2022年山东省济南市汇才校中考数学四模试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.下面计算中,正确的是( )
A.(a+b)2=a2+b2 B.3a+4a=7a2
C.(ab)3=ab3 D.a2•a5=a7
2.定义运算:a⋆b=2ab.若a,b是方程x2+x-m=0(m>0)的两个根,则(a+1)⋆a -(b+1)⋆b的值为( )
A.0 B.2 C.4m D.-4m
3.如图,将函数的图象沿y轴向上平移得到一条新函数的图象,其中点A(-4,m),B(-1,n),平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是 ( )
A. B. C. D.
4.方程的解是
A.3 B.2 C.1 D.0
5.浙江省陆域面积为101800平方千米。数据101800用科学记数法表示为( )
A.1.018×104 B.1.018×105 C.10.18×105 D.0.1018×106
6.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于( )
A.30° B.40° C.50° D.60°
7.一艘在南北航线上的测量船,于A点处测得海岛B在点A的南偏东30°方向,继续向南航行30海里到达C点时,测得海岛B在C点的北偏东15°方向,那么海岛B离此航线的最近距离是( )(结果保留小数点后两位)(参考数据:≈1.732,≈1.414)
A.4.64海里 B.5.49海里 C.6.12海里 D.6.21海里
8.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字6、7、8、1.若转动转盘一次,转盘停止后(当指针恰好指在分界线上时,不记,重转),指针所指区域的数字是奇数的概率为( )
A. B. C. D.
9.小明要去超市买甲、乙两种糖果,然后混合成5千克混合糖果,已知甲种糖果的单价为a元/千克,乙种糖果的单价为b元/千克,且a>b.根据需要小明列出以下三种混合方案:(单位:千克)
甲种糖果
乙种糖果
混合糖果
方案1
2
3
5
方案2
3
2
5
方案3
2.5
2.5
5
则最省钱的方案为( )
A.方案1 B.方案2
C.方案3 D.三个方案费用相同
10.若分式的值为零,则x的值是( )
A.1 B. C. D.2
二、填空题(本大题共6个小题,每小题3分,共18分)
11.一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为____________海里/时.
12.小明用一个半径为30cm且圆心角为240°的扇形纸片做成一个圆锥形纸帽(粘合部分忽略不计),那么这个圆锥形纸帽的底面半径为_____cm.
13.一个不透明的袋子中装有5个球,其中3个红球、2个黑球,这些球除颜色外无其它差别,现从袋子中随机摸出一个球,则它是黑球的概率是_____.
14.如图,矩形纸片ABCD中,AB=3,AD=5,点P是边BC上的动点,现将纸片折叠使点A与点P重合,折痕与矩形边的交点分别为E,F,要使折痕始终与边AB,AD有交点,BP的取值范围是_____.
15.已知x+y=8,xy=2,则x2y+xy2=_____.
16.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是_______.
三、解答题(共8题,共72分)
17.(8分)为了掌握我市中考模拟数学试题的命题质量与难度系数,命题教师赴我市某地选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩(得分为整数,满分为160分)分为5组:第一组85~100;第二组100~115;第三组115~130;第四组130~145;第五组145~160,统计后得到如图1和如图2所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:
(1)本次调查共随机抽取了该年级多少名学生?并将频数分布直方图补充完整;
(2)若将得分转化为等级,规定:得分低于100分评为“D”,100~130分评为“C”,130~145分评为“B”,145~160分评为“A”,那么该年级1600名学生中,考试成绩评为“B”的学生大约有多少名?
(3)如果第一组有两名女生和两名男生,第五组只有一名是男生,针对考试成绩情况,命题教师决定从第一组、第五组分别随机选出一名同学谈谈做题的感想,请你用列表或画树状图的方法求出所选两名学生刚好是一名女生和一名男生的概率.
18.(8分)如图,儿童游乐场有一项射击游戏.从O处发射小球,将球投入正方形篮筐DABC.正方形篮筐三个顶点为A(2,2),B(3,2),D(2,3).小球按照抛物线y=﹣x2+bx+c 飞行.小球落地点P 坐标(n,0)
(1)点C坐标为 ;
(2)求出小球飞行中最高点N的坐标(用含有n的代数式表示);
(3)验证:随着n的变化,抛物线的顶点在函数y=x2的图象上运动;
(4)若小球发射之后能够直接入篮,球没有接触篮筐,请直接写出n的取值范围.
19.(8分)化简(),并说明原代数式的值能否等于-1.
