2022年内蒙古达标名校中考数学全真模拟试题含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM,ON上滑动,下列结论:
①若C,O两点关于AB对称,则OA=;
②C,O两点距离的最大值为4;
③若AB平分CO,则AB⊥CO;
④斜边AB的中点D运动路径的长为π.
其中正确的是( )
A.①② B.①②③ C.①③④ D.①②④
2.如图是抛物线y=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,4),与x轴的一个交点是B(3,0),下列结论:①abc>0;②2a+b=0;③方程ax2+bx+c=4有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣2.0);⑤x(ax+b)≤a+b,其中正确结论的个数是( )
A.4个 B.3个 C.2个 D.1个
3.某班 30名学生的身高情况如下表:
身高
人数
1
3
4
7
8
7
则这 30 名学生身高的众数和中位数分别是
A., B.,
C., D.,
4.如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为(6,4),反比例函数的图象与AB边交于点D,与BC边交于点E,连结DE,将△BDE沿DE翻折至△B'DE处,点B'恰好落在正比例函数y=kx图象上,则k的值是( )
A. B. C. D.
5.比较4,,的大小,正确的是( )
A.4<< B.4<<
C.<4< D.<<4
6.如图,在Rt△ABC中,∠ACB=90°,BC=12,AC=5,分别以点A,B为圆心,大于线段AB长度的一半为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连接CD,则△ACD的周长为( )
A.13 B.17 C.18 D.25
7.如图,△ABC中,D、E分别为AB、AC的中点,已知△ADE的面积为1,那么△ABC的面积是( )
A.2 B.3 C.4 D.5
8.PM2.5是指大气中直径小于或等于2.5μm(1μm=0.000001m)的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.2.5μm用科学记数法可表示为( )
A. B. C. D.
9.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则
①二次函数的最大值为a+b+c;
②a﹣b+c<0;
③b2﹣4ac<0;
④当y>0时,﹣1<x<3,其中正确的个数是( )
A.1 B.2 C.3 D.4
10.对于反比例函数y=(k≠0),下列所给的四个结论中,正确的是( )
A.若点(3,6)在其图象上,则(﹣3,6)也在其图象上
B.当k>0时,y随x的增大而减小
C.过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为k
D.反比例函数的图象关于直线y=﹣x成轴对称
二、填空题(共7小题,每小题3分,满分21分)
11.如图,在矩形ABCD中,DE⊥AC,垂足为E,且tan∠ADE=,AC=5,则AB的长____.
12.从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片(大小、形状完全相同)中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是__________.
13.如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=x于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;….按此作法进行下去,则的长是_____.
14.如图,在菱形ABCD中,AB=,∠B=120°,点E是AD边上的一个动点(不与A,D重合),EF∥AB交BC于点F,点G在CD上,DG=DE.若△EFG是等腰三角形,则DE的长为_____.
15.如果两个相似三角形对应边上的高的比为1:4,那么这两个三角形的周长比是___.
16.假期里小菲和小琳结伴去超市买水果,三次购买的草莓价格和数量如下表:
价格/(元/kg)
12
10
8
合计/kg
小菲购买的数量/kg
2
2
2
6
小琳购买的数量/kg
1
2
3
6
从平均价格看,谁买得比较划算?( )
A.一样划算 B.小菲划算C.小琳划算 D.无法比较
17.实数,﹣3,,,0中的无理数是_____.
三、解答题(共7小题,满分69分)
18.(10分)已知一个二次函数的图象经过A(0,﹣3),B(1,0),C(m,2m+3),D(﹣1,﹣2)四点,求这个函数解析式以及点C的坐标.
19.(5分)已如:⊙O与⊙O上的一点A
(1)求作:⊙O的内接正六边形ABCDEF;( 要求:尺规作图,不写作法但保留作图痕迹)
(2)连接CE,BF,判断四边形BCEF是否为矩形,并说明理由.
20.(8分)许昌文峰塔又称文明寺塔,为全国重点文物保护单位,某校初三数学兴趣小组的同学想要利用学过的知识测量文峰塔的高度,他们找来了测角仪和卷尺,在点A处测得塔顶C的仰角为30°,向塔的方向移动60米后到达点B,再次测得塔顶C的仰角为60°,试通过计算求出文峰塔的高度CD.(结果保留两位小数)
21.(10分)计算:=_____.
22.(10分)(1)(问题发现)小明遇到这样一个问题:
如图1,△ABC是等边三角形,点D为BC的中点,且满足∠ADE=60°,DE交等边三角形外角平分线CE所在直线于点E,试探究AD与DE的数量关系.
