终身会员
搜索
    上传资料 赚现金
    2022年宁波市北仑区初中数学毕业考试模拟冲刺卷含解析
    立即下载
    加入资料篮
    2022年宁波市北仑区初中数学毕业考试模拟冲刺卷含解析01
    2022年宁波市北仑区初中数学毕业考试模拟冲刺卷含解析02
    2022年宁波市北仑区初中数学毕业考试模拟冲刺卷含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年宁波市北仑区初中数学毕业考试模拟冲刺卷含解析

    展开
    这是一份2022年宁波市北仑区初中数学毕业考试模拟冲刺卷含解析,共24页。试卷主要包含了下列等式正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,是反比例函数图象,阴影部分表示它与横纵坐标轴正半轴围成的区域,在该区域内不包括边界的整数点个数是k,则抛物线向上平移k个单位后形成的图象是  

    A. B.
    C. D.
    2.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是(  )

    A. B. C. D.
    3.如图是测量一物体体积的过程:
    步骤一:将180 mL的水装进一个容量为300 mL的杯子中;
    步骤二:将三个相同的玻璃球放入水中,结果水没有满;
    步骤三:再将一个同样的玻璃球放入水中,结果水满溢出.

    根据以上过程,推测一个玻璃球的体积在下列哪一范围内?(1 mL=1 cm3)(  ).
    A.10 cm3以上,20 cm3以下 B.20 cm3以上,30 cm3以下
    C.30 cm3以上,40 cm3以下 D.40 cm3以上,50 cm3以下
    4.如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是( )

    A.(―1,2)
    B.(―9,18)
    C.(―9,18)或(9,―18)
    D.(―1,2)或(1,―2)
    5.下列选项中,可以用来证明命题“若a2>b2,则a>b“是假命题的反例是( )
    A.a=﹣2,b=1 B.a=3,b=﹣2 C.a=0,b=1 D.a=2,b=1
    6.实数a,b,c在数轴上对应点的位置大致如图所示,O为原点,则下列关系式正确的是(  )

    A.a﹣c<b﹣c B.|a﹣b|=a﹣b C.ac>bc D.﹣b<﹣c
    7.下列等式正确的是(  )
    A.x3﹣x2=x B.a3÷a3=a
    C. D.(﹣7)4÷(﹣7)2=﹣72
    8.在同一直角坐标系中,函数y=kx-k与(k≠0)的图象大致是 ( )
    A. B.
    C. D.
    9.已知一组数据,,,,的平均数是2,方差是,那么另一组数据,,,,,的平均数和方差分别是  .
    A. B. C. D.
    10.如图,已知A、B两点的坐标分别为(-2,0)、(0,1),⊙C 的圆心坐标为(0,-1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是

    A.3 B. C. D.4
    二、填空题(共7小题,每小题3分,满分21分)
    11.分解因式:x2y﹣2xy2+y3=_____.
    12.在△ABC中,∠C=30°,∠A﹣∠B=30°,则∠A=_____.
    13.如图是一组有规律的图案,图案1是由4个组成的,图案2是由7个组成的,那么图案5是由 个组成的,依此,第n个图案是由 个组成的.

    14.在□ABCD中,按以下步骤作图:①以点B为圆心,以BA长为半径作弧,交BC于点E;②分别以A,E为圆心,大于AE的长为半径作弧,两弧交于点F;③连接BF,延长线交AD于点G. 若∠AGB=30°,则∠C=_______°.

    15.如图,边长为的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为
    16.一副直角三角板叠放如图所示,现将含45°角的三角板固定不动,把含30°角的三角板绕直角顶点沿逆时针方向匀速旋转一周,第一秒旋转5°,第二秒旋转10°,第三秒旋转5°,第四秒旋转10°,…按此规律,当两块三角板的斜边平行时,则三角板旋转运动的时间为_____.

    17.如图,若正五边形和正六边形有一边重合,则∠BAC=_____.