20.(8分)如图,在直角坐标系中,矩形的顶点与坐标原点重合,顶点分别在坐标轴的正半轴上, ,点在直线上,直线与折线有公共点.点的坐标是 ;若直线经过点,求直线的解析式;对于一次函数,当随的增大而减小时,直接写出的取值范围.
21.(8分)如图,在平面直角坐标系中,点的坐标为,以点为圆心,8为半径的圆与轴交于,两点,过作直线与轴负方向相交成的角,且交轴于点,以点为圆心的圆与轴相切于点.
(1)求直线的解析式;
(2)将以每秒1个单位的速度沿轴向左平移,当第一次与外切时,求平移的时间.
22.(10分)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=0.4m,EF=0.2m,测得边DF离地面的高度AC=1.5m,CD=8m,求树高.
23.(12分)珠海某企业接到加工“无人船”某零件5000个的任务.在加工完500个后,改进了技术,每天加工的零件数量是原来的1.5倍,整个加工过程共用了35天完成.求技术改进后每天加工零件的数量.
24.如图,在▱ABCD中,AB=4,AD=5,tanA=,点P从点A出发,沿折线AB﹣BC以每秒1个单位长度的速度向中点C运动,过点P作PQ⊥AB,交折线AD﹣DC于点Q,将线段PQ绕点P顺时针旋转90°,得到线段PR,连接QR.设△PQR与▱ABCD重叠部分图形的面积为S(平方单位),点P运动的时间为t(秒).
(1)当点R与点B重合时,求t的值;
(2)当点P在BC边上运动时,求线段PQ的长(用含有t的代数式表示);
(3)当点R落在▱ABCD的外部时,求S与t的函数关系式;
(4)直接写出点P运动过程中,△PCD是等腰三角形时所有的t值.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
直接利用完全平方公式以及合并同类项法则、积的乘方运算法则分别化简得出答案.
【详解】
A. (a+b)2=a2+b2+2ab,故此选项错误;
B. 3a+4a=7a,故此选项错误;
C. (ab)3=a3b3,故此选项错误;
D. a2×a5=a7,正确。
故选:D.
【点睛】
本题考查了幂的乘方与积的乘方,合并同类项,同底数幂的乘法,完全平方公式,解题的关键是掌握它们的概念进行求解.
2、A
【解析】【分析】由根与系数的关系可得a+b=-1然后根据所给的新定义运算a⋆b=2ab对式子(a+1)⋆a -(b+1)⋆b用新定义运算展开整理后代入进行求解即可.
【详解】∵a,b是方程x2+x-m=0(m>0)的两个根,
∴a+b=-1,
∵定义运算:a⋆b=2ab,
∴(a+1)⋆a -(b+1)⋆b
=2a(a+1)-2b(b+1)
=2a2+2a-2b2-2b
=2(a+b)(a-b)+2(a-b)
=-2(a-b)+2(a-b)=0,
故选A.
【点睛】本题考查了一元二次方程根与系数的关系,新定义运算等,理解并能运用新定义运算是解题的关键.
3、D
【解析】
分析:过A作AC∥x轴,交B′B的延长线于点C,过A′作A′D∥x轴,交B′B的于点D,则C(-1,m),AC=-1-(-1)=3,根据平移的性质以及曲线段AB扫过的面积为9(图中的阴影部分),得出AA′=3,然后根据平移规律即可求解.
详解:过A作AC∥x轴,交B′B的延长线于点C,过A′作A′D∥x轴,交B′B的于点D,则C(-1,m),
∴AC=-1-(-1)=3,
∵曲线段AB扫过的面积为9(图中的阴影部分),
∴矩形ACD A′的面积等于9,
∴AC·AA′=3AA′=9,
∴AA′=3,
∴新函数的图是将函数y=(x-2)2+1的图象沿y轴向上平移3个单位长度得到的,
∴新图象的函数表达式是y=(x-2)2+1+3=(x-2)2+1.
故选D.
点睛:此题主要考查了二次函数图象变换以及矩形的面积求法等知识,根据已知得出AA′的长度是解题关键.
4、A
【解析】
试题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解:去分母得:2x=3x﹣3,解得:x=3,
经检验x=3是分式方程的解.故选A.
5、B
【解析】
.
故选B.
点睛:在把一个绝对值较大的数用科学记数法表示为的形式时,我们要注意两点:①必须满足:;②比原来的数的整数位数少1(也可以通过小数点移位来确定).
6、C
【解析】
试题分析:∵DC∥AB,∴∠DCA=∠CAB=65°.
∵△ABC绕点A旋转到△AED的位置,∴∠BAE=∠CAD,AC=AD.
∴∠ADC=∠DCA="65°." ∴∠CAD=180°﹣∠ADC﹣∠DCA="50°." ∴∠BAE=50°.
