为25°,在测速仪处测得小汽车在点的俯角为60°,小汽车在隧道中从点行驶到点所用的时间为38s(图中所有点都在同一平面内).
(1)求,两点之间的距离(结果精确到1m);
(2)若该隧道限速22m/s,判断小汽车从点行驶到点是否超速?通过计算说明理由.(参考数据:,,,,,)
30.(2022甘肃武威)灞陵桥位于甘肃省渭源县城南清源河(渭河上游)上,始建于明洪武初年,因“渭水绕长安,绕灞陵,为玉石栏杆灞陵桥”之语,得名灞陵桥(图1),该桥为全国独一无二的纯木质叠梁拱桥.某综合实践研究小组开展了测量汛期某天“灞陵桥拱梁顶部到水面的距离”的实践活动,过程如下:
方案设计:如图2,点C为桥拱梁顶部(最高点),在地面上选取A,B两处分别测得∠CAF和∠CBF的度数(A,B,D,F在同一条直线上),河边D处测得地面AD到水面EG的距离DE(C,F,G在同一条直线上,DF∥EG,CG⊥AF,FG=DE).
数据收集:实地测量地面上A,B两点的距离为8.8m,地面到水面的距离DE=1.5m,∠CAF=26.6°,∠CBF=35°.
问题解决:求灞陵桥拱梁顶部C到水面的距离CG(结果保留一位小数).
参考数据:sin266°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50,sin35°≈0.57,cos35°≈0.82,tan35°≈0.70.
根据上述方案及数据,请你完成求解过程.
31.(2022玉林)如图,已知抛物线:与x轴交于点A,(A在B的左侧),与y轴交于点C,对称轴是直线,P是第一象限内抛物线上的任一点.
(1)求抛物线的解析式;
(2)若点D为线段的中点,则能否是等边三角形?请说明理由;
(3)过点P作x轴的垂线与线段交于点M,垂足为点H,若以P,M,C为顶点的三角形与相似,求点P的坐标.
32.(2022百色)已知抛物线经过A(-1,0)、B(0、3)、 C(3,0)三点,O为坐标原点,抛物线交正方形OBDC的边BD于点E,点M为射线BD上一动点,连接OM ,交BC于点F
(1)求抛物线的表达式;
(2)求证:∠BOF=∠BDF :
(3)是否存在点M使△MDF为等腰三角形?若不存在,请说明理由;若存在,求ME的长
33.(2022甘肃武威)已知正方形,为对角线上一点.
(1)【建立模型】如图1,连接,.求证:;
(2)【模型应用】如图2,是延长线上一点,,交于点.
①判断的形状并说明理由;
②若为的中点,且,求的长.
(3)【模型迁移】如图3,是延长线上一点,,交于点,.求证:.
34.(2022甘肃武威)如图1,在平面直角坐标系中,抛物线与轴交于,两点,点在轴上,且,,分别是线段,上的动点(点,不与点,,重合).
(1)求此抛物线的表达式;
(2)连接并延长交抛物线于点,当轴,且时,求的长;
(3)连接.
①如图2,将沿轴翻折得到,当点在抛物线上时,求点的坐标;
②如图3,连接,当时,求的最小值.
35.(2022贵阳)小红根据学习轴对称的经验,对线段之间、角之间的关系进行了拓展探究.
如图,在中,为边上的高,,点在边上,且,点是线段上任意一点,连接,将沿翻折得.
(1)问题解决:
如图①,当,将沿翻折后,使点与点重合,则______;
(2)问题探究:
如图②,当,将沿翻折后,使,求的度数,并求出此时的最小值;
(3)拓展延伸:
当,将沿翻折后,若,且,根据题意在备用图中画出图形,并求出的值.
2022年中考数学真题分类练习:锐角三角函数参考答案
一、选择题
1.(2022福建)如图所示的衣架可以近似看成一个等腰三角形ABC,其中AB=AC,,BC=44cm,则高AD约为( )(参考数据:,,)
A. 9.90cm B. 11.22cm C. 19.58cm D. 22.44cm
【答案】解:∵等腰三角形ABC,AB=AC,AD为BC边上的高,
∴,
∵BC=44cm,
∴cm.