    三、解答题(共7小题,满分69分)
    18.(10分)一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设慢车离乙地的距离为y1(km),快车离乙地的距离为y2(km),慢车行驶时间为x(h),两车之间的距离为S(km),y1,y2与x的函数关系图象如图①所示,S与x的函数关系图象如图②所示:

    (1)图中的a=______,b=______.
    (2)求快车在行驶的过程中S关于x的函数关系式.
    (3)直接写出两车出发多长时间相距200km?
    19.(5分)如图1,矩形ABCD中,E是AD的中点,以点E直角顶点的直角三角形EFG的两边EF,EG分别过点B,C,∠F=30°.
    (1)求证:BE=CE
    (2)将△EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF,EG分别与AB,BC相交于点M,N.(如图2)
    ①求证:△BEM≌△CEN;
    ②若AB=2,求△BMN面积的最大值;
    ③当旋转停止时,点B恰好在FG上(如图3),求sin∠EBG的值.

    20.(8分)如图,抛物线y=-x2+bx+c的顶点为C,对称轴为直线x=1,且经过点A(3,-1),与y轴交于点B.
    求抛物线的解析式;判断△ABC的形状,并说明理由;经过点A的直线交抛物线于点P,交x轴于点Q,若S△OPA=2S△OQA,试求出点P的坐标.
    21.(10分)如图,在平行四边形ABCD中,AD>AB.

    (1)作出∠ABC的平分线(尺规作图,保留作图痕迹,不写作法);
    (2)若(1)中所作的角平分线交AD于点E,AF⊥BE,垂足为点O,交BC于点F,连接EF.求证:四边形ABFE为菱形.
    22.(10分)先化简,再求值:(x+1y)1﹣(1y+x)(1y﹣x)﹣1x1,其中x=+1,y=﹣1.
    23.(12分)从化市某中学初三(1)班数学兴趣小组为了解全校800名初三学生的“初中毕业选择升学和就业”情况,特对本班50名同学们进行调查,根据全班同学提出的3个主要观点:A高中,B中技,C就业,进行了调查(要求每位同学只选自己最认可的一项观点);并制成了扇形统计图(如图).请回答以下问题:
    (1)该班学生选择   观点的人数最多,共有   人,在扇形统计图中,该观点所在扇形区域的圆心角是   度.
    (2)利用样本估计该校初三学生选择“中技”观点的人数.
    (3)已知该班只有2位女同学选择“就业”观点,如果班主任从该观点中,随机选取2位同学进行调查,那么恰好选到这2位女同学的概率是多少?(用树形图或列表法分析解答).

    24.(14分)为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元.
    (1)甲、乙两种套房每套提升费用各多少万元?
    (2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?
    (3)在(2)的条件下,根据市场调查,每套乙种套房的提升费用不会改变,每套甲种套房提升费用将会提高a万元(a>0),市政府如何确定方案才能使费用最少?



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    依据反比例函数的图象与性质,即可得到整数点个数是5个,进而得到抛物线向上平移5个单位后形成的图象.
    【详解】
    解:如图,反比例函数图象与坐标轴围成的区域内不包括边界的整数点个数是5个,即,

    抛物线向上平移5个单位后可得:,即,
    形成的图象是A选项.
    故选A.
    【点睛】
    本题考查反比例函数图象上点的坐标特征、反比例函数的图象、二次函数的性质与图象,解答本题的关键是明确题意,求出相应的k的值,利用二次函数图象的平移规律进行解答.
    2、B
    【解析】
    试题解析:如图所示:

    设BC=x,
    ∵在Rt△ABC中,∠B=90°,∠A=30°,
    ∴AC=2BC=2x,AB=BC=x,
    根据题意得:AD=BC=x,AE=DE=AB=x,
    作EM⊥AD于M,则AM=AD=x,
    在Rt△AEM中,cos∠EAD=;
    故选B.
    【点睛】本题考查了解直角三角形、含30°角的直角三角形的性质、等腰三角形的性质、三角函数等,通过作辅助线求出AM是解决问题的关键.
    3、C
    【解析】
    分析:本题可设玻璃球的体积为x,再根据题意列出不等式组求得解集得出答案即可.
    详解:设玻璃球的体积为x,则有
    解得30<x<1.
    故一颗玻璃球的体积在30cm3以上,1cm3以下.
    故选C.
    点睛:此题考查一元一次不等式组的运用,解此类题目常常要根据题意列出不等式组,再化简计算得出x的取值范围.
    4、D
    【解析】
    试题分析:方法一:∵△ABO和△A′B′O关于原点位似,∴△ ABO∽△A′B′O且= .∴==.∴A′E=AD=2,OE=OD=1.∴A′(-1,2).同理可得A′′(1,―2).
    方法二:∵点A(―3,6)且相似比为,∴点A的对应点A′的坐标是(―3×,6×),∴A′(-1,2).
    ∵点A′′和点A′(-1,2)关于原点O对称,∴A′′(1,―2).
    故答案选D.

