2022年山东省济南市莱芜区重点名校中考数学最后冲刺浓缩精华卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E为矩形ABCD边AD的中点,在矩形ABCD的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P从点B出发,沿着B﹣E﹣D的路线匀速行进,到达点D.设运动员P的运动时间为t,到监测点的距离为y.现有y与t的函数关系的图象大致如图2所示,则这一信息的来源是( )
A.监测点A B.监测点B C.监测点C D.监测点D
2. “龟兔赛跑”是同学们熟悉的寓言故事.如图所示,表示了寓言中的龟、兔的路程S和时间t的关系(其中直线段表示乌龟,折线段表示兔子).下列叙述正确的是( )
A.赛跑中,兔子共休息了50分钟
B.乌龟在这次比赛中的平均速度是0.1米/分钟
C.兔子比乌龟早到达终点10分钟
D.乌龟追上兔子用了20分钟
3.如图所示的四张扑克牌背面完全相同,洗匀后背面朝上,则从中任意翻开一张,牌面数字是 3 的倍数的概率为( )
A. B. C. D.
4.射击训练中,甲、乙、丙、丁四人每人射击10次,平均环数均为8.7环,方差分别为 ,,,,则四人中成绩最稳定的是( )
A.甲 B.乙 C.丙 D.丁
5.如图,“赵爽弦图”是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,大正方形与小正方形的边长之比是2∶1,若随机在大正方形及其内部区域投针,则针孔扎到小正方形(阴影部分)的概率是( )
A.0.2 B.0.25 C.0.4 D.0.5
6.一组数据3、2、1、2、2的众数,中位数,方差分别是( )
A.2,1,0.4 B.2,2,0.4
C.3,1,2 D.2,1,0.2
7.长度单位1纳米米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病毒直径是( )
A.米 B.米
C.米 D.米
8.二次函数y=ax2+bx+c(a≠0)的图象如图,下列四个结论:
①4a+c<0;②m(am+b)+b>a(m≠﹣1);③关于x的一元二次方程ax2+(b﹣1)x+c=0没有实数根;④ak4+bk2<a(k2+1)2+b(k2+1)(k为常数).其中正确结论的个数是( )
A.4个 B.3个 C.2个 D.1个
9.如图,在⊙O中,弦AB=CD,AB⊥CD于点E,已知CE•ED=3,BE=1,则⊙O的直径是( )
A.2 B. C.2 D.5
10.如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔60n mile的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东30°方向上的B处,这时,B处与灯塔P的距离为( )
A.60 n mile B.60 n mile C.30 n mile D.30 n mile
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,在△ABC中,AD、BE分别是BC、AC两边中线,则=_____.
12.函数的自变量的取值范围是.
13.如图,正方形ABCD边长为3,以直线AB为轴,将正方形旋转一周.所得圆柱的主视图(正视图)的周长是_____.
14.如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为_____.
15.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为_____.
16.计算(5ab3)2的结果等于_____.
三、解答题(共8题,共72分)
17.(8分)先化简,再求值:1+÷(1﹣),其中x=2cos30°+tan45°.
18.(8分)如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=1OD,OE=1OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.
(1)求证:DE⊥AG;
(1)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图1.
①在旋转过程中,当∠OAG′是直角时,求α的度数;
②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.
19.(8分)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:
时间x(天)
1≤x<50
50≤x≤90
售价(元/件)
x+40
90
每天销量(件)
200-2x
已知该商品的进价为每件30元,设销售该商品的每天利润为y元[求出y与x的函数关系式;问销售该商品第几天时,当天销售利润最大,最大利润是多少?该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.
20.(8分)如图,抛物线y=ax2﹣2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A坐标为(4,0).
(1)求该抛物线的解析式;
(2)抛物线的顶点为N,在x轴上找一点K,使CK+KN最小,并求出点K的坐标;
(3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
(4)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
21.(8分)为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看次的人数没有标出).