∵等腰三角形ABC,AB=AC,,
∴.
∵AD为BC边上的高,,
∴在中,
,
∵,cm,
∴cm.
故选:B.
2.(2022云南)如图,已知AB是⊙O的直径,CD是OO的弦,AB⟂CD.垂足为E.若AB=26,CD=24,则∠OCE的余弦值为( )
A. B. C. D.
【答案】解:∵AB是⊙O的直径,AB⟂CD.
∴,
∴.
故选:B.
3.(2022福建)如图,现有一把直尺和一块三角尺,其中,,AB=8,点A对应直尺的刻度为12.将该三角尺沿着直尺边缘平移,使得△ABC移动到,点对应直尺的刻度为0,则四边形的面积是( )
A. 96 B. C. 192 D.
【答案】解:依题意为平行四边形,
∵,,AB=8,.
∴平行四边形的面积=
故选B
4.(2022北部湾)如图,在中,,将绕点A逆时针旋转,得到,连接并延长交AB于点D,当时,的长是( )
A. B. C. D.
【答案】解:,
,
是绕点A逆时针旋转得到,
,,
在中,,
,
,
,
,
,
,
的长=,
故选:B.
5.(2022贵港)如图,某数学兴趣小组测量一棵树高度,在点A处测得树顶C的仰角为,在点B处测得树顶C的仰角为,且A,B,D三点在同一直线上,若,则这棵树的高度是( )
A. B. C. D.
【答案】设CD=x,在Rt△ADC中,∠A=45°,
∴CD=AD=x,
∴BD=16-x,
在Rt△BCD中,∠B=60°,
∴,
即:,
解得,
故选A.
6.(2022安徽)已知⊙O的半径为7,AB是⊙O的弦,点P在弦AB上.若PA=4,PB=6,则OP=( )
A. B. 4 C. D. 5
【答案】解:连接,过点作于点,如图所示,
则,,
∵PA=4,PB=6,
∴,
∴,
∴,
在中,,
在中,,
故选:D
7.(2022北部湾)如图,某博物馆大厅电梯的截面图中,AB的长为12米,AB与AC的夹角为,则高BC是( )
A. 米 B. 米 C. 米 D. 米
【答案】解:在Rt△ACB中,∠ACB=90°,
∴sinα=,
∴BC= sinαAB=12 sinα(米),
故选:A.
8(2022毕节)如图,某地修建一座高的天桥,已知天桥斜面的坡度为,则斜坡的长度为( )
A. B. C. D.
【答案】∵,,
∴,
解得:,
则.
故选:A.
9.(2022贵港)如图,在网格正方形中,每个小正方形的边长为1,顶点为格点,若的顶点均是格点,则的值是( )
A. B. C. D.
【答案】解:过点C作AB的垂线交AB于一点D,如图所示,
∵每个小正方形的边长为1,
∴,
设,则,
在中,,
在中,,
∴,
解得,
∴,
故选:C.
10.(2022毕节)矩形纸片中,E为的中点,连接,将沿折叠得到,连接.若,,则的长是( )
A. 3 B. C. D.
【答案】连接BF,与AE相交于点G,如图,
∵将沿折叠得到
∴与关于AE对称
∴AE垂直平分BF,BE=FE,BG=FG=
∵点E是BC中点
∴BE=CE=DF=
∴
∵
∴
∴
∵BE=CE=DF
∴∠EBF=∠EFB,∠EFC=∠ECF
∴∠BFC=∠EFB+∠EFC=
∴
故选 D
11.(2022黔东南)如图,已知正六边形内接于半径为的,随机地往内投一粒米,落在正六边形内的概率为( )
A. B. C. D. 以上答案都不对
【答案】解:如图:连接OB,过点O作OH⊥AB于点H,
∵六边形ABCDEF是正六边形,
∴∠AOB=60°,
∵OA=OB=r,
∴△OAB是等边三角形,
∴AB=OA=OB=r,∠OAB=60°,
在中,,
∴,
∴正六边形的面积,
∵⊙O的面积=πr2,
∴米粒落在正六边形内的概率为:,
故选:A.
