年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年内蒙古北京八中学乌兰察布分校中考数学四模试卷含解析

    2022年内蒙古北京八中学乌兰察布分校中考数学四模试卷含解析第1页
    2022年内蒙古北京八中学乌兰察布分校中考数学四模试卷含解析第2页
    2022年内蒙古北京八中学乌兰察布分校中考数学四模试卷含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年内蒙古北京八中学乌兰察布分校中考数学四模试卷含解析

    展开

    这是一份2022年内蒙古北京八中学乌兰察布分校中考数学四模试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,将一张三角形纸片的一角折叠,使点落在处的处,折痕为.如果,,,那么下列式子中正确的是( )

    A. B. C. D.
    2.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与相似的是(  )

    A. B.
    C. D.
    3.cos30°的相反数是(  )
    A. B. C. D.
    4.如图,已知直线,点E,F分别在、上,,如果∠B=40°,那么( )

    A.20° B.40° C.60° D.80°
    5.点A 为数轴上表示-2的动点,当点A 沿数轴移动4个单位长到B时,点B所表示的实数是( )
    A.1 B.-6 C.2或-6 D.不同于以上答案
    6.一个几何体的俯视图如图所示,其中的数字表示该位置上小正方体的个数,那么这个几何体的主视图是(  )

    A. B. C. D.
    7.已知2是关于x的方程x2-2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为(  )
    A.10 B.14 C.10或14 D.8或10
    8.下图是由八个相同的小正方体组合而成的几何体,其左视图是( )

    A. B. C. D.
    9.如图是由5个大小相同的正方体组成的几何体,则该几何体的左视图是(  )

    A. B.
    C. D.
    10.下面的统计图反映了我市2011﹣2016年气温变化情况,下列说法不合理的是(  )

    A.2011﹣2014年最高温度呈上升趋势
    B.2014年出现了这6年的最高温度
    C.2011﹣2015年的温差成下降趋势
    D.2016年的温差最大
    11.若矩形的长和宽是方程x2-7x+12=0的两根,则矩形的对角线长度为( )
    A.5 B.7 C.8 D.10
    12.估计的运算结果应在哪个两个连续自然数之间(  )
    A.﹣2和﹣1 B.﹣3和﹣2 C.﹣4和﹣3 D.﹣5和﹣4
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.点A(x1,y1)、B(x1,y1)在二次函数y=x1﹣4x﹣1的图象上,若当1<x1<1,3<x1<4时,则y1与y1的大小关系是y1_____y1.(用“>”、“<”、“=”填空)
    14.如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5cm, 且tan∠EFC=,那么矩形ABCD的周长_____________cm.

    15.如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC,若DB=4,AB=6,BE=3,则EC的长是_____.

    16.分解因式2x2﹣4x+2的最终结果是_____.
    17.如图,在△ABC中,AB=AC,∠A=36°, BD平分∠ABC交AC于点D,DE平分∠BDC交BC于点E,则= .
    18.在平面直角坐标系内,一次函数与的图像之间的距离为3,则b的值为__________.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)某校航模小组借助无人飞机航拍校园,如图,无人飞机从A处水平飞行至B处需10秒,A在地面C的北偏东12°方向,B在地面C的北偏东57°方向.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果精确到0.1米,参考数据:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)

    20.(6分)已知:如图,梯形ABCD,DC∥AB,对角线AC平分∠BCD,点E在边CB的延长线上,EA⊥AC,垂足为点A.
    (1)求证:B是EC的中点;
    (2)分别延长CD、EA相交于点F,若AC2=DC•EC,求证:AD:AF=AC:FC.

    21.(6分)如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD于点E,DA平分∠BDE.