    考点:位似变换.
    5、A
    【解析】
    根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.由此即可解答.
    【详解】
    ∵当a=﹣2,b=1时,(﹣2)2>12,但是﹣2<1,
    ∴a=﹣2,b=1是假命题的反例.
    故选A.
    【点睛】
    本题考查了命题与定理,要说明数学命题的错误,只需举出一个反例即可,这是数学中常用的一种方法.
    6、A
    【解析】
    根据数轴上点的位置确定出a,b,c的范围,判断即可.
    【详解】
    由数轴上点的位置得:a<b<0<c,
    ∴ac<bc,|a﹣b|=b﹣a,﹣b>﹣c,a﹣c<b﹣c.
    故选A.
    【点睛】
    考查了实数与数轴,弄清数轴上点表示的数是解本题的关键.
    7、C
    【解析】
    直接利用同底数幂的乘除运算法则以及有理数的乘方运算法则分别计算得出答案.
    【详解】
    解:A、x3-x2,无法计算,故此选项错误;
    B、a3÷a3=1,故此选项错误;
    C、(-2)2÷(-2)3=-,正确;
    D、(-7)4÷(-7)2=72,故此选项错误;
    故选C.
    【点睛】
    此题主要考查了同底数幂的乘除运算以及有理数的乘方运算,正确掌握相关运算法则是解题关键.
    8、D
    【解析】
    根据k值的正负性分别判断一次函数y=kx-k与反比例函数(k≠0)所经过象限,即可得出答案.
    【详解】
    解:有两种情况,
    当k>0是时,一次函数y=kx-k的图象经过一、三、四象限,反比例函数(k≠0)的图象经过一、三象限;
    当k<0时,一次函数y=kx-k的图象经过一、二、四象限,反比例函数(k≠0)的图象经过二、四象限;
    根据选项可知,D选项满足条件.
    故选D.
    【点睛】
    本题考查了一次函数、反比例函数的图象.正确这两种图象所经过的象限是解题的关键.
    9、D
    【解析】
    根据数据的变化和其平均数及方差的变化规律求得新数据的平均数及方差即可.
    【详解】
    解:∵数据x1,x2,x3,x4,x5的平均数是2,
    ∴数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数是3×2-2=4;
    ∵数据x1,x2,x3,x4,x5的方差为,
    ∴数据3x1,3x2,3x3,3x4,3x5的方差是×32=3,
    ∴数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是3,
    故选D.
    【点睛】
    本题考查了方差的知识,说明了当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.
    10、B
    【解析】
    试题分析:解:当射线AD与⊙C相切时,△ABE面积的最大.
    连接AC,
    ∵∠AOC=∠ADC=90°,AC=AC,OC=CD,
    ∴Rt△AOC≌Rt△ADC,
    ∴AD=AO=2,
    连接CD,设EF=x,
    ∴DE2=EF•OE,
    ∵CF=1,
    ∴DE=,
    ∴△CDE∽△AOE,
    ∴=,
    即=,
    解得x=,
    S△ABE===.
    故选B.

    考点:1.切线的性质;2.三角形的面积.