12.(2022黔东南)如图,、分别与相切于点、,连接并延长与交于点、,若,,则的值为( )
A. B. C. D.
【答案】解:连结OA
∵、分别与相切于点A、,
∴PA=PB,OP平分∠APB,OP⊥AP,
∴∠APD=∠BPD,
在△APD和△BPD中,
,
∴△APD≌△BPD(SAS)
∴∠ADP=∠BDP,
∵OA=OD=6,
∴∠OAD=∠ADP=∠BDP,
∴∠AOP=∠ADP+∠OAD=∠ADP+∠BDP=∠ADB,
在Rt△AOP中,OP=,
∴sin∠ADB=.
故选A.
二、填空题
13.(2022广东)sin30°的值为_____.
【答案】根据特殊角的三角函数值计算即可:sin30°=.
14.(2022玉林)计算:=_____.
【答案】原式
15.(2022甘肃武威)如图,菱形中,对角线与相交于点,若,,则的长为_________cm.
【答案】解: 菱形中,对角线,相交于点,AC=4,
,,AO=OC=AC=2
,
,
,
故答案为:8.
16.(2022安徽)如图,为了测量河对岸A,B两点间的距离,数学兴趣小组在河岸南侧选定观测点C,测得A,B均在C的北偏东37°方向上,沿正东方向行走90米至观测点D,测得A在D的正北方向,B在D的北偏西53°方向上.A,B两点间的距离为 .参考数据:,,.
【答案】解:∵A,B均在C的北偏东37°方向上,A在D的正北方向,且点D在点C的正东方,
∴是直角三角形,
∴,
∴∴∠A=90°-∠BCD=90°-53°=37°,
在Rt△ACD中,,CD=90米,
∴米,
∵,
∴
∴,
∴ 即是直角三角形,
∴,
∴米,
∴米,
答:A,B两点间的距离为96米.
17.(2022黔东南)如图,校园内有一株枯死的大树,距树12米处有一栋教学楼,为了安全,学校决定砍伐该树,站在楼顶处,测得点的仰角为45°,点的俯角为30°,小青计算后得到如下结论:①米;②米;③若直接从点处砍伐,树干倒向教学楼方向会对教学楼有影响;④若第一次在距点的8米处的树干上砍伐,不会对教学楼造成危害.其中正确的是_______.(填写序号,参考数值:,)
【答案】解:过点D的水平线交AB于E,
∵DE∥AC,EA∥CD,∠DCA=90°,
∴四边形EACD为矩形,
∴ED=AC=12米,
①AB=BE+AE=DEtan45°+DEtan30°=12+4故①正确;
②∵CD=AE=DEtan30°=4米,故②不正确;
③∵AB=18.8米>12米,∴直接从点A处砍伐,树干倒向教学楼方向会对教学楼有影响;故③正确;
④∵第一次在距点A的8米处的树干上砍伐,
∴点B到砍伐点的距离为:18.8-8=10.8<12,
∴第一次在距点A的8米处的树干上砍伐,不会对教学楼造成危害.故④正确
∴其中正确的是①③④.
故答案为①③④.
三、解答题
18.(2022北京)计算:
【答案】解:
.
19.(2022贵港)(1)计算:;
(2)解不等式组:
【答案】(1)解:原式;
(2)解不等式①,得:,
解不等式②,得:,
∴不等式组的解集为.
20.(2022黔东南)(1)计算:;
(2)先化简,再求值:,其中.
【答案】(1)
;
(2)
∵,
∴原式=.
21.(2022贺州)如图,内接于,AB是直径,延长AB到点E,使得,连接EC,且,点D是上的点,连接AD,CD,且CD交AB于点F.
(1)求证:EC是的切线;
(2)若BC平分,求AD的长.
【答案】
(1)证明:连接OC.
,
.