(1)小明发现,过点D作DF//AC,交AC于点F,通过构造全等三角形,经过推理论证,能够使问题得到解决,请直接写出AD与DE的数量关系: ;
(2)(类比探究)如图2,当点D是线段BC上(除B,C外)任意一点时(其它条件
不变),试猜想AD与DE之间的数量关系,并证明你的结论.
(3)(拓展应用)当点D在线段BC的延长线上,且满足CD=BC(其它条件不变)时,
请直接写出△ABC与△ADE的面积之比.
23.(12分)M中学为创建园林学校,购买了若干桂花树苗,计划把迎宾大道的一侧全部栽上桂花树(两端必须各栽一棵),并且每两棵树的间隔相等,如果每隔5米栽1棵,则树苗缺11棵;如果每隔6米栽1棵,则树苗正好用完,求购买了桂花树苗多少棵?
24.(14分)已知:如图,在△ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,E为的中点.
求证:∠ACD=∠DEC;(2)延长DE、CB交于点P,若PB=BO,DE=2,求PE的长
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
分析:①先根据直角三角形30°的性质和勾股定理分别求AC和AB,由对称的性质可知:AB是OC的垂直平分线,所以
②当OC经过AB的中点E时,OC最大,则C、O两点距离的最大值为4;
③如图2,当∠ABO=30°时,易证四边形OACB是矩形,此时AB与CO互相平分,但所夹锐角为60°,明显不垂直,或者根据四点共圆可知:A、C、B、O四点共圆,则AB为直径,由垂径定理相关推论:平分弦(不是直径)的直径垂直于这条弦,但当这条弦也是直径时,即OC是直径时,AB与OC互相平分,但AB与OC不一定垂直;
④如图3,半径为2,圆心角为90°,根据弧长公式进行计算即可.
详解:在Rt△ABC中,∵
∴
①若C.O两点关于AB对称,如图1,
∴AB是OC的垂直平分线,
则
所以①正确;
②如图1,取AB的中点为E,连接OE、CE,
∵
∴
当OC经过点E时,OC最大,
则C.O两点距离的最大值为4;
所以②正确;
③如图2,当时,
∴四边形AOBC是矩形,
∴AB与OC互相平分,
但AB与OC的夹角为不垂直,
所以③不正确;
④如图3,斜边AB的中点D运动路径是:以O为圆心,以2为半径的圆周的
则:
所以④正确;
综上所述,本题正确的有:①②④;
故选D.
点睛:属于三角形的综合体,考查了直角三角形的性质,直角三角形斜边上中线的性质,轴对称的性质,弧长公式等,熟练掌握直角三角形斜边的中线等于斜边的一半是解题的关键.
2、B
【解析】
通过图象得到、、符号和抛物线对称轴,将方程转化为函数图象交点问题,利用抛物线顶点证明.
【详解】
由图象可知,抛物线开口向下,则,,
抛物线的顶点坐标是,
抛物线对称轴为直线,
,
,则①错误,②正确;
方程的解,可以看做直线与抛物线的交点的横坐标,
由图象可知,直线经过抛物线顶点,则直线与抛物线有且只有一个交点,
则方程有两个相等的实数根,③正确;
由抛物线对称性,抛物线与轴的另一个交点是,则④错误;
不等式可以化为,
抛物线顶点为,
当时,,
故⑤正确.
故选:.
【点睛】
本题是二次函数综合题,考查了二次函数的各项系数与图象位置的关系、抛物线对称性和最值,以及用函数的观点解决方程或不等式.
3、A
【解析】
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据.
【详解】
解:这组数据中,出现的次数最多,故众数为,
共有30人,
第15和16人身高的平均数为中位数,
即中位数为:,
故选:A.
【点睛】
本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大或从大到小的顺序排列,如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
4、B
【解析】
根据矩形的性质得到,CB∥x轴,AB∥y轴,于是得到D、E坐标,根据勾股定理得到ED,连接BB′,交ED于F,过B′作B′G⊥BC于G,根据轴对称的性质得到BF=B′F,BB′⊥ED求得BB′,设EG=x,根据勾股定理即可得到结论.
【详解】
解:∵矩形OABC,
∴CB∥x轴,AB∥y轴.
∵点B坐标为(6,1),
∴D的横坐标为6,E的纵坐标为1.
∵D,E在反比例函数的图象上,
∴D(6,1),E(,1),
∴BE=6﹣=,BD=1﹣1=3,
∴ED==.连接BB′,交ED于F,过B′作B′G⊥BC于G.