根据上述信息,解答下列各题:
×
(1)该班级女生人数是__________,女生收看“两会”新闻次数的中位数是________;
(2)对于某个群体,我们把一周内收看某热点新闻次数不低于次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低,试求该班级男生人数;
(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表).
统计量
平均数(次)
中位数(次)
众数(次)
方差
…
该班级男生
…
根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.
22.(10分)如图,在菱形ABCD中,E、F分别为AD和CD上的点,且AE=CF,连接AF、CE交于点G,求证:点G在BD上.
23.(12分)为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A、B、C、D四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.抽查D厂家的零件为 件,扇形统计图中D厂家对应的圆心角为 ;抽查C厂家的合格零件为 件,并将图1补充完整;通过计算说明合格率排在前两名的是哪两个厂家;若要从A、B、C、D四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率.
24.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E. F.试判断直线BC与⊙O的位置关系,并说明理由;若BD=2,BF=2,求⊙O的半径.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
试题解析:、由监测点监测时,函数值随的增大先减少再增大.故选项错误;
、由监测点监测时,函数值随的增大而增大,故选项错误;
、由监测点监测时,函数值随的增大先减小再增大,然后再减小,选项正确;
、由监测点监测时,函数值随的增大而减小,选项错误.
故选.
2、D
【解析】
分析:根据图象得出相关信息,并对各选项一一进行判断即可.
详解:由图象可知,在赛跑中,兔子共休息了:50-10=40(分钟),故A选项错误;
乌龟跑500米用了50分钟,平均速度为:(米/分钟),故B选项错误;
兔子是用60分钟到达终点,乌龟是用50分钟到达终点,兔子比乌龟晚到达终点10分钟,故C选项错误;
在比赛20分钟时,乌龟和兔子都距起点200米,即乌龟追上兔子用了20分钟,故D选项正确.
故选D.
点睛:本题考查了从图象中获取信息的能力.正确识别图象、获取信息并进行判断是解题的关键.
3、C
【解析】
根据题意确定所有情况的数目,再确定符合条件的数目,根据概率的计算公式即可.
【详解】
解:由题意可知,共有4种情况,其中是 3 的倍数的有6和9,
∴是 3 的倍数的概率,
故答案为:C.
【点睛】
本题考查了概率的计算,解题的关键是熟知概率的计算公式.
4、D
【解析】
根据方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好可得答案.
【详解】
∵0.45<0.51<0.62,
∴丁成绩最稳定,
故选D.
【点睛】
此题主要考查了方差,关键是掌握方差越小,稳定性越大.
5、B
【解析】
设大正方形边长为2,则小正方形边长为1,所以大正方形面积为4,小正方形面积为1,则针孔扎到小正方形(阴影部分)的概率是0.1.
【详解】
解:设大正方形边长为2,则小正方形边长为1,
因为面积比是相似比的平方,
所以大正方形面积为4,小正方形面积为1,
则针孔扎到小正方形(阴影部分)的概率是;
故选:B.
【点睛】
本题考查了概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.
6、B
【解析】
试题解析:从小到大排列此数据为:1,2,2,2,3;数据2出现了三次最多为众数,2处在第3位为中位数.平均数为(3+2+1+2+2)÷5=2,方差为 [(3-2)2+3×(2-2)2+(1-2)2]=0.1,即中位数是2,众数是2,方差为0.1.
故选B.
7、D
【解析】
先将25 100用科学记数法表示为2.51×104,再和10-9相乘,等于2.51×10-5米.