故选C.
考点:1.面动旋转问题; 2. 平行线的性质;3.旋转的性质;4.等腰三角形的性质.
7、B
【解析】
根据题意画出图如图所示:作BD⊥AC,取BE=CE,根据三角形内角和和等腰三角形的性质得出BA=BE,AD=DE,设BD=x,Rt△ABD中,根据勾股定理得AD=DE= x,AB=BE=CE=2x,由AC=AD+DE+EC=2 x+2x=30,解之即可得出答案.
【详解】
根据题意画出图如图所示:作BD⊥AC,取BE=CE,
∵AC=30,∠CAB=30°∠ACB=15°,
∴∠ABC=135°,
又∵BE=CE,
∴∠ACB=∠EBC=15°,
∴∠ABE=120°,
又∵∠CAB=30°
∴BA=BE,AD=DE,
设BD=x,
在Rt△ABD中,
∴AD=DE= x,AB=BE=CE=2x,
∴AC=AD+DE+EC=2 x+2x=30,
∴x= = ≈5.49,
故答案选:B.
【点睛】
本题考查了三角形内角和定理与等腰直角三角形的性质,解题的关键是熟练的掌握三角形内角和定理与等腰直角三角形的性质.
8、A
【解析】
转盘中4个数,每转动一次就要4种可能,而其中是奇数的有2种可能.然后根据概率公式直接计算即可
【详解】
奇数有两种,共有四种情况,将转盘转动一次,求得到奇数的概率为:
P(奇数)= = .故此题选A.
【点睛】
此题主要考查了几何概率,正确应用概率公式是解题关键.
9、A
【解析】
求出三种方案混合糖果的单价,比较后即可得出结论.
【详解】
方案1混合糖果的单价为,
方案2混合糖果的单价为,
方案3混合糖果的单价为.
∵a>b,
∴,
∴方案1最省钱.
故选:A.
【点睛】
本题考查了加权平均数,求出各方案混合糖果的单价是解题的关键.
10、A
【解析】
试题解析:∵分式的值为零,
∴|x|﹣1=0,x+1≠0,
解得:x=1.
故选A.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
设该船行驶的速度为x海里/时,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+40=3x,解方程即可.
【详解】
如图所示:
该船行驶的速度为x海里/时,
3小时后到达小岛的北偏西45°的C处,
由题意得:AB=80海里,BC=3x海里,
在直角三角形ABQ中,∠BAQ=60°,
∴∠B=90°−60°=30°,
∴AQ=AB=40,BQ=AQ=40,
在直角三角形AQC中,∠CAQ=45°,
∴CQ=AQ=40,
∴BC=40+40=3x,
解得:x=.
即该船行驶的速度为海里/时;
故答案为:.
【点睛】
本题考查的是解直角三角形,熟练掌握方向角是解题的关键.
12、20
【解析】
先求出半径为30cm且圆心角为240°的扇形纸片的弧长,再利用底面周长=展开图的弧长可得.
【详解】
=40π.
设这个圆锥形纸帽的底面半径为r.
根据题意,得40π=2πr,
解得r=20cm.
故答案是:20.
【点睛】
解答本题的关键是有确定底面周长=展开图的弧长这个等量关系,然后由扇形的弧长公式和圆的周长公式求值.
13、
【解析】
用黑球的个数除以总球的个数即可得出黑球的概率.
【详解】
解:∵袋子中共有5个球,有2个黑球,
∴从袋子中随机摸出一个球,它是黑球的概率为;
故答案为.
【点睛】
本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
14、1≤x≤1
【解析】
此题需要运用极端原理求解;①BP最小时,F、D重合,由折叠的性质知:AF=PF,在Rt△PFC中,利用勾股定理可求得PC的长,进而可求得BP的值,即BP的最小值;②BP最大时,E、B重合,根据折叠的性质即可得到AB=BP=1,即BP的最大值为1;
【详解】
解:如图:①当F、D重合时,BP的值最小;
根据折叠的性质知:AF=PF=5;
在Rt△PFC中,PF=5,FC=1,则PC=4;
∴BP=xmin=1;
②当E、B重合时,BP的值最大;
由折叠的性质可得BP=AB=1.
所以BP的取值范围是:1≤x≤1.
故答案为:1≤x≤1.
【点睛】
此题主要考查的是图形的翻折变换,正确的判断出x的两种极值下F、E点的位置,是解决此题的关键.
15、1
【解析】
将所求式子提取xy分解因式后,把x+y与xy的值代入计算,即可得到所求式子的值.