    二、填空题(共7小题,每小题3分,满分21分)
    11、y(x﹣y)2
    【解析】
    原式提取公因式,再利用完全平方公式分解即可
    【详解】
    x2y﹣2xy2+y3=y(x2-2xy+y2)=y(x-y)2.
    【点睛】
    本题考查了提公因式法与公式法的综合运用,熟练掌握运算法则是解本题的关键.
    12、90°.
    【解析】
    根据三角形内角和得到∠A+∠B+∠C=180°,而∠C=30°,则可计算出∠A+∠B+=150°,由于∠A﹣∠B=30°,把两式相加消去∠B即可求得∠A的度数.
    【详解】
    解:∵∠A+∠B+∠C=180°,∠C=30°,
    ∴∠A+∠B+=150°,
    ∵∠A﹣∠B=30°,
    ∴2∠A=180°,
    ∴∠A=90°.
    故答案为:90°.
    【点睛】
    本题考查了三角形内角和定理:三角形内角和是180°.主要用在求三角形中角的度数.①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.
    13、16,3n+1.
    【解析】
    观察不难发现,后一个图案比前一个图案多3个基础图形,然后写出第5个和第n个图案的基础图形的个数即可.
    【详解】
    由图可得,第1个图案基础图形的个数为4,
    第2个图案基础图形的个数为7,7=4+3,
    第3个图案基础图形的个数为10,10=4+3×2,
    …,
    第5个图案基础图形的个数为4+3(5−1)=16,
    第n个图案基础图形的个数为4+3(n−1)=3n+1.
    故答案为16,3n+1.
    【点睛】
    本题考查了规律型:图形的变化类,根据图像发现规律是解题的关键.
    14、120
    【解析】
    首先证明∠ABG=∠GBE=∠AGB=30°,可得∠ABC=60°,再利用平行四边形的邻角互补即可解决问题.
    【详解】
    由题意得:∠GBA=∠GBE,
    ∵AD∥BC,
    ∴∠AGB=∠GBE=30°,
    ∴∠ABC=60°,
    ∵AB∥CD,
    ∴∠C=180°-∠ABC=120°,
    故答案为:120.
    【点睛】
    本题考查基本作图、平行四边形的性质等知识,解题的关键是熟练掌握基本知识
    15、
    【解析】
    因为大正方形边长为,小正方形边长为m,所以剩余的两个直角梯形的上底为m,下底为,所以矩形的另一边为梯形上、下底的和:+m=.
    16、14s或38s.
    【解析】
    试题解析:分两种情况进行讨论:
    如图:




    旋转的度数为:
    每两秒旋转


    如图:





    旋转的度数为:
    每两秒旋转


    故答案为14s或38s.
    17、132°
    【解析】
    解:∵正五边形的内角=180°-360°÷5=108°,正六边形的内角=180°-360°÷6=120°,∴∠BAC=360°-108°-120°=132°.故答案为132°.

    三、解答题(共7小题,满分69分)
    18、(1)a=6, b=;(2) ;(3)或5h
    【解析】
    (1)根据S与x之间的函数关系式可以得到当位于C点时,两人之间的距离增加变缓,此时快车到站,指出此时a的值即可,求得a的值后求出两车相遇时的时间即为b的值;
    (2)根据函数的图像可以得到A、B、C、D的点的坐标,利用待定系数法求得函数的解析式即可.
    (3)分两车相遇前和两车相遇后两种情况讨论,当相遇前令s=200即可求得x的值.
    【详解】
    解:(1)由s与x之间的函数的图像可知:
    当位于C点时,两车之间的距离增加变缓,由此可以得到a=6,
    ∵快车每小时行驶100千米,慢车每小时行驶60千米,两地之间的距离为600,
    ∴;
    (2)∵从函数的图象上可以得到A、B、C、D点的坐标分别为:(0,600)、(,0)、(6,360)、(10,600),
    ∴设线段AB所在直线解析式为:S=kx+b,

    解得:k=-160,b=600,
    设线段BC所在的直线的解析式为:S=kx+b,

    解得:k=160,b=-600,
    设直线CD的解析式为:S=kx+b,

    解得:k=60,b=0

    (3)当两车相遇前相距200km,
    此时:S=-160x+600=200,解得:,
    当两车相遇后相距200km,
    此时:S=160x-600=200,解得:x=5,
    ∴或5时两车相距200千米
    【点睛】
    本题考查了一次函数的综合知识,特别是本题中涉及到了分段函数的知识,解题时主要自变量的取值范围.
    19、(1)详见解析;(1)①详见解析;②1;③.
    【解析】
    (1)只要证明△BAE≌△CDE即可;
    (1)①利用(1)可知△EBC是等腰直角三角形,根据ASA即可证明;
    ②构建二次函数,利用二次函数的性质即可解决问题;
    ③如图3中,作EH⊥BG于H.设NG=m,则BG=1m,BN=EN=m,EB=m.利用面积法求出EH,根据三角函数的定义即可解决问题.
    【详解】
    (1)证明:如图1中,

    ∵四边形ABCD是矩形,
    ∴AB=DC,∠A=∠D=90°,
    ∵E是AD中点,
    ∴AE=DE,
    ∴△BAE≌△CDE,
    ∴BE=CE.
    (1)①解:如图1中,

    由(1)可知,△EBC是等腰直角三角形,
    ∴∠EBC=∠ECB=45°,
    ∵∠ABC=∠BCD=90°,
    ∴∠EBM=∠ECN=45°,
    ∵∠MEN=∠BEC=90°,
    ∴∠BEM=∠CEN,
    ∵EB=EC,
    ∴△BEM≌△CEN;
    ②∵△BEM≌△CEN,
    ∴BM=CN,设BM=CN=x,则BN=4-x,
    ∴S△BMN=•x(4-x)=-(x-1)1+1,
    ∵-<0,
    ∴x=1时,△BMN的面积最大,最大值为1.
    ③解:如图3中,作EH⊥BG于H.设NG=m,则BG=1m,BN=EN=m,EB=m.