∵B,B′关于ED对称,
∴BF=B′F,BB′⊥ED,
∴BF•ED=BE•BD,即BF=3×,
∴BF=,
∴BB′=.
设EG=x,则BG=﹣x.
∵BB′2﹣BG2=B′G2=EB′2﹣GE2,
∴,
∴x=,
∴EG=,
∴CG=,
∴B′G=,
∴B′(,﹣),
∴k=.
故选B.
【点睛】
本题考查了翻折变换(折叠问题),矩形的性质,勾股定理,熟练掌握折叠的性质是解题的关键.
5、C
【解析】
根据4=<且4=>进行比较
【详解】
解:易得:4=<且4=>,
所以<4<
故选C.
【点睛】
本题主要考查开平方开立方运算。
6、C
【解析】
在Rt△ABC中,∠ACB=90°,BC=12,AC=5,根据勾股定理求得AB=13.根据题意可知,EF为线段AB的垂直平分线,在Rt△ABC中,根据直角三角形斜边的中线等于斜边的一半可得CD=AD=AB,所以△ACD的周长为AC+CD+AD=AC+AB=5+13=18.故选C.
7、C
【解析】
根据三角形的中位线定理可得DE∥BC,=,即可证得△ADE∽△ABC,根据相似三角形面积的比等于相似比的平方可得=,已知△ADE的面积为1,即可求得S△ABC=1.
【详解】
∵D、E分别是AB、AC的中点,
∴DE是△ABC的中位线,
∴DE∥BC,=,
∴△ADE∽△ABC,
∴=()2=,
∵△ADE的面积为1,
∴S△ABC=1.
故选C.
【点睛】
本题考查了三角形的中位线定理及相似三角形的判定与性质,先证得△ADE∽△ABC,根据相似三角形面积的比等于相似比的平方得到=是解决问题的关键.
8、C
【解析】
试题分析:大于0而小于1的数用科学计数法表示,10的指数是负整数,其绝对值等于第一个不是0的数字前所有0的个数.
考点:用科学计数法计数
9、B
【解析】
分析:直接利用二次函数图象的开口方向以及图象与x轴的交点,进而分别分析得出答案.
详解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,
∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;
②当x=﹣1时,a﹣b+c=0,故②错误;
③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;
④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),
∴A(3,0),
故当y>0时,﹣1<x<3,故④正确.
故选B.
点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.
10、D
【解析】
分析:根据反比例函数的性质一一判断即可;
详解:A.若点(3,6)在其图象上,则(﹣3,6)不在其图象上,故本选项不符合题意;
B.当k>0时,y随x的增大而减小,错误,应该是当k>0时,在每个象限,y随x的增大而减小;故本选项不符合题意;
C.错误,应该是过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为|k|;故本选项不符合题意;
D.正确,本选项符合题意.
故选D.
点睛:本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质,灵活运用所学知识解决问题,属于中考常考题型.
二、填空题(共7小题,每小题3分,满分21分)
11、3.
【解析】
先根据同角的余角相等证明∠ADE=∠ACD,在△ADC根据锐角三角函数表示用含有k的代数式表示出AD=4k和DC=3k,从而根据勾股定理得出AC=5k,又AC=5,从而求出DC的值即为AB.
【详解】
∵四边形ABCD是矩形,
∴∠ADC=90°,AB=CD,
∵DE⊥AC,
∴∠AED=90°,
∴∠ADE+∠DAE=90°,∠DAE+∠ACD=90°,
∴∠ADE=∠ACD,
∴tan∠ACD=tan∠ADE==,
设AD=4k,CD=3k,则AC=5k,
∴5k=5,
∴k=1,
∴CD=AB=3,
故答案为3.
【点睛】
本题考查矩形的性质和利用锐角三角函数解直角三角形,解决此类问题时需要将已知角的三角函数、已知边、未知边,转换到同一直角三角形中,然后解决问题.
12、
【解析】
根据概率的公式进行计算即可.
【详解】
从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是.
故答案为:.
【点睛】
考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.
13、
【解析】
【分析】先根据一次函数方程式求出B1点的坐标,再根据B1点的坐标求出A2点的坐标,得出B2的坐标,以此类推总结规律便可求出点A2019的坐标,再根据弧长公式计算即可求解,.