    (1)求证:AE是⊙O的切线;
    (2)如果AB=4,AE=2,求⊙O的半径.
    22.(8分)如图,图①是某电脑液晶显示器的侧面图,显示屏AO可以绕点O旋转一定的角度.研究表明:显示屏顶端A与底座B的连线AB与水平线BC垂直时(如图②),人观看屏幕最舒适.此时测得∠BAO=15°,AO=30 cm,∠OBC=45°,求AB的长度.(结果精确到0.1 cm)

    23.(8分)如图,已知直线AB经过点(0,4),与抛物线y=x2交于A,B两点,其中点A的横坐标是.求这条直线的函数关系式及点B的坐标.在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在请说明理由.过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?

    24.(10分)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,每件商品每降价1元,商场平均每天可多售出2件.若某天该商品每件降价3元,当天可获利多少元?设每件商品降价x元,则商场日销售量增加____件,每件商品,盈利______元(用含x的代数式表示);在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?
    25.(10分)先化简,再求值:(x﹣3)÷(﹣1),其中x=﹣1.
    26.(12分)某地铁站口的垂直截图如图所示,已知∠A=30°,∠ABC=75°,AB=BC=4米,求C点到地面AD的距离(结果保留根号).

    27.(12分)如图1在正方形ABCD的外侧作两个等边三角形ADE和DCF,连接AF,BE.
    请判断:AF与BE的数量关系是 ,位置关系 ;如图2,若将条件“两个等边三角形ADE和DCF”变为“两个等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)问中的结论是否仍然成立?请作出判断并给予证明;若三角形ADE和DCF为一般三角形,且AE=DF,ED=FC,第(1)问中的结论都能成立吗?请直接写出你的判断.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    分析:根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.
    详解:

    由折叠得:∠A=∠A',
    ∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',
    ∵∠A=α,∠CEA′=β,∠BDA'=γ,
    ∴∠BDA'=γ=α+α+β=2α+β,
    故选A.
    点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.
    2、B
    【解析】
    根据相似三角形的判定方法一一判断即可.
    【详解】
    解:因为中有一个角是135°,选项中,有135°角的三角形只有B,且满足两边成比例夹角相等,
    故选:B.
    【点睛】
    本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.
    3、C
    【解析】
    先将特殊角的三角函数值代入求解,再求出其相反数.
    【详解】
    ∵cos30°=,
    ∴cos30°的相反数是,
    故选C.
    【点睛】
    本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值以及相反数的概念.
    4、C
    【解析】
    根据平行线的性质,可得的度数,再根据以及平行线的性质,即可得出的度数.
    【详解】
    ∵,,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴,
    故选C.
    【点睛】
    本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同旁内角互补,且内错角相等.
    5、C
    【解析】
    解:∵点A为数轴上的表示-1的动点,①当点A沿数轴向左移动4个单位长度时,点B所表示的有理数为-1-4=-6;
    ②当点A沿数轴向右移动4个单位长度时,点B所表示的有理数为-1+4=1.
    故选C.
    点睛:注意数的大小变化和平移之间的规律:左减右加.与点A的距离为4个单位长度的点B有两个,一个向左,一个向右.
    6、A
    【解析】
    一一对应即可.
    【详解】
    最左边有一个,中间有两个,最右边有三个,所以选A.
    【点睛】
    理解立体几何的概念是解题的关键.
    7、B
    【解析】
    试题分析: ∵2是关于x的方程x2﹣2mx+3m=0的一个根,
    ∴22﹣4m+3m=0,m=4,
    ∴x2﹣8x+12=0,
    解得x1=2,x2=1.
    ①当1是腰时,2是底边,此时周长=1+1+2=2;
    ②当1是底边时,2是腰,2+2<1,不能构成三角形.
    所以它的周长是2.
    考点:解一元二次方程-因式分解法;一元二次方程的解;三角形三边关系;等腰三角形的性质.
    8、B
    【解析】
    解:找到从左面看所得到的图形,从左面可看到从左往右三列小正方形的个数为:2,3,1.
    故选B.
    9、B
    【解析】
    找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.
    【详解】
    解:从左面看易得下面一层有2个正方形,上面一层左边有1个正方形.
    故选:B.
    【点睛】
    本题考查了三视图的知识,左视图是从物体的左面看得到的视图.
    10、C
    【解析】
    利用折线统计图结合相应数据,分别分析得出符合题意的答案.
    【详解】
    A选项:年最高温度呈上升趋势,正确;
    B选项:2014年出现了这6年的最高温度,正确;
    C选项:年的温差成下降趋势,错误;
    D选项:2016年的温差最大,正确;
    故选C.
    【点睛】
    考查了折线统计图,利用折线统计图获取正确信息是解题关键.
    11、A
    【解析】
    解:设矩形的长和宽分别为a、b,则a+b=7,ab=12,所以矩形的对角线长====1.故选A.
    12、C
    【解析】
    根据二次根式的性质,可化简得=﹣3=﹣2,然后根据二次根式的估算,由3<2<4可知﹣2在﹣4和﹣3之间.
    故选C.
    点睛:此题主要考查了二次根式的化简和估算,关键是根据二次根式的性质化简计算,再二次根式的估算方法求解.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、<
    【解析】
    先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.
    【详解】
    由二次函数y=x1-4x-1=(x-1)1-5可知,其图象开口向上,且对称轴为x=1,
    ∵1<x1<1,3<x1<4,
    ∴A点横坐标离对称轴的距离小于B点横坐标离对称轴的距离,
    ∴y1<y1.
    故答案为<.
    14、36.
    【解析】
    试题分析:∵△AFE和△ADE关于AE对称,∴∠AFE=∠D=90°,AF=AD,EF=DE.∵tan∠EFC==,∴可设EC=3x,CF=4x,那么EF=5x,∴DE=EF=5x.∴DC=DE+CE=3x+5x=8x.∴AB=DC=8x.
    ∵∠EFC+∠AFB=90°, ∠BAF+∠AFB=90°,∴∠EFC=∠BAF.∴tan∠BAF=tan∠EFC=,∴=.∴AB=8x,∴BF=6x.∴BC=BF+CF=10x.∴AD=10x.在Rt△ADE中,由勾股定理,得AD2+DE2=AE2.∴(10x)2+(5x)2=(5)2.解得x=1.∴AB=8x=8,AD=10x=10.∴矩形ABCD的周长=8×2+10×2=36.
    考点:折叠的性质;矩形的性质;锐角三角函数;勾股定理.
    15、
    【解析】
    由△ABC中,点D、E分别在边AB、BC上,DE∥AC,根据平行线分线段成比例定理,可得DB:AB=BE:BC,又由DB=4,AB=6,BE=3,即可求得答案.
    【详解】
    解:∵DE∥AC,
    ∴DB:AB=BE:BC,
    ∵DB=4,AB=6,BE=3,
    ∴4:6=3:BC,
    解得:BC=,
    ∴EC=BC﹣BE=﹣3=.
    故答案为.
    【点睛】
    考查了平行线分线段成比例定理,解题时注意:平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.
    16、1(x﹣1)1
    【解析】
    先提取公因式1,再根据完全平方公式进行二次分解.
    【详解】
    解:1x1-4x+1,
    =1(x1-1x+1),
    =1(x-1)1.
    故答案为:1(x﹣1)1
    【点睛】
    本题考查提公因式法与公式法的综合运用,难度不大.
    17、
    【解析】
    试题分析:因为△ABC中,AB=AC,∠A=36°
    所以∠ABC=∠ACB=72°
    因为BD平分∠ABC交AC于点D
    所以∠ABD=∠CBD=36°=∠A
    因为DE平分∠BDC交BC于点E
    所以∠CDE=∠BDE=36°=∠A
    所以AD=BD=BC
    根据黄金三角形的性质知,
    ,,

    所以
    考点:黄金三角形
    点评:黄金三角形是一个等腰三角形,它的顶角为36°,每个底角为72°.它的腰与它的底成黄金比.当底角被平分时,角平分线分对边也成黄金比,
    18、或
    【解析】
    设直线y=2x-1与x轴交点为C,与y轴交点为A,过点A作AD⊥直线y=2x-b于点D,根据直线的解析式找出点A、B、C的坐标,通过同角的余角相等可得出∠BAD=∠ACO,再利用∠ACO的余弦值即可求出直线AB的长度,从而得出关于b的含绝对值符号的方程,解方程即可得出结论.
    【详解】
    解:设直线y=2x-1与x轴交点为C,与y轴交点为A,过点A作AD⊥直线y=2x-b于点D,如图所示.