【详解】
∵x+y=8,xy=2,
∴x2y+xy2=xy(x+y)=2×8=1.
故答案为:1.
【点睛】
本题考查的知识点是因式分解的应用,解题关键是将所求式子分解因式.
16、
【解析】
首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到白球的情况,再利用概率公式即可求得答案.
【详解】
画树状图得:
∵共有12种等可能的结果,两次都摸到白球的有2种情况,
∴两次都摸到白球的概率是:=.
故答案为:.
【点睛】
本题考查用树状图法求概率,解题的关键是掌握用树状图法求概率.
三、解答题(共8题,共72分)
17、(1)50(2)420(3)P=
【解析】试题分析:(1)首先根据题意得:本次调查共随机抽取了该年级学生数为:20÷40%=50(名);则可求得第五组人数为:50﹣4﹣8﹣20﹣14=4(名);即可补全统计图;
(2)由题意可求得130~145分所占比例,进而求出答案;
(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两名学生刚好是一名女生和一名男生的情况,再利用概率公式求解即可求得答案.
试题解析:(1)根据题意得:本次调查共随机抽取了该年级学生数为:20÷40%=50(名);
则第五组人数为:50﹣4﹣8﹣20﹣14=4(名);
如图:
(2)根据题意得:考试成绩评为“B”的学生大约有×1600=448(名),
答:考试成绩评为“B”的学生大约有448名;
(3)画树状图得:
∵共有16种等可能的结果,所选两名学生刚好是一名女生和一名男生的有8种情况,
∴所选两名学生刚好是一名女生和一名男生的概率为: =.
考点:1、树状图法与列表法求概率的知识,2、直方图与扇形统计图的知识
视频
18、(1)(3,3);(2)顶点 N 坐标为(,);(3)详见解析;(4)<n< .
【解析】
(1)由正方形的性质及A、B、D三点的坐标求得AD=BC=1即可得;
(2)把(0,0)(n,0)代入y=-x2+bx+c求得b=n、c=0,据此可得函数解析式,配方成顶点式即可得出答案;
(3)将点N的坐标代入y=x2,看是否符合解析式即可;
(4)根据“小球发射之后能够直接入篮,球没有接触篮筐”知:当x=2时y>3,当x=3时y<2,据此列出关于n的不等式组,解之可得.
【详解】
(1)∵A(2,2),B(3,2),D(2,3),
∴AD=BC=1, 则点 C(3,3),
故答案为:(3,3);
(2)把(0,0)(n,0)代入 y=﹣x2+bx+c 得:
,
解得:,
∴抛物线解析式为 y=﹣x2+nx=﹣(x﹣)2+,
∴顶点 N 坐标为(,);
(3)由(2)把 x=代入 y=x2=()2= ,
∴抛物线的顶点在函数 y=x2的图象上运动;
(4)根据题意,得:当 x=2 时 y>3,当 x=3 时 y<2, 即,
解得:
本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及将实际问题转化为二次函数的问题能力.
19、见解析
【解析】
先根据分式的混合运算顺序和运算法则化简原式,若原代数式的值为﹣1,则=﹣1,截至求得x的值,再根据分式有意义的条件即可作出判断.
【详解】
原式=[
=
=
=,
若原代数式的值为﹣1,则=﹣1,
解得:x=0,
因为x=0时,原式没有意义,
所以原代数式的值不能等于﹣1.
【点睛】
本题考查了分式的化简求值,熟练掌握运算法则是解题的关键.
20、(1);(2);(3)
【解析】
(1)OA=6,即BC=6,代入,即可得出点B的坐标
(2)将点B的坐标代入直线l中求出k即可得出解析式
(3)一次函数,必经过,要使y随x的增大而减小,即y值为,分别代入即可求出k的值.
【详解】
解:∵OA=6,矩形OABC中,BC=OA
∴BC=6
∵点B在直线上,
,解得x=8
故点B的坐标为(8,6)
故答案为(8,6)
(2)把点的坐标代入得,
解得:
∴
(3))∵一次函数,必经过),要使y随x的增大而减小
∴y值为
∴代入,
解得.
【点睛】
本题主要考待定系数法求一次函数解析式,关键要灵活运用一次函数图象上点的坐标特征进行解题.
21、(1)直线的解析式为:.(2)平移的时间为5秒.
【解析】
(1)求直线的解析式,可以先求出A、C两点的坐标,就可以根据待定系数法求出函数的解析式.
(2)设⊙O2平移t秒后到⊙O3处与⊙O1第一次外切于点P,⊙O3与x轴相切于D1点,连接O1O3,O3D1.
在直角△O1O3D1中,根据勾股定理,就可以求出O1D1,进而求出D1D的长,得到平移的时间.