【详解】直线y=x,点A1坐标为(2,0),过点A1作x轴的垂线交直线于点B1可知B1点的坐标为(2,2),
以原O为圆心,OB1长为半径画弧x轴于点A2,OA2=OB1,
OA2==4,点A2的坐标为(4,0),
这种方法可求得B2的坐标为(4,4),故点A3的坐标为(8,0),B3(8,8)
以此类推便可求出点A2019的坐标为(22019,0),
则的长是,
故答案为:.
【点睛】本题主要考查了一次函数图象上点的坐标特征,弧长的计算,解题的关键找出点的坐标的变化规律、运用数形结合思想进行解题.
14、1或
【解析】
由四边形ABCD是菱形,得到BC∥AD,由于EF∥AB,得到四边形ABFE是平行四边形,根据平行四边形的性质得到EF∥AB,于是得到EF=AB=,当△EFG为等腰三角形时,①EF=GE=时,于是得到DE=DG=AD÷=1,②GE=GF时,根据勾股定理得到DE=.
【详解】
解:∵四边形ABCD是菱形,∠B=120°,
∴∠D=∠B=120°,∠A=180°-120°=60°,BC∥AD,
∵EF∥AB,
∴四边形ABFE是平行四边形,
∴EF∥AB,
∴EF=AB=,∠DEF=∠A=60°,∠EFC=∠B=120°,
∵DE=DG,
∴∠DEG=∠DGE=30°,
∴∠FEG=30°,
当△EFG为等腰三角形时,
当EF=EG时,EG=,
如图1,
过点D作DH⊥EG于H,
∴EH=EG=,
在Rt△DEH中,DE==1,
GE=GF时,如图2,
过点G作GQ⊥EF,
∴EQ=EF=,在Rt△EQG中,∠QEG=30°,
∴EG=1,
过点D作DP⊥EG于P,
∴PE=EG=,
同①的方法得,DE=,
当EF=FG时,由∠EFG=180°-2×30°=120°=∠CFE,此时,点C和点G重合,点F和点B重合,不符合题意,
故答案为1或.
【点睛】
本题考查了菱形的性质,平行四边形的性质,等腰三角形的性质以及勾股定理,熟练掌握各性质是解题的关键.
15、1:4
【解析】
∵两个相似三角形对应边上的高的比为1∶4,
∴这两个相似三角形的相似比是1:4
∵相似三角形的周长比等于相似比,
∴它们的周长比1:4,
故答案为:1:4.
【点睛】本题考查了相似三角形的性质,相似三角形对应边上的高、相似三角形的周长比都等于相似比.
16、C
【解析】
试题分析:根据题意分别求出两人的平均价格,然后进行比较.小菲:(24+20+16)÷6=10;小琳:(12+20+24)÷6≈1.3,则小琳划算.
考点:平均数的计算.
17、
【解析】
无理数包括三方面的数:①含π的,②一些开方开不尽的根式,③一些有规律的数,根据以上内容判断即可.
【详解】
解:=4,是有理数,﹣3、、0都是有理数,
是无理数.
故答案为:.
【点睛】
本题考查了对无理数的定义的理解和运用,注意:无理数是指无限不循环小数,包括三方面的数:①含π的,②一些开方开不尽的根式,③一些有规律的数.
三、解答题(共7小题,满分69分)
18、y=2x2+x﹣3,C点坐标为(﹣,0)或(2,7)
【解析】
设抛物线的解析式为y=ax2+bx+c,把A(0,﹣3),B(1,0),D(﹣1,﹣2)代入可求出解析式,进而求出点C的坐标即可.
【详解】
设抛物线的解析式为y=ax2+bx+c,
把A(0,﹣3),B(1,0),D(﹣1,﹣2)代入得,
解得,
∴抛物线的解析式为y=2x2+x﹣3,
把C(m,2m+3)代入得2m2+m﹣3=2m+3,解得m1=﹣,m2=2,
∴C点坐标为(﹣,0)或(2,7).
【点睛】
本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.
19、(1)答案见解析;(2)证明见解析.
【解析】
(1)如图,在⊙O上依次截取六段弦,使它们都等于OA,从而得到正六边形ABCDEF;
(2)连接BE,如图,利用正六边形的性质得AB=BC=CD=DE=EF=FA,,则判断BE为直径,所以∠BFE=∠BCE=90°,同理可得∠FBC=∠CEF=90°,然后判断四边形BCEF为矩形.
【详解】
解:(1)如图,正六边形ABCDEF为所作;
(2)四边形BCEF为矩形.理由如下:
连接BE,如图,
∵六边形ABCDEF为正六边形,
∴AB=BC=CD=DE=EF=FA,
∴,
∴,
∴,
∴BE为直径,
∴∠BFE=∠BCE=90°,
同理可得∠FBC=∠CEF=90°,
∴四边形BCEF为矩形.