    ∵直线y=2x-1与x轴交点为C,与y轴交点为A,
    ∴点A(0,-1),点C(,0),
    ∴OA=1,OC=,AC==,
    ∴cos∠ACO==.
    ∵∠BAD与∠CAO互余,∠ACO与∠CAO互余,
    ∴∠BAD=∠ACO.
    ∵AD=3,cos∠BAD==,
    ∴AB=3.
    ∵直线y=2x-b与y轴的交点为B(0,-b),
    ∴AB=|-b-(-1)|=3,
    解得:b=1-3或b=1+3.
    故答案为1+3或1-3.
    【点睛】
    本题考查两条直线相交与平行的问题,利用平行线间的距离转化成点到直线的距离得出关于b的方程是解题关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、29.8米.
    【解析】
    作,,根据题意确定出与的度数,利用锐角三角函数定义求出与的长度,由求出的长度,即可求出的长度.
    【详解】
    解:如图,作,,
    由题意得:


    米,
    米,
    则米,
    答:这架无人飞机的飞行高度为米.

    【点睛】
    此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.
    20、(1)详见解析;(2)详见解析.
    【解析】
    (1)根据平行线的性质结合角平分线的性质可得出∠BCA=∠BAC,进而可得出BA=BC,根据等角的余角相等结合等角对等边,即可得出AB=BE,进而可得出BE=BA=BC,此题得证;
    (2)根据AC2=DC•EC结合∠ACD=∠ECA可得出△ACD∽△ECA,根据相似三角形的性质可得出∠ADC=∠EAC=90°,进而可得出∠FDA=∠FAC=90°,结合∠AFD=∠CFA可得出△AFD∽△CFA,再利用相似三角形的性质可证出AD:AF=AC:FC.
    【详解】
    (1)∵DC∥AB,∴∠DCA=∠BAC.
    ∵AC平分∠BCD,∴∠BCA=∠BAC=∠DCA,∴BA=BC.
    ∵∠BAC+∠BAE=90°,∠ACB+∠E =90°,∴∠BAE=∠E,∴AB=BE,∴BE=BA=BC,∴B是EC的中点;
    (2)∵AC2=DC•EC,∴.
    ∵∠ACD=∠ECA,∴△ACD∽△ECA,∴∠ADC=∠EAC=90°,∴∠FDA=∠FAC=90°.
    又∵∠AFD=∠CFA,∴△AFD∽△CFA,∴AD:AF=AC:FC.

    【点睛】
    本题考查了相似三角形的判定与性质、角平分线的性质以及等腰三角形的性质,解题的关键是:(1)利用等角对等边找出BA=BC、BE=BA;(2)利用相似三角形的判定定理找出△AFD∽△CFA.
    21、(1)见解析;(1)⊙O半径为
    【解析】
    (1)连接OA,利用已知首先得出OA∥DE,进而证明OA⊥AE就能得到AE是⊙O的切线;
    (1)通过证明△BAD∽△AED,再利用对应边成比例关系从而求出⊙O半径的长.
    【详解】
    解:(1)连接OA,

    ∵OA=OD,
    ∴∠1=∠1.
    ∵DA平分∠BDE,
    ∴∠1=∠2.
    ∴∠1=∠2.∴OA∥DE.
    ∴∠OAE=∠4,
    ∵AE⊥CD,∴∠4=90°.
    ∴∠OAE=90°,即OA⊥AE.
    又∵点A在⊙O上,
    ∴AE是⊙O的切线.
    (1)∵BD是⊙O的直径,
    ∴∠BAD=90°.
    ∵∠3=90°,∴∠BAD=∠3.
    又∵∠1=∠2,∴△BAD∽△AED.
    ∴,
    ∵BA=4,AE=1,∴BD=1AD.
    在Rt△BAD中,根据勾股定理,
    得BD=.
    ∴⊙O半径为.
    22、37
    【解析】
    试题分析:过点作交于点.构造直角三角形,在中,计算出,在中, 计算出.
    试题解析:如图所示:过点作交于点.

