2022年山东省临沂沂水县联考中考数学五模试卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(共10小题,每小题3分,共30分)
1.如图,在Rt△ABC中,∠ACB=90°,AC=2,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将 绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为( )
A. B. C. D.
2.初三(1)班的座位表如图所示,如果如图所示建立平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是( )
A.(6,3) B.(6,4) C.(7,4) D.(8,4)
3.学校小组名同学的身高(单位:)分别为:,,,,,则这组数据的中位数是( ).
A. B. C. D.
4.某区10名学生参加市级汉字听写大赛,他们得分情况如上表:那么这10名学生所得分数的平均数和众数分别是( )
人数 | 3 | 4 | 2 | 1 |
分数 | 80 | 85 | 90 | 95 |
A.85和82.5 B.85.5和85 C.85和85 D.85.5和80
5.如图,该图形经过折叠可以围成一个正方体,折好以后与“静”字相对的字是( )
A.着 B.沉 C.应 D.冷
6. “a是实数,|a|≥0”这一事件是( )
A.必然事件 B.不确定事件 C.不可能事件 D.随机事件
7.如果一个正多边形内角和等于1080°,那么这个正多边形的每一个外角等于( )
A. B. C. D.
8.如图,A,B是半径为1的⊙O上两点,且OA⊥OB.点P从A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束. 设运动时间为x,弦BP的长度为y,那么下面图象中可能表示y与x的函数关系的是
A.① B.④ C.②或④ D.①或③
9.2018的相反数是( )
A. B.2018 C.-2018 D.
10.﹣6的倒数是( )
A.﹣ B. C.﹣6 D.6
二、填空题(本大题共6个小题,每小题3分,共18分)
11.不等式组的解集为,则的取值范围为_____.
12.把多项式x3﹣25x分解因式的结果是_____
13.如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE,CB于点P,Q,连接AC,关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心,其中结论正确的是________(只需填写序号).
14.计算:
(1)()2=_____;
(2) =_____.
15.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为_______.
16.不等式组的非负整数解的个数是_____.
三、解答题(共8题,共72分)
17.(8分)先化简,再求值:,其中a=+1.
18.(8分)如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为63.4°,沿山坡向上走到P处再测得该建筑物顶点A的仰角为53°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度i=5:1.
(1)求此人所在位置点P的铅直高度.(结果精确到0.1米)
(2)求此人从所在位置点P走到建筑物底部B点的路程(结果精确到0.1米)(测倾器的高度忽略不计,参考数据:tan53°≈,tan63.4°≈2)
19.(8分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6米的B处安置高为1.5米的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长(结果保留小数点后一位,参考数据:).
20.(8分)一个口袋中有1个大小相同的小球,球面上分别写有数字1、2、1.从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球.
(1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;
(2)求两次摸出的球上的数字和为偶数的概率.
21.(8分)如图,在▱ABCD中,过点A作AE⊥BC于点E,AF⊥DC于点F,AE=AF.
(1)求证:四边形ABCD是菱形;
(2)若∠EAF=60°,CF=2,求AF的长.
22.(10分)一辆高铁与一辆动车组列车在长为1320千米的京沪高速铁路上运行,已知高铁列车比动车组列车平均速度每小时快99千米,且高铁列车比动车组列车全程运行时间少3小时,求这辆高铁列车全程运行的时间和平均速度.
23.(12分)如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,BF平分∠ABC交AD于点E,交AC于点F,求证:AE=AF.
24.如图,△ABC三个顶点的坐标分别为A(1,1)、B(4,2)、C(3,4).
(1)画出△ABC关于y轴的对称图形△A1B1C1,并写出B1点的坐标;
(2)画出△ABC绕原点O旋转180°后得到的图形△A2B2C2,并写出B2点的坐标;
(3)在x轴上求作一点P,使△PAB的周长最小,并直接写出点P的坐标.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
阴影部分的面积=三角形的面积-扇形的面积,根据面积公式计算即可.
【详解】
解:由旋转可知AD=BD,
∵∠ACB=90°,AC=2,
∴CD=BD,
∵CB=CD,
∴△BCD是等边三角形,
∴∠BCD=∠CBD=60°,
∴BC=AC=2,
∴阴影部分的面积=2×2÷2−=2−.