【点睛】
本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了矩形的判定与正六边形的性质.
20、51.96米.
【解析】
先根据三角形外角的性质得出∠ACB=30°,进而得出AB=BC=1,在Rt△BDC中,,即可求出CD的长.
【详解】
解:∵∠CBD=1°,∠CAB=30°,
∴∠ACB=30°.
∴AB=BC=1.
在Rt△BDC中,
∴(米).
答:文峰塔的高度CD约为51.96米.
【点睛】
本题考查解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答.
21、1
【解析】
首先计算负整数指数幂和开平方,再计算减法即可.
【详解】
解:原式=9﹣3=1.
【点睛】
此题主要考查了实数运算,关键是掌握负整数指数幂:为正整数).
22、(1)AD=DE;(2)AD=DE,证明见解析;(3).
【解析】
试题分析:本题难度中等.主要考查学生对探究例子中的信息进行归纳总结.并能够结合三角形的性质是解题关键.
试题解析:(10分)
(1)AD=DE.
(2)AD=DE.
证明:如图2,过点D作DF//AC,交AC于点F,
∵△ABC是等边三角形,
∴AB=BC,∠B=∠ACB=∠ABC=60°.
又∵DF//AC,
∴∠BDF=∠BFD=60°
∴△BDF是等边三角形,BF=BD,∠BFD=60°,
∴AF=CD,∠AFD=120°.
∵EC是外角的平分线,
∠DCE=120°=∠AFD.
∵∠ADC是△ABD的外角,
∴∠ADC=∠B+∠FAD=60°+∠FAD.
∵∠ADC=∠ADE+∠EDC=60°+∠EDC,
∴∠FAD=∠EDC.
∴△AFD≌△DCE(ASA),
∴AD=DE;
(3).
考点:1.等边三角形探究题;2.全等三角形的判定与性质;3.等边三角形的判定与性质.
23、购买了桂花树苗1棵
【解析】
分析:首先设购买了桂花树苗x棵,然后根据题意列出一元一次方程,从而得出答案.
详解:设购买了桂花树苗x棵,根据题意,得:5(x+11-1)=6(x-1), 解得x=1.
答:购买了桂花树苗1棵.
点睛:本题主要考查的是一元一次方程的应用,属于基础题型.解决这个问题的关键就是找出等量关系以及路的长度与树的棵树之间的关系.
24、(1)见解析;(2)PE=4.
【解析】
(1)根据同角的余角相等得到∠ACD=∠B,然后由圆周角定理可得结论;
(2)连结OE,根据圆周角定理和等腰三角形的性质证明OE∥CD,然后由△POE∽△PCD列出比例式,求解即可.
【详解】
解:(1)证明:∵BC是⊙O的直径,
∴∠BDC=90°,∴∠BCD+∠B=90°,
∵∠ACB=90°,
∴∠BCD+∠ACD=90°,
∴∠ACD=∠B,
∵∠DEC=∠B,
∴∠ACD=∠DEC
(2)证明:连结OE
∵E为BD弧的中点.
∴∠DCE=∠BCE
∵OC=OE
∴∠BCE=∠OEC
∴∠DCE=∠OEC
∴OE∥CD
∴△POE∽△PCD,
∴
∵PB=BO,DE=2
∴PB=BO=OC
∴
∴
∴PE=4
【点睛】
本题是圆的综合题,主要考查了圆周角定理、等腰三角形的判定和性质、相似三角形的判定与性质,熟练掌握圆的相关知识和相似三角形的性质是解题的关键.
内蒙古阿拉善达标名校2022年中考数学全真模拟试题含解析: 这是一份内蒙古阿拉善达标名校2022年中考数学全真模拟试题含解析,共16页。试卷主要包含了答题时请按要求用笔,计算 的结果是等内容,欢迎下载使用。
2022年内蒙古准格尔旗重点达标名校中考数学全真模拟试卷含解析: 这是一份2022年内蒙古准格尔旗重点达标名校中考数学全真模拟试卷含解析,共16页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2022届北京市延庆区达标名校中考数学全真模拟试题含解析: 这是一份2022届北京市延庆区达标名校中考数学全真模拟试题含解析,共23页。试卷主要包含了下列说法正确的是,不等式组 的整数解有,下列运算正确的是,把直线l等内容,欢迎下载使用。