    在中,



    又∵在中,


    答:的长度为
    23、(1)直线y=x+4,点B的坐标为(8,16);(2)点C的坐标为(﹣,0),(0,0),(6,0),(32,0);(3)当M的横坐标为6时,MN+3PM的长度的最大值是1.
    【解析】
    (1)首先求得点A的坐标,然后利用待定系数法确定直线的解析式,从而求得直线与抛物线的交点坐标;
    (2)分若∠BAC=90°,则AB2+AC2=BC2;若∠ACB=90°,则AB2=AC2+BC2;若∠ABC=90°,则AB2+BC2=AC2三种情况求得m的值,从而确定点C的坐标;
    (3)设M(a,a2),得MN=a2+1,然后根据点P与点M纵坐标相同得到x=,从而得到MN+3PM=﹣a2+3a+9,确定二次函数的最值即可.
    【详解】
    (1)∵点A是直线与抛物线的交点,且横坐标为-2,
    ,A点的坐标为(-2,1),
    设直线的函数关系式为y=kx+b,
    将(0,4),(-2,1)代入得
    解得
    ∴y=x+4
    ∵直线与抛物线相交,

    解得:x=-2或x=8,
    当x=8时,y=16,
    ∴点B的坐标为(8,16);
    (2)存在.
    ∵由A(-2,1),B(8,16)可求得AB2==325
    .设点C(m,0),
    同理可得AC2=(m+2)2+12=m2+4m+5,
    BC2=(m-8)2+162=m2-16m+320,
    ①若∠BAC=90°,则AB2+AC2=BC2,即325+m2+4m+5=m2-16m+320,解得m=-;
    ②若∠ACB=90°,则AB2=AC2+BC2,即325=m2+4m+5+m2-16m+320,解得m=0或m=6;
    ③若∠ABC=90°,则AB2+BC2=AC2,即m2+4m+5=m2-16m+320+325,解得m=32,
    ∴点C的坐标为(-,0),(0,0),(6,0),(32,0) 
    (3)设M(a,a2),
    则MN=,
    又∵点P与点M纵坐标相同,
    ∴x+4=a2,
    ∴x= ,
    ∴点P的横坐标为,
    ∴MP=a-,
    ∴MN+3PM=a2+1+3(a-)=-a2+3a+9=- (a-6)2+1,
    ∵-2≤6≤8,
    ∴当a=6时,取最大值1,
    ∴当M的横坐标为6时,MN+3PM的长度的最大值是1
    24、(1)若某天该商品每件降价3元,当天可获利1692元;
    (2)2x;50﹣x.
    (3)每件商品降价1元时,商场日盈利可达到2000元.
    【解析】
    (1)根据“盈利=单件利润×销售数量”即可得出结论;
    (2)根据“每件商品每降价1元,商场平均每天可多售出2件”结合每件商品降价x元,即可找出日销售量增加的件数,再根据原来没见盈利50元,即可得出降价后的每件盈利额;
    (3)根据“盈利=单件利润×销售数量”即可列出关于x的一元二次方程,解之即可得出x的值,再根据尽快减少库存即可确定x的值.
    【详解】
    (1)当天盈利:(50-3)×(30+2×3)=1692(元).
    答:若某天该商品每件降价3元,当天可获利1692元.
    (2)∵每件商品每降价1元,商场平均每天可多售出2件,
    ∴设每件商品降价x元,则商场日销售量增加2x件,每件商品,盈利(50-x)元.
    故答案为2x;50-x.
    (3)根据题意,得:(50-x)×(30+2x)=2000,
    整理,得:x2-35x+10=0,
    解得:x1=10,x2=1,
    ∵商城要尽快减少库存,
    ∴x=1.
    答:每件商品降价1元时,商场日盈利可达到2000元.
    【点睛】
    考查了一元二次方程的应用,解题的关键是根据题意找出数量关系列出一元二次方程(或算式).
    25、﹣x+1,2.
    【解析】
    先将括号内的分式通分,再将乘方转化为乘法,约分,最后代入数值求解即可.
    【详解】
    原式=(x﹣2)÷(﹣)
    =(x﹣2)÷
    =(x﹣2)•
    =﹣x+1,
    当x=﹣1时,原式=1+1=2.
    【点睛】
    本题考查了整式的混合运算-化简求值,解题的关键是熟练的掌握整式的混合运算法则.
    26、C点到地面AD的距离为:(2+2)m.
    【解析】
    直接构造直角三角形,再利用锐角三角函数关系得出BE,CF的长,进而得出答案.
    【详解】
    过点B作BE⊥AD于E,作BF∥AD,过C作CF⊥BF于F,