,
.
是的直径,
.
.
,即.
又是的半径,
是的切线.
(2)解:平分,
.
,
.
又,
.
又是的直径,
.
在中,
,
.
.
在中,,
.
,AB是的直径,
.
在中,,
.
22.(2022福建)如图,BD是矩形ABCD的对角线.
(1)求作⊙A,使得⊙A与BD相切(要求:尺规作图,不写作法,保留作图痕迹);
(2)在(1)的条件下,设BD与⊙A相切于点E,CF⊥BD,垂足为F.若直线CF与⊙A相切于点G,求的值.
【答案】
(1)解:如图所示,⊙A即为所求作:
(2)解:根据题意,作出图形如下:
设,⊙A的半径为r,
∵BD与⊙A相切于点E,CF与⊙A相切于点G,
∴AE⊥BD,AG⊥CG,即∠AEF=∠AGF=90°,
∵CF⊥BD,
∴∠EFG=90°,
∴四边形AEFG是矩形,
又,
∴四边形AEFG是正方形,
∴,
在Rt△AEB和Rt△DAB中,,,
∴,
在Rt△ABE中,,
∴,
∵四边形ABCD是矩形,
∴,AB=CD,
∴,又,
∴,
∴,
∴,
在Rt△ADE中,,即,
∴,即,
∵,
∴,即tan∠ADB的值为.
23.(2022贵港)图,在中,,点D是边的中点,点O在边上,⊙经过点C且与边相切于点E,.
(1)求证:是⊙的切线;
(2)若,,求⊙的半径及的长.
【答案】
(1)证明:如图,作,垂足为H,连接,
∵,D是的中点,
∴,
∴,
∵,
又∵,
∴∠BDC=2∠FAC,
∴,即是的平分线,
∵O在上,与相切于点E,
∴,且是的半径,
∵AC平分∠FAB,OH⊥AF,
∴是的半径,
∴是的切线.
(2)解:如(1)图,∵在中,,
∴可设,
∴,
则,
设的半径为r,则,
∵,
∴,
∴,即,则,
在Rt△AOE中,AO=5,OE=3,
由勾股定理得,又,
∴,
在中,由勾股定理得:.
24.(2022毕节)如图,在中,,D是边上一点,以为直径的与相切于点E,连接并延长交的延长线于点F.
(1)求证:;
(2)若,求直径.
【答案】(1)证明:连接OE,如下图所示:
∵AC为圆O的切线,
∴∠AEO=90°,
∵AC⊥BC,
∴∠ACB=90°,
∴OE∥BC,
∴∠F=∠DEO,
又∵OD=OE,
∴∠ODE=∠DEO,
∴∠F=∠ODE,
∴BD=BF.
(2)5
25.(2022安徽)已知AB为⊙O的直径,C为⊙O上一点,D为BA的延长线上一点,连接CD.
(1)如图1,若CO⊥AB,∠D=30°,OA=1,求AD的长;
(2)如图2,若DC与⊙O相切,E为OA上一点,且∠ACD=∠ACE,求证:CE⊥AB.
【答案】
(1)解:∵OA=1=OC,COAB,∠D=30
∴CD=2⋅ OC=2
∴
∴
(2)证明:∵DC与⊙O相切
∴OCCD
即∠ACD+∠OCA=90
∵OC= OA
∴∠OCA=∠OAC
∵∠ACD=∠ACE
∴∠OAC+∠ACE=90
∴∠AEC=90
∴CEAB
26.(2022贺州)如图,在小明家附近有一座废旧的烟囱,为了乡村振兴,美化环境,政府计划把这片区域改造为公园.现决定用爆破的方式拆除该烟囱,为确定安全范围,需测量烟囱的高度AB,因为不能直接到达烟囱底部B处,测量人员用高为的测角器在与烟囱底部B成一直线的C,D两处地面上,分别测得烟囱顶部A的仰角,同时量得CD为.问烟囱AB的高度为多少米?(精确到,参考数据:)
【答案】设,
在中,
,得.
在中,
,得.
.