【详解】
(1)由题意得,
∴点坐标为.
∵在中,,
,
∴点的坐标为.
设直线的解析式为,
由过、两点,
得,
解得,
∴直线的解析式为:.
(2)如图,
设平移秒后到处与第一次外切于点,
与轴相切于点,连接,.
则,
∵轴,∴,
在中,.
∵,
∴,
∴(秒),
∴平移的时间为5秒.
【点睛】
本题综合了待定系数法求函数解析式,以及圆的位置关系,其中两圆相切时的辅助线的作法是经常用到的.
22、树高为 5.5 米
【解析】
根据两角相等的两个三角形相似,可得 △DEF∽△DCB ,利用相似三角形的对边成比例,可得, 代入数据计算即得BC的长,由 AB=AC+BC ,即可求出树高.
【详解】
∵∠DEF=∠DCB=90°,∠D=∠D,
∴△DEF∽△DCB
∴ ,
∵DE=0.4m,EF=0.2m,CD=8m,
∴,
∴CB=4(m),
∴AB=AC+BC=1.5+4=5.5(米)
答:树高为 5.5 米.
【点睛】
本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.
23、技术改进后每天加工1个零件.
【解析】
分析:设技术改进前每天加工x个零件,则改进后每天加工1.5x个,根据题意列出分式方程,从而得出方程的解并进行检验得出答案.
详解:设技术改进前每天加工x个零件,则改进后每天加工1.5x个,
根据题意可得, 解得x=100,
经检验x=100是原方程的解,则改进后每天加工1.
答:技术改进后每天加工1个零件.
点睛:本题主要考查的是分式方程的应用,属于基础题型.根据题意得出等量关系是解题的关键,最后我们还必须要对方程的解进行检验.
24、(1);(2)(9﹣t);(3)①S =﹣t2+t﹣;②S=﹣t2+1.③S=(9﹣t)2;(3)3或或4或.
【解析】
(1)根据题意点R与点B重合时t+t=3,即可求出t的值;
(2)根据题意运用t表示出PQ即可;
(3)当点R落在□ABCD的外部时可得出t的取值范围,再根据等量关系列出函数关系式;
(3)根据等腰三角形的性质即可得出结论.
【详解】
解:(1)∵将线段PQ绕点P顺时针旋转90°,得到线段PR,
∴PQ=PR,∠QPR=90°,
∴△QPR为等腰直角三角形.
当运动时间为t秒时,AP=t,PQ=PQ=AP•tanA=t.
∵点R与点B重合,
∴AP+PR=t+t=AB=3,
解得:t=.
(2)当点P在BC边上时,3≤t≤9,CP=9﹣t,
∵tanA=,
∴tanC=,sinC=,
∴PQ=CP•sinC=(9﹣t).
(3)①如图1中,当<t≤3时,重叠部分是四边形PQKB.作KM⊥AR于M.
∵△KBR∽△QAR,
∴ =,
∴ =,
∴KM=(t﹣3)=t﹣,
∴S=S△PQR﹣S△KBR=×(t)2﹣×(t﹣3)(t﹣)=﹣t2+t﹣.
②如图2中,当3<t≤3时,重叠部分是四边形PQKB.
S=S△PQR﹣S△KBR=×3×3﹣×t×t=﹣t2+1.
③如图3中,当3<t<9时,重叠部分是△PQK.
S=•S△PQC=××(9﹣t)•(9﹣t)=(9﹣t)2.
(3)如图3中,
①当DC=DP1=3时,易知AP1=3,t=3.
②当DC=DP2时,CP2=2•CD•,
∴BP2=,
∴t=3+.
③当CD=CP3时,t=4.
④当CP3=DP3时,CP3=2÷,
∴t=9﹣=.
综上所述,满足条件的t的值为3或或4或.
【点睛】
本题考查四边形综合题、动点问题、平行四边形的性质、多边形的面积、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想解决问题,学会利用参数构建方程解决问题,属于中考压轴题.
2023年山东省济南市槐荫区中考数学三模试卷(含解析): 这是一份2023年山东省济南市槐荫区中考数学三模试卷(含解析),共28页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
2023年山东省济南市历下区四校联考中考数学一模试卷(含解析): 这是一份2023年山东省济南市历下区四校联考中考数学一模试卷(含解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
山东省济南市汇才校2021-2022学年中考数学模试卷含解析: 这是一份山东省济南市汇才校2021-2022学年中考数学模试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列各组数中,互为相反数的是,下列事件中必然发生的事件是,一次函数的图像不经过的象限是等内容,欢迎下载使用。