故选:B.
【点睛】
本题考查了旋转的性质与扇形面积的计算,解题的关键是熟练的掌握旋转的性质与扇形面积的计算.
2、C
【解析】
根据题意知小李所对应的坐标是(7,4).
故选C.
3、C
【解析】
根据中位数的定义进行解答
【详解】
将5名同学的身高按从高到矮的顺序排列:159、156、152、151、147,因此这组数据的中位数是152.故选C.
【点睛】
本题主要考查中位数,解题的关键是熟练掌握中位数的定义:一组数据按从小到大(或从大到小)的顺序依次排列,处在中间位置的一个数(或最中间两个数据的平均数)称为中位数.
4、B
【解析】
根据众数及平均数的定义,即可得出答案.
【详解】
解:这组数据中85出现的次数最多,故众数是85;平均数= (80×3+85×4+90×2+95×1)=85.5.
故选:B.
【点睛】
本题考查了众数及平均数的知识,掌握各部分的概念是解题关键.
5、A
【解析】
正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答
【详解】
这是一个正方体的平面展开图,共有六个面,其中面“沉”与面“考”相对,面“着”与面“静”相对,“冷”与面“应”相对.
故选:A
【点睛】
本题主要考查了利用正方体及其表面展开图的特点解题,明确正方体的展开图的特征是解决此题的关键
6、A
【解析】
根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,由a是实数,得|a|≥0恒成立,因此,这一事件是必然事件.故选A.
7、A
【解析】
首先设此多边形为n边形,根据题意得:180(n-2)=1080,即可求得n=8,再由多边形的外角和等于360°,即可求得答案.
【详解】
设此多边形为n边形,
根据题意得:180(n-2)=1080,
解得:n=8,
∴这个正多边形的每一个外角等于:360°÷8=45°.
故选A.
【点睛】
此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.
8、D
【解析】
分两种情形讨论当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,由此即可解决问题.
【详解】
解:当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①.
故选D.
9、C
【解析】
【分析】根据只有符号不同的两个数互为相反数进行解答即可得.
【详解】2018与-2018只有符号不同,
由相反数的定义可得2018的相反数是-2018,
故选C.
【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.
10、A
【解析】
解:﹣6的倒数是﹣.故选A.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、k≥1
【解析】
解不等式2x+9>6x+1可得x<2,解不等式x-k<1,可得x<k+1,由于x<2,可知k+1≥2,解得k≥1.
故答案为k≥1.
12、x(x+5)(x﹣5).
【解析】
分析:首先提取公因式x,再利用平方差公式分解因式即可.
详解:x3-25x
=x(x2-25)
=x(x+5)(x-5).
故答案为x(x+5)(x-5).
点睛:此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
13、②③
【解析】
试题分析:∠BAD与∠ABC不一定相等,选项①错误;
∵GD为圆O的切线,∴∠GDP=∠ABD,又AB为圆O的直径,∴∠ADB=90°,∵CF⊥AB,∴∠AEP=90°,∴∠ADB=∠AEP,又∠PAE=∠BAD,∴△APE∽△ABD,∴∠ABD=∠APE,又∠APE=∠GPD,∴∠GDP=∠GPD,∴GP=GD,选项②正确;
由AB是直径,则∠ACQ=90°,如果能说明P是斜边AQ的中点,那么P也就是这个直角三角形外接圆的圆心了.Rt△BQD中,∠BQD=90°-∠6, Rt△BCE中,∠8=90°-∠5,而∠7=∠BQD,∠6=∠5, 所以∠8=∠7, 所以CP=QP;由②知:∠3=∠5=∠4,则AP=CP; 所以AP=CP=QP,则点P是△ACQ的外心,选项③正确.
则正确的选项序号有②③.故答案为②③.
考点:1.切线的性质;2.圆周角定理;3.三角形的外接圆与外心;4.相似三角形的判定与性质.
14、
【解析】
(1)直接利用分式乘方运算法则计算得出答案;
(2)直接利用分式除法运算法则计算得出答案.
【详解】
(1)()2=;
故答案为;
(2) ==.
故答案为.
【点睛】
此题主要考查了分式的乘除法运算,正确掌握运算法则是解题关键.
