终身会员
搜索
    上传资料 赚现金
    2022年山东省聊城市阳谷县中考适应性考试数学试题含解析
    立即下载
    加入资料篮
    2022年山东省聊城市阳谷县中考适应性考试数学试题含解析01
    2022年山东省聊城市阳谷县中考适应性考试数学试题含解析02
    2022年山东省聊城市阳谷县中考适应性考试数学试题含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年山东省聊城市阳谷县中考适应性考试数学试题含解析

    展开
    这是一份2022年山东省聊城市阳谷县中考适应性考试数学试题含解析,共23页。试卷主要包含了下列计算中,正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.平面上直线a、c与b相交(数据如图),当直线c绕点O旋转某一角