解方程,得.
.
答:烟囱AB的高度为53.2米
27.(2022梧州)今年,我国“巅峰使命”2022珠峰科考团对珠穆朗玛峰进行综合科学考察,搭建了世界最高海拔的自动气象站,还通过释放气球方式进行了高空探测.某学校兴趣小组开展实践活动,通过观测数据,计算气球升空的高度AB.如图,在平面内,点B,C,D在同一直线上,垂足为点B,,, ,求AB的高度.(精确到)(参考数据:﹐﹐,)
【答案】解:设AB=xm,
在Rt△ABC中,∠ACB=52°,
∴BC=,
在Rt△ABD中,∠ADB=60°,
∴BD=,
又∵CD=200m,BC=CD+BD,
∴,
解得,
答:AB的高度约为984m.
28.(2022海南)无人机在实际生活中应用广泛.如图8所示,小明利用无人机测量大楼的高度,无人机在空中P处,测得楼楼顶D处的俯角为,测得楼楼顶A处的俯角为.已知楼和楼之间的距离为100米,楼的高度为10米,从楼的A处测得楼的D处的仰角为(点A、B、C、D、P在同一平面内).
(1)填空:___________度,___________度;
(2)求楼的高度(结果保留根号);
(3)求此时无人机距离地面的高度.
【答案】
(1)过点A作于点E,
由题意得:
∴
(2)由题意得:米,.
在中,,
∴,
∴
∴楼的高度为米.
(3)作于点G,交于点F,
则
∵,
∴.
∵,
∴.
∵,
∴.
∵,
∴.
∴.
∴.
∴(AAS).
∴.
∴
∴无人机距离地面的高度为110米.
29.(2022贵阳)交通安全心系千万家.高速公路管理局在某隧道内安装了测速仪,如图所示的是该段隧道的截面示意图.测速仪和测速仪到路面之间的距离,测速仪和之间的距离,一辆小汽车在水平的公路上由西向东匀速行驶,在测速仪处测得小汽车在隧道入口点的俯角为25°,在测速仪处测得小汽车在点的俯角为60°,小汽车在隧道中从点行驶到点所用的时间为38s(图中所有点都在同一平面内).
(1)求,两点之间的距离(结果精确到1m);
(2)若该隧道限速22m/s,判断小汽车从点行驶到点是否超速?通过计算说明理由.(参考数据:,,,,,)
【答案】
(1)
四边形是平行四边形
四边形是矩形,
在中,
在中,
答:,两点之间的距离为760米;
(2),
小汽车从点行驶到点未超速.
30.(2022甘肃武威)灞陵桥位于甘肃省渭源县城南清源河(渭河上游)上,始建于明洪武初年,因“渭水绕长安,绕灞陵,为玉石栏杆灞陵桥”之语,得名灞陵桥(图1),该桥为全国独一无二的纯木质叠梁拱桥.某综合实践研究小组开展了测量汛期某天“灞陵桥拱梁顶部到水面的距离”的实践活动,过程如下:
方案设计:如图2,点C为桥拱梁顶部(最高点),在地面上选取A,B两处分别测得∠CAF和∠CBF的度数(A,B,D,F在同一条直线上),河边D处测得地面AD到水面EG的距离DE(C,F,G在同一条直线上,DF∥EG,CG⊥AF,FG=DE).
数据收集:实地测量地面上A,B两点的距离为8.8m,地面到水面的距离DE=1.5m,∠CAF=26.6°,∠CBF=35°.
问题解决:求灞陵桥拱梁顶部C到水面的距离CG(结果保留一位小数).
参考数据:sin266°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50,sin35°≈0.57,cos35°≈0.82,tan35°≈0.70.
根据上述方案及数据,请你完成求解过程.
【答案】解:设BF=x m,
由题意得:
DE=FG=1.5m,
在Rt△CBF中,∠CBF=35°,
∴CF=BF•tan35°≈0.7x(m),
∵AB=8.8m,
∴AF=AB+BF=(8.8+x)m,
在Rt△ACF中,∠CAF=26.6°,
∴tan26.6°= ≈0.5,
∴x=22,
经检验:x=22是原方程的根,
∴CG=CF+FG=0.7x+1.5=16.9(m),
∴灞陵桥拱梁顶部C到水面的距离CG约为16.9m.