15、
【解析】
如图,作OH⊥CD于H,连结OC,根据垂径定理得HC=HD,由题意得OA=4,即OP=2,在Rt△OPH中,根据含30°的直角三角形的性质计算出OH=OP=1,然后在在Rt△OHC中,利用勾股定理计算得到CH=,即CD=2CH=2.
【详解】
解:如图,作OH⊥CD于H,连结OC,
∵OH⊥CD,
∴HC=HD,
∵AP=2,BP=6,
∴AB=8,
∴OA=4,
∴OP=OA﹣AP=2,
在Rt△OPH中,
∵∠OPH=30°,
∴∠POH=60°,
∴OH=OP=1,
在Rt△OHC中,
∵OC=4,OH=1,
∴CH=,
∴CD=2CH=2.
故答案为2.
【点睛】
本题主要考查了圆的垂径定理,勾股定理和含30°角的直角三角形的性质,解此题的关键在于作辅助线得到直角三角形,再合理利用各知识点进行计算即可
16、1
【解析】
先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可得到不等式组的解集.
【详解】
解:
解①得:x≥﹣,
解②得:x<1,
∴不等式组的解集为﹣≤x<1,
∴其非负整数解为0、1、2、3、4共1个,
故答案为1.
【点睛】
本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.
三、解答题(共8题,共72分)
17、
【解析】
原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.
【详解】
原式=
=,
当a=+1时,原式=.
【点睛】
本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.
18、(1)此人所在P的铅直高度约为14.3米;(2)从P到点B的路程约为17.1米
【解析】
分析:(1)过P作PF⊥BD于F,作PE⊥AB于E,设PF=5x,在Rt△ABC中求出AB,用含x的式子表示出AE,EP,由tan∠APE,求得x即可;(2)在Rt△CPF中,求出CP的长.
详解:过P作PF⊥BD于F,作PE⊥AB于E,
∵斜坡的坡度i=5:1,
设PF=5x,CF=1x,
∵四边形BFPE为矩形,
∴BF=PEPF=BE.
在RT△ABC中,BC=90,
tan∠ACB=,
∴AB=tan63.4°×BC≈2×90=180,
∴AE=AB-BE=AB-PF=180-5x,
EP=BC+CF≈90+10x.
在RT△AEP中,
tan∠APE=,
∴x=,
∴PF=5x=.
答:此人所在P的铅直高度约为14.3米.
由(1)得CP=13x,
∴CP=13×37.1,BC+CP=90+37.1=17.1.
答:从P到点B的路程约为17.1米.
点睛:本题考查了解直角三角形的应用,关键是正确的画出与实际问题相符合的几何图形,找出图形中的相关线段或角的实际意义及所要解决的问题,构造直角三角形,用勾股定理或三角函数求相应的线段长.
19、5.7米.
【解析】
试题分析:由题意,过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.
试题解析:解:如答图,过点A作AH⊥CD,垂足为H,
由题意可知四边形ABDH为矩形,∠CAH=30°,
∴AB=DH=1.5,BD=AH=6.
在Rt△ACH中,CH=AH•tan∠CAH=6tan30°=6×,
∵DH=1.5,∴CD=+1.5.
在Rt△CDE中,∵∠CED=60°,∴CE=(米).
答:拉线CE的长约为5.7米.
考点:1.解直角三角形的应用(仰角俯角问题);2.锐角三角函数定义;3.特殊角的三角函数值;4.矩形的判定和性质.
20、(1)画树状图得:
则共有9种等可能的结果;
(2)两次摸出的球上的数字和为偶数的概率为:.
【解析】
试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;
(2)由(1)可求得两次摸出的球上的数字和为偶数的有5种情况,再利用概率公式即可求得答案.
试题解析:(1)画树状图得:
则共有9种等可能的结果;
(2)由(1)得:两次摸出的球上的数字和为偶数的有5种情况,
∴两次摸出的球上的数字和为偶数的概率为:.
考点:列表法与树状图法.
21、 (1)见解析;(2)2
【解析】
(1) 方法一: 连接AC, 利用角平分线判定定理, 证明DA=DC即可;
方法二: 只要证明△AEB≌△AFD. 可得AB=AD即可解决问题;
(2) 在Rt△ACF, 根据AF=CF·tan∠ACF计算即可.