    在Rt△ABE中,∵∠A=30°,AB=4m,
    ∴BE=2m,
    由题意可得:BF∥AD,
    则∠FBA=∠A=30°,
    在Rt△CBF中,
    ∵∠ABC=75°,
    ∴∠CBF=45°,
    ∵BC=4m,
    ∴CF=sin45°•BC=
    ∴C点到地面AD的距离为:
    【点睛】
    考查解直角三角形,熟练掌握锐角三角函数是解题的关键.
    27、(1)AF=BE,AF⊥BE;(2)证明见解析;(3)结论仍然成立
    【解析】
    试题分析:(1)根据正方形和等边三角形可证明△ABE≌△DAF,然后可得BE=AF,∠ABE=∠DAF,进而通过直角可证得BE⊥AF;
    (2)类似(1)的证法,证明△ABE≌△DAF,然后可得AF=BE,AF⊥BE,因此结论还成立;
    (3)类似(1)(2)证法,先证△AED≌△DFC,然后再证△ABE≌△DAF,因此可得证结论.
    试题解析:解:(1)AF=BE,AF⊥BE.
    (2)结论成立.

    证明:∵四边形ABCD是正方形,
    ∴BA="AD" =DC,∠BAD =∠ADC = 90°.
    在△EAD和△FDC中,

    ∴△EAD≌△FDC.
    ∴∠EAD=∠FDC.
    ∴∠EAD+∠DAB=∠FDC+∠CDA,
    即∠BAE=∠ADF.
    在△BAE和△ADF中,

    ∴△BAE≌△ADF.
    ∴BE = AF,∠ABE=∠DAF.
    ∵∠DAF +∠BAF=90°,
    ∴∠ABE +∠BAF=90°,
    ∴AF⊥BE.
    (3)结论都能成立.
    考点:正方形,等边三角形,三角形全等

    相关试卷

    蒙古北京八中学乌兰察布分校2021-2022学年中考数学模拟预测试卷含解析:

    这是一份蒙古北京八中学乌兰察布分校2021-2022学年中考数学模拟预测试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,点A,反比例函数是y=的图象在等内容,欢迎下载使用。

    2022年内蒙古翁牛特旗中考数学四模试卷含解析:

    这是一份2022年内蒙古翁牛特旗中考数学四模试卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,《九章算术》中有这样一个问题,若a与﹣3互为倒数,则a=,下列各组数中,互为相反数的是等内容,欢迎下载使用。

    2022届内蒙古乌兰察布市北京八中学分校中考数学四模试卷含解析:

    这是一份2022届内蒙古乌兰察布市北京八中学分校中考数学四模试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列事件中为必然事件的是,有一组数据等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map