31.(2022玉林)如图,已知抛物线:与x轴交于点A,(A在B的左侧),与y轴交于点C,对称轴是直线,P是第一象限内抛物线上的任一点.
(1)求抛物线的解析式;
(2)若点D为线段的中点,则能否是等边三角形?请说明理由;
(3)过点P作x轴的垂线与线段交于点M,垂足为点H,若以P,M,C为顶点的三角形与相似,求点P的坐标.
【答案】
(1)∵的对称轴为,
∴,即b=2,
∵过B点(2,0),
∴,
∴结合b=2可得c=4,
即抛物线解析式为:;
(2)△POD不可能是等边三角形,
理由如下:
假设△POD是等边三角形,过P点作PN⊥OD于N点,如图,
∵当x=0时,,
∴C点坐标为(0,4),
∴OC=4,
∵D点是OC的中点,
∴DO=2,
∵等边△POD中,PN⊥OD,
∴DN=NO=DO=1,
∵在等边△POD中,∠NOP=60°,
∴在Rt△NOP中,NP=NO×tan∠NOP=1×tan60°=,
∴P点坐标为(,1),
经验证P点不在抛物线上,
故假设不成立,
即△POD不可能是等边三角形;
(3)∵PH⊥BO,
∴∠MHB=90°,
根据(2)中的结果可知C点坐标为(0,4),
即OC=4,
∵B点(2,0),
∴OB=2,
∴tan∠CBO=2,
分类讨论
第一种情况:△BMH∽△CMP,
∴∠MHB=∠MPC=90°,
∴,
∴即P点纵坐标等于C点纵坐标,也为4,
当y=4时,,
解得:x=1或者0,
∵P点在第一象限,
∴此时P点坐标为(1,4),
第二种情况:△BMH∽△PMC,
过P点作PG⊥y轴于点G,如图,
∵△BMH∽△PMC,
∴∠MHB=∠MCP=90°,
∴∠GCP+∠OCB=90°,
∵∠OCB+∠OBC=90°,
∴∠GCP=∠OBC,
∴tan∠GCP=tan∠OBC=2,
∵PG⊥OG,
∴在Rt△PGC中,2GC=GP,
设GP=a,
∴GC=,
∴GO=+OC=+4,
∵PG⊥OG,PH⊥OH,
∴可知四边形PGOH是矩形,
∴PH=OG=+4,
∴P点坐标为(a,+4),
∴,
解得:a=或者0,
∵P点在第一象限,
∴a=,
∴,
此时P点坐标为();
∵△BMH与△PCM中,有∠BMH=∠PMC恒相等,
∴△PCM中,当∠CPM为直角时,若∠PCM=∠BMH,则可证△PCM是等腰直角三角形,
通过相似可知△BMH也是等腰直角三角形,这与tan∠CBO=2相矛盾,故不存在当∠CPM为直角时,∠PCM=∠BMH相等的情况;
同理不存在当∠PCM为直角时,∠CPM=∠BMH相等的情况,
综上所述:P点坐标为:(1,4)或者().
32.(2022百色)已知抛物线经过A(-1,0)、B(0、3)、 C(3,0)三点,O为坐标原点,抛物线交正方形OBDC的边BD于点E,点M为射线BD上一动点,连接OM ,交BC于点F
(1)求抛物线的表达式;
(2)求证:∠BOF=∠BDF :
(3)是否存在点M使△MDF为等腰三角形?若不存在,请说明理由;若存在,求ME的长
【答案】
(1)设抛物线的表达式为,
将A(-1,0)、B(0、3)、C(3,0)代入,
得,解得,
抛物线的表达式为;
(2)四边形OBDC是正方形,
,
,
,
;
(3)存在,理由如下:
当点M在线段BD的延长线上时,此时,
,
设,
设直线OM的解析式为,
,
解得,
直线OM的解析式为,
设直线BC的解析式为,
把B(0、3)、 C(3,0)代入,得,
解得,
直线BC的解析式为,
令,解得,则,
,
四边形OBDC是正方形,
,
,
,
,
,
解得或或,
点M射线BD上一动点,
,
,
,
当时,解得或,
,
.