【详解】
(1)证法一:连接AC,如图.
∵AE⊥BC,AF⊥DC,AE=AF,
∴∠ACF=∠ACE,
∵四边形ABCD是平行四边形,
∴AD∥BC.
∴∠DAC=∠ACB.
∴∠DAC=∠DCA,
∴DA=DC,
∴四边形ABCD是菱形.
证法二:如图,
∵四边形ABCD是平行四边形,
∴∠B=∠D.
∵AE⊥BC,AF⊥DC,
∴∠AEB=∠AFD=90°,
又∵AE=AF,
∴△AEB≌△AFD.
∴AB=AD,
∴四边形ABCD是菱形.
(2)连接AC,如图.
∵AE⊥BC,AF⊥DC,∠EAF=60°,
∴∠ECF=120°,
∵四边形ABCD是菱形,
∴∠ACF=60°,
在Rt△CFA中,AF=CF•tan∠ACF=2.
【点睛】
本题主要考查三角形的性质及三角函数的相关知识,充分利用已知条件灵活运用各种方法求解可得到答案。
22、这辆高铁列车全程运行的时间为1小时,平均速度为264千米/小时.
【解析】
设动车组列车的平均速度为x千米/小时,则高铁列车的平均速度为(x+99)千米/小时,根据时间=路程÷速度结合高铁列车比动车组列车全程运行时间少3小时,即可得出关于x的分式方程,解之经检验后即可得出结论.
【详解】
设动车组列车的平均速度为x千米/小时,则高铁列车的平均速度为(x+99)千米/小时,
根据题意得:﹣=3,
解得:x1=161,x2=﹣264(不合题意,舍去),
经检验,x=161是原方程的解,
∴x+99=264,1320÷(x+99)=1.
答:这辆高铁列车全程运行的时间为1小时,平均速度为264千米/小时.
【点睛】
本题考查了列分式方程解实际问题的运用及分式方程的解法的运用,解答时根据条件建立方程是关键,解答时对求出的根必须检验,这是解分式方程的必要步骤.
23、见解析
【解析】
根据角平分线的定义可得∠ABF=∠CBF,由已知条件可得∠ABF+∠AFB=∠CBF+∠BED=90°,根据余角的性质可得∠AFB=∠BED,即可求得∠AFE=∠AEF,由等腰三角形的判定即可证得结论.
【详解】
∵BF 平分∠ABC,
∴∠ABF=∠CBF,
∵∠BAC=90°,AD⊥BC,
∴∠ABF+∠AFB=∠CBF+∠BED=90°,
∴∠AFB=∠BED,
∵∠AEF=∠BED,
∴∠AFE=∠AEF,
∴AE=AF.
【点睛】
本题考查了等腰三角形的判定、直角三角形的性质,根据余角的性质证得∠AFB=∠BED是解题的关键.
24、(1)画图见解析;(2)画图见解析;(3)画图见解析.
【解析】
试题分析:(1)、根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;(2)、根据网格结构找出点A、B、C关于原点的对称点A2、B2、C2的位置,然后顺次连接即可;(3)、找出点A关于x轴的对称点A′,连接A′B与x轴相交于一点,根据轴对称确定最短路线问题,交点即为所求的点P的位置,然后连接AP、BP并根据图象写出点P的坐标即可.
试题解析:(1)、△A1B1C1如图所示;B1点的坐标(-4,2)
(2)、△A2B2C2如图所示;B2点的坐标:(-4,-2)
(3)、△PAB如图所示,P(2,0).
考点:(1)、作图-旋转变换;(2)、轴对称-最短路线问题;(3)、作图-平移变换.
2023年山东省临沂市沂水县中考数学一模试卷(含解析): 这是一份2023年山东省临沂市沂水县中考数学一模试卷(含解析),共21页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
2022年山东省临沂费县联考中考联考数学试卷含解析: 这是一份2022年山东省临沂费县联考中考联考数学试卷含解析,共19页。试卷主要包含了点M,一组数据1,2,3,3,4,1等内容,欢迎下载使用。
2021-2022学年山东省临沂莒南县联考中考数学五模试卷含解析: 这是一份2021-2022学年山东省临沂莒南县联考中考数学五模试卷含解析,共22页。