故选D
8、D
【解析】
①因为二次函数的对称轴是直线x=﹣1,由图象可得左交点的横坐标大于﹣3,小于﹣2,
所以﹣=﹣1,可得b=2a,
当x=﹣3时,y<0,
即9a﹣3b+c<0,
9a﹣6a+c<0,
3a+c<0,
∵a<0,
∴4a+c<0,
所以①选项结论正确;
②∵抛物线的对称轴是直线x=﹣1,
∴y=a﹣b+c的值最大,
即把x=m(m≠﹣1)代入得:y=am2+bm+c<a﹣b+c,
∴am2+bm<a﹣b,
m(am+b)+b<a,
所以此选项结论不正确;
③ax2+(b﹣1)x+c=0,
△=(b﹣1)2﹣4ac,
∵a<0,c>0,
∴ac<0,
∴﹣4ac>0,
∵(b﹣1)2≥0,
∴△>0,
∴关于x的一元二次方程ax2+(b﹣1)x+c=0有实数根;
④由图象得:当x>﹣1时,y随x的增大而减小,
∵当k为常数时,0≤k2≤k2+1,
∴当x=k2的值大于x=k2+1的函数值,
即ak4+bk2+c>a(k2+1)2+b(k2+1)+c,
ak4+bk2>a(k2+1)2+b(k2+1),
所以此选项结论不正确;
所以正确结论的个数是1个,
故选D.
9、C
【解析】
作OH⊥AB于H,OG⊥CD于G,连接OA,根据相交弦定理求出EA,根据题意求出CD,根据垂径定理、勾股定理计算即可.
【详解】
解:作OH⊥AB于H,OG⊥CD于G,连接OA,
由相交弦定理得,CE•ED=EA•BE,即EA×1=3,
解得,AE=3,
∴AB=4,
∵OH⊥AB,
∴AH=HB=2,
∵AB=CD,CE•ED=3,
∴CD=4,
∵OG⊥CD,
∴EG=1,
由题意得,四边形HEGO是矩形,
∴OH=EG=1,
由勾股定理得,OA=,
∴⊙O的直径为,
故选C.
【点睛】
此题考查了相交弦定理、垂径定理、勾股定理、矩形的判定与性质;根据图形作出相应的辅助线是解本题的关键.
10、B
【解析】
如图,作PE⊥AB于E.
在Rt△PAE中,∵∠PAE=45°,PA=60n mile,
∴PE=AE=×60=n mile,
在Rt△PBE中,∵∠B=30°,
∴PB=2PE=n mile.
故选B.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
利用三角形中位线的性质定理以及相似三角形的性质即可解决问题;
【详解】
∵AE=EC,BD=CD,
∴DE∥AB,DE=AB,
∴△EDC∽△ABC,
∴=,
故答案是:.
【点睛】
考查相似三角形的判定和性质、三角形中位线定理等知识,解题的关键是熟练掌握三角形中位线定理.
12、x≠1
【解析】
该题考查分式方程的有关概念
根据分式的分母不为0可得
X-1≠0,即x≠1
那么函数y=的自变量的取值范围是x≠1
13、1.
【解析】
分析:所得圆柱的主视图是一个矩形,矩形的宽是3,长是2.
详解:矩形的周长=3+3+2+2=1.
点睛:本题比较容易,考查三视图和学生的空间想象能力以及计算矩形的周长.
14、﹣2
【解析】
要求函数的解析式只要求出B点的坐标就可以,过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.根据条件得到△ACO∽△ODB,得到:=1,然后用待定系数法即可.
【详解】
过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.
设点A的坐标是(m,n),则AC=n,OC=m.
∵∠AOB=90°,
∴∠AOC+∠BOD=90°.
∵∠DBO+∠BOD=90°,
∴∠DBO=∠AOC.
∵∠BDO=∠ACO=90°,
∴△BDO∽△OCA.
∴,
∵OB=1OA,
∴BD=1m,OD=1n.
因为点A在反比例函数y=的图象上,
∴mn=1.
∵点B在反比例函数y=的图象上,
∴B点的坐标是(-1n,1m).
∴k=-1n•1m=-4mn=-2.
故答案为-2.
【点睛】
本题考查了反比例函数图象上点的坐标特征,相似三角形的判定和性质,利用相似三角形的性质求得点B的坐标(用含n的式子表示)是解题的关键.
15、
【解析】
解:∵弦CD∥AB,∴S△ACD=S△OCD,∴S阴影=S扇形COD==.故答案为.
16、25a2b1.