当点M在线段BD上时,此时,,
,
,
,
由(2)得,
四边形OBDC是正方形,
,
,
,
,
,
,
,
,
;
综上,ME的长为或.
33.(2022甘肃武威)已知正方形,为对角线上一点.
(1)【建立模型】如图1,连接,.求证:;
(2)【模型应用】如图2,是延长线上一点,,交于点.
①判断的形状并说明理由;
②若为的中点,且,求的长.
(3)【模型迁移】如图3,是延长线上一点,,交于点,.求证:.
【答案】
(1))证明:∵四边形为正方形,为对角线,
∴,.
∵,
∴,
∴.
(2)①为等腰三角形.理由如下:
∵四边形为正方形,
∴,
∴.
∵,
∴,
由(1)得,
∴,
又∵,
∴,
∴为等腰三角形.
②如图1,过点作,垂足为.
∵四边形为正方形,点为的中点,,
∴,.
由①知,
∴,
∴.
在与中,
∵,
∴,
∴,
∴.
在中,.
(3)如图2,∵,
∴.
在中,,
∴.
由(1)得,
由(2)得,
∴.
34.(2022甘肃武威)如图1,在平面直角坐标系中,抛物线与轴交于,两点,点在轴上,且,,分别是线段,上的动点(点,不与点,,重合).
(1)求此抛物线的表达式;
(2)连接并延长交抛物线于点,当轴,且时,求的长;
(3)连接.
①如图2,将沿轴翻折得到,当点在抛物线上时,求点的坐标;
②如图3,连接,当时,求的最小值.
【答案】
(1)解:∵在抛物线上,
∴,解得,
∴,即;
(2)在中,令,得,,
∴,,
∵,
∴,
∵,
∴,
,
∴,
∵轴,
∴,
∴,
∴,
∴.
(3)①连接交于点,如图1所示:
∵与关于轴对称,
∴,,
设,则,
,
∴,
∵点在抛物线上,
∴,
解得(舍去),,
∴;
②在下方作且,连接,,如图2所示:
∵,
∴,
∴,
∴当,,三点共线时,最小,最小为,
过作,垂足为,
∵,,
∴,,
∵,
,,
,
∴
,
即的最小值为.
35.(2022贵阳)小红根据学习轴对称的经验,对线段之间、角之间的关系进行了拓展探究.
如图,在中,为边上的高,,点在边上,且,点是线段上任意一点,连接,将沿翻折得.
(1)问题解决:
如图①,当,将沿翻折后,使点与点重合,则______;
(2)问题探究:
如图②,当,将沿翻折后,使,求的度数,并求出此时的最小值;
(3)拓展延伸:
当,将沿翻折后,若,且,根据题意在备用图中画出图形,并求出的值.
【答案】
(1),
是等边三角形,
四边形平行四边形,
,
,
为边上的高,
,
(2),,
是等腰直角三角形,
,
,
,
,
,
,
,
,是等腰直角三角形,为底边上的高,则
点在边上,
当时,取得最小值,最小值为;
(3)如图,连接,
,则,
设, 则,,
折叠,
,
,
,
,
,
,
,
,
,
,
在中,,
,
延长交于点,如图,
,
,
,
,
,
在中,,
,
.
相关试卷
这是一份2023年全国各地中考数学真题分类汇编之锐角三角函数及其应用(含解析),共82页。试卷主要包含了解答题,填空题等内容,欢迎下载使用。
这是一份2021年中考数学真题复习汇编:专题23锐角三角函数(共65题)(第01期)(含解析),共86页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份2021年中考数学真题复习汇编:专题23锐角三角函数(第02期)(含解析),共59页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。