    ∴EG=m+m=(1+)m,
    ∵S△BEG=•EG•BN=•BG•EH,
    ∴EH==m,
    在Rt△EBH中,sin∠EBH=.
    【点睛】
    本题考查四边形综合题、矩形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质、旋转变换、锐角三角函数等知识,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,学会利用参数解决问题,
    20、(1)y=-x2+2x+2;(2)详见解析;(3)点P的坐标为(1+,1)、(1-,1)、(1+,-3)或(1-,-3).
    【解析】
    (1)根据题意得出方程组,求出b、c的值,即可求出答案;
    (2)求出B、C的坐标,根据点的坐标求出AB、BC、AC的值,根据勾股定理的逆定理求出即可;
    (3)分为两种情况,画出图形,根据相似三角形的判定和性质求出PE的长,即可得出答案.
    【详解】
    解:(1)由题意得:,
    解得:,
    ∴抛物线的解析式为y=-x2+2x+2;
    (2)∵由y=-x2+2x+2得:当x=0时,y=2,
    ∴B(0,2),
    由y=-(x-1)2+3得:C(1,3),
    ∵A(3,-1),
    ∴AB=3,BC=,AC=2,
    ∴AB2+BC2=AC2,
    ∴∠ABC=90°,
    ∴△ABC是直角三角形;
    (3)①如图,当点Q在线段AP上时,

    过点P作PE⊥x轴于点E,AD⊥x轴于点D
    ∵S△OPA=2S△OQA,
    ∴PA=2AQ,
    ∴PQ=AQ
    ∵PE∥AD,
    ∴△PQE∽△AQD,
    ∴==1,
    ∴PE=AD=1
    ∵由-x2+2x+2=1得:x=1,
    ∴P(1+,1)或(1-,1),
    ②如图,当点Q在PA延长线上时,

    过点P作PE⊥x轴于点E,AD⊥x轴于点D
    ∵S△OPA=2S△OQA,
    ∴PA=2AQ,
    ∴PQ=3AQ
    ∵PE∥AD,
    ∴△PQE∽△AQD,
    ∴==3,
    ∴PE=3AD=3
    ∵由-x2+2x+2=-3得:x=1±,
    ∴P(1+,-3),或(1-,-3),
    综上可知:点P的坐标为(1+,1)、(1-,1)、(1+,-3)或(1-,-3).
    【点睛】
    本题考查了二次函数的图象和性质,用待定系数法求二次函数的解析式,相似三角形的性质和判定等知识点,能求出符合的所有情况是解此题的关键.
    21、解:(1)图见解析;
    (2)证明见解析.
    【解析】
    (1)根据角平分线的作法作出∠ABC的平分线即可.
    (2)首先根据角平分线的性质以及平行线的性质得出∠ABE=∠AEB,进而得出△ABO≌△FBO,进而利用AF⊥BE,BO=EO,AO=FO,得出即可.
    【详解】
    解:(1)如图所示:

    (2)证明:∵BE平分∠ABC,
    ∴∠ABE=∠EAF.
    ∵平行四边形ABCD中,AD//BC
    ∴∠EBF=∠AEB,
    ∴∠ABE=∠AEB.
    ∴AB=AE.
    ∵AO⊥BE,
    ∴BO=EO.
    ∵在△ABO和△FBO中,
    ∠ABO=∠FBO ,BO=EO,∠AOB=∠FOB,
    ∴△ABO≌△FBO(ASA).
    ∴AO=FO.
    ∵AF⊥BE,BO=EO,AO=FO.
    ∴四边形ABFE为菱形.
    22、﹣2
    【解析】
    【分析】先利用完全平方公式、平方差公式进行展开,然后合并同类项,最后代入x、y的值进行计算即可得.
    【详解】原式=x1+2xy+2y1﹣(2y1﹣x1)﹣1x1
    =x1+2xy+2y1﹣2y1+x1﹣1x1
    =2xy,
    当x=+1,y=﹣1时,
    原式=2×(+1)×(﹣1)
    =2×(3﹣2)
    =﹣2.
    【点睛】本题考查了整式的混合运算——化简求值,熟练掌握完全平方公式、平方差公式是解题的关键.
    23、(4)A高中观点.4. 446;(4)456人;(4).
    【解析】
    试题分析:(4)全班人数乘以选择“A高中”观点的百分比即可得到选择“A高中”观点的人数,用460°乘以选择“A高中”观点的百分比即可得到选择“A高中”的观点所在扇形区域的圆心角的度数;
    (4)用全校初三年级学生数乘以选择“B中技”观点的百分比即可估计该校初三学生选择“中技”观点的人数;
    (4)先计算出该班选择“就业”观点的人数为4人,则可判断有4位女同学和4位男生选择“就业”观点,再列表展示44种等可能的结果数,找出出现4女的结果数,然后根据概率公式求解.
    试题解析:(4)该班学生选择A高中观点的人数最多,共有60%×50=4(人),在扇形统计图中,该观点所在扇形区域的圆心角是60%×460°=446°;
    (4)∵800×44%=456(人),
    ∴估计该校初三学生选择“中技”观点的人数约是456人;
    (4)该班选择“就业”观点的人数=50×(4-60%-44%)=50×8%=4(人),则该班有4位女同学和4位男生选择“就业”观点,
    列表如下:

    共有44种等可能的结果数,其中出现4女的情况共有4种.
    所以恰好选到4位女同学的概率=.
    考点:4.列表法与树状图法;4.用样本估计总体;4.扇形统计图.
    24、(1)甲:25万元;乙:28万元;(2)三种方案;甲种套房提升50套,乙种套房提升30套费用最少;(3)当a=3时,三种方案的费用一样,都是2240万元;当a>3时,取m=48时费用最省;当0<a<3时,取m=50时费用最省.
    【解析】
    试题分析:(1)设甲种套房每套提升费用为x万元,根据题意建立方程求出其解即可;
    (2)设甲种套房提升m套,那么乙种套房提升(80-m)套,根据条件建立不等式组求出其解就可以求出提升方案,再表示出总费用与m之间的函数关系式,根据一次函数的性质就可以求出结论;
    (3)根据(2)表示出W与m之间的关系式,由一次函数的性质分类讨论就可以得出结论.
    (1)设甲种套房每套提升费用为x万元,依题意,

    解得:x=25
    经检验:x=25符合题意,
    x+3=28;
    答:甲,乙两种套房每套提升费用分别为25万元,28万元.
    (2)设甲种套房提升套,那么乙种套房提升(m-48)套,
    依题意,得
    解得:48≤m≤50
    即m=48或49或50,所以有三种方案分别
    是:方案一:甲种套房提升48套,乙种套房提升32套.
    方案二:甲种套房提升49套,乙种套房提升1.
    套方案三:甲种套房提升50套,乙种套房提升30套.
    设提升两种套房所需要的费用为W.

    所以当时,费用最少,即第三种方案费用最少.(3)在(2)的基础上有:

    当a=3时,三种方案的费用一样,都是2240万元.
    当a>3时,取m=48时费用W最省.
    当0<a<3时,取m=50时费用最省.
    考点: 1.一次函数的应用;2.分式方程的应用;3.一元一次不等式组的应用.

    相关试卷

    浙江省宁波市海曙区2022年初中数学毕业考试模拟冲刺卷含解析: 这是一份浙江省宁波市海曙区2022年初中数学毕业考试模拟冲刺卷含解析,共17页。试卷主要包含了下列运算正确的是,计算的结果是等内容,欢迎下载使用。

    浙江省宁波市江北区2022年初中数学毕业考试模拟冲刺卷含解析: 这是一份浙江省宁波市江北区2022年初中数学毕业考试模拟冲刺卷含解析,共21页。试卷主要包含了下列四个实数中,比5小的是等内容,欢迎下载使用。

    西藏达孜中学2022年初中数学毕业考试模拟冲刺卷含解析: 这是一份西藏达孜中学2022年初中数学毕业考试模拟冲刺卷含解析,共22页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map