【解析】
代数式内每项因式均平方即可.
【详解】
解:原式=25a2b1.
【点睛】
本题考查了代数式的乘方.
三、解答题(共8题,共72分)
17、
【解析】
先化简分式,再计算x的值,最后把x的值代入化简后的分式,计算出结果.
【详解】
原式=
=1+
=1+
=
当x=2cos30°+tan45°
=2×+1
=+1时.
=
【点睛】
本题主要考查了分式的加减及锐角三角函数值.解决本题的关键是掌握分式的运算法则和运算顺序.
18、(1)见解析;(1)30°或150°,的长最大值为,此时.
【解析】
(1)延长ED交AG于点H,易证△AOG≌△DOE,得到∠AGO=∠DEO,然后运用等量代换证明∠AHE=90°即可;
(1)①在旋转过程中,∠OAG′成为直角有两种情况:α由0°增大到90°过程中,当∠OAG′=90°时,α=30°,α由90°增大到180°过程中,当∠OAG′=90°时,α=150°;
②当旋转到A、O、F′在一条直线上时,AF′的长最大,AF′=AO+OF′=+1,此时α=315°.
【详解】
(1)如图1,延长ED交AG于点H,
∵点O是正方形ABCD两对角线的交点,
∴OA=OD,OA⊥OD,
∵OG=OE,
在△AOG和△DOE中,
,
∴△AOG≌△DOE,
∴∠AGO=∠DEO,
∵∠AGO+∠GAO=90°,
∴∠GAO+∠DEO=90°,
∴∠AHE=90°,
即DE⊥AG;
(1)①在旋转过程中,∠OAG′成为直角有两种情况:
(Ⅰ)α由0°增大到90°过程中,当∠OAG′=90°时,
∵OA=OD=OG=OG′,
∴在Rt△OAG′中,sin∠AG′O==,
∴∠AG′O=30°,
∵OA⊥OD,OA⊥AG′,
∴OD∥AG′,
∴∠DOG′=∠AG′O=30°∘,
即α=30°;
(Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时,
同理可求∠BOG′=30°,
∴α=180°−30°=150°.
综上所述,当∠OAG′=90°时,α=30°或150°.
②如图3,当旋转到A. O、F′在一条直线上时,AF′的长最大,
∵正方形ABCD的边长为1,
∴OA=OD=OC=OB=,
∵OG=1OD,
∴OG′=OG=,
∴OF′=1,
∴AF′=AO+OF′=+1,
∵∠COE′=45°,
∴此时α=315°.
【点睛】
本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,掌握正方形的四条边相等、四个角相等,旋转变换的性质是解题的关键,注意特殊角的三角函数值的应用.
19、(1);(2)第45天时,当天销售利润最大,最大利润是6050元;(3)41.
【解析】
(1)根据单价乘以数量,可得利润,可得答案.
(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案.
(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.
【详解】
(1)当1≤x<50时,,
当50≤x≤90时,,
综上所述:.
(2)当1≤x<50时,二次函数开口下,二次函数对称轴为x=45,
当x=45时,y最大=-2×452+180×45+2000=6050,
当50≤x≤90时,y随x的增大而减小,
当x=50时,y最大=6000,
综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元.
(3)解,结合函数自变量取值范围解得,
解,结合函数自变量取值范围解得
所以当20≤x≤60时,即共41天,每天销售利润不低于4800元.
【点睛】
本题主要考查了1.二次函数和一次函数的应用(销售问题);2.由实际问题列函数关系式;3. 二次函数和一次函数的性质;4.分类思想的应用.
20、(1)y=﹣;(1)点K的坐标为(,0);(2)点P的坐标为:(1+,1)或(1﹣,1)或(1+,2)或(1﹣,2).
【解析】
试题分析:(1)把A、C两点坐标代入抛物线解析式可求得a、c的值,可求得抛物线解析;
(1)可求得点C关于x轴的对称点C′的坐标,连接C′N交x轴于点K,再求得直线C′K的解析式,可求得K点坐标;
(2)过点E作EG⊥x轴于点G,设Q(m,0),可表示出AB、BQ,再证明△BQE≌△BAC,可表示出EG,可得出△CQE关于m的解析式,再根据二次函数的性质可求得Q点的坐标;
(4)分DO=DF、FO=FD和OD=OF三种情况,分别根据等腰三角形的性质求得F点的坐标,进一步求得P点坐标即可.
试题解析:(1)∵抛物线经过点C(0,4),A(4,0),
∴,解得 ,
∴抛物线解析式为y=﹣ x1+x+4;
(1)由(1)可求得抛物线顶点为N(1, ),
如图1,作点C关于x轴的对称点C′(0,﹣4),连接C′N交x轴于点K,则K点即为所求,
设直线C′N的解析式为y=kx+b,把C′、N点坐标代入可得 ,解得 ,
∴直线C′N的解析式为y=x-4 ,
令y=0,解得x= ,
∴点K的坐标为(,0);
(2)设点Q(m,0),过点E作EG⊥x轴于点G,如图1,
由﹣ x1+x+4=0,得x1=﹣1,x1=4,
∴点B的坐标为(﹣1,0),AB=6,BQ=m+1,
又∵QE∥AC,∴△BQE≌△BAC,
∴ ,即 ,解得EG= ;
∴S△CQE=S△CBQ﹣S△EBQ=(CO-EG)·BQ=(m+1)(4-)
= =-(m-1)1+2 .
又∵﹣1≤m≤4,
∴当m=1时,S△CQE有最大值2,此时Q(1,0);
(4)存在.在△ODF中,
(ⅰ)若DO=DF,∵A(4,0),D(1,0),
∴AD=OD=DF=1.
又在Rt△AOC中,OA=OC=4,
∴∠OAC=45°.
∴∠DFA=∠OAC=45°.
∴∠ADF=90°.
此时,点F的坐标为(1,1).
由﹣ x1+x+4=1,得x1=1+ ,x1=1﹣.
此时,点P的坐标为:P1(1+,1)或P1(1﹣,1);
(ⅱ)若FO=FD,过点F作FM⊥x轴于点M.
由等腰三角形的性质得:OM=OD=1,
∴AM=2.
∴在等腰直角△AMF中,MF=AM=2.
∴F(1,2).
由﹣ x1+x+4=2,得x1=1+,x1=1﹣.
此时,点P的坐标为:P2(1+,2)或P4(1﹣,2);
(ⅲ)若OD=OF,
∵OA=OC=4,且∠AOC=90°.
∴AC=4.
∴点O到AC的距离为1.
而OF=OD=1<1,与OF≥1矛盾.
∴在AC上不存在点使得OF=OD=1.
此时,不存在这样的直线l,使得△ODF是等腰三角形.
综上所述,存在这样的直线l,使得△ODF是等腰三角形.所求点P的坐标为:(1+,1)或(1﹣,1)或(1+,2)或(1﹣,2).
点睛:本题是二次函数综合题,主要考查待定系数法、三角形全等的判定与性质、等腰三角形的性质等,能正确地利用数形结合思想、分类讨论思想等进行解题是关键.
21、(1)20,1;(2)2人;(1)男生比女生的波动幅度大.
【解析】
(1)将柱状图中的女生人数相加即可求得总人数,中位数为第10与11名同学的次数的平均数.
(2)先求出该班女生对“两会”新闻的“关注指数”,即可得出该班男生对“两会”新闻的“关注指数”,再列方程解答即可.
(1)比较该班级男、女生收看“两会”新闻次数的波动大小,需要求出女生的方差.
【详解】
(1)该班级女生人数是2+5+6+5+2=20,女生收看“两会”新闻次数的中位数是1.
故答案为20,1.
(2)由题意:该班女生对“两会”新闻的“关注指数”为=65%,所以,男生对“两会”新闻的“关注指数”为60%.设该班的男生有x人,则=60%,解得:x=2.
答:该班级男生有2人.
(1)该班级女生收看“两会”新闻次数的平均数为=1,女生收看“两会”新闻次数的方差为:=.
∵2>,∴男生比女生的波动幅度大.
【点睛】
本题考查了平均数,中位数,方差的意义.解题的关键是明确平均数表示一组数据的平均程度,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.
22、见解析
【解析】
先连接AC,根据菱形性质证明△EAC≌△FCA,然后结合中垂线的性质即可证明点G在BD上.
【详解】
证明:如图,连接AC.
∵四边形ABCD是菱形,∴DA=DC,BD与AC互相垂直平分,
∴∠EAC=∠FCA.
∵AE=CF,AC=CA, ∴△EAC≌△FCA,
∴∠ECA=∠FAC, ∴GA=GC,
∴点G在AC的中垂线上,
∴点G在BD上.
【点睛】
此题重点考察学生对菱形性质的理解,掌握菱形性质和三角形全等证明方法是解题的关键.
23、(1)500, 90°;(2)380;(3)合格率排在前两名的是C、D两个厂家;(4)P(选中C、D)=.
【解析】
试题分析:(1)计算出D厂的零件比例,则D厂的零件数=总数×所占比例,D厂家对应的圆心角为360°×所占比例;
(2)C厂的零件数=总数×所占比例;
(3)计算出各厂的合格率后,进一步比较得出答案即可;
(4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.
试题解析:(1)D厂的零件比例=1-20%-20%-35%=25%,
D厂的零件数=2000×25%=500件;
D厂家对应的圆心角为360°×25%=90°;
(2)C厂的零件数=2000×20%=400件,
C厂的合格零件数=400×95%=380件,
如图:
(3)A厂家合格率=630÷(2000×35%)=90%,
B厂家合格率=370÷(2000×20%)=92.5%,
C厂家合格率=95%,
D厂家合格率470÷500=94%,
合格率排在前两名的是C、D两个厂家;
(4)根据题意画树形图如下:
共有12种情况,选中C、D的有2种,
则P(选中C、D)==.
考点:1.条形统计图;2.扇形统计图;3. 树状图法.
24、(1)相切,理由见解析;(1)1.
【解析】
(1)求出OD//AC,得到OD⊥BC,根据切线的判定得出即可;
(1)根据勾股定理得出方程,求出方程的解即可.
【详解】
(1)直线BC与⊙O的位置关系是相切,
理由是:连接OD,
∵OA=OD,
∴∠OAD=∠ODA,
∵AD平分∠CAB,
∴∠OAD=∠CAD,
∴∠ODA=∠CAD,
∴OD∥AC,
∵∠C=90°,
∴∠ODB=90°,即OD⊥BC,
∵OD为半径,
∴直线BC与⊙O的位置关系是相切;
(1)设⊙O的半径为R,
则OD=OF=R,
在Rt△BDO中,由勾股定理得:OB=BD+OD,
即(R+1) =(1)+R,
解得:R=1,
即⊙O的半径是1.
【点睛】
此题考查切线的判定,勾股定理,解题关键在于求出OD⊥BC.
2022年濉溪县重点达标名校中考数学最后冲刺浓缩精华卷含解析: 这是一份2022年濉溪县重点达标名校中考数学最后冲刺浓缩精华卷含解析,共20页。试卷主要包含了下列图形是轴对称图形的有等内容,欢迎下载使用。
2022年山东省菏泽市重点名校中考数学最后冲刺浓缩精华卷含解析: 这是一份2022年山东省菏泽市重点名校中考数学最后冲刺浓缩精华卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,四组数中等内容,欢迎下载使用。
2022年山东省菏泽市牡丹区重点名校中考数学最后冲刺浓缩精华卷含解析: 这是一份2022年山东省菏泽市牡丹区重点名校中考数学最后冲刺浓缩精华卷含解析,共15页。试卷主要包含了点A,下列运算正确的是,若分式有意义,则a的取值范围是等内容,欢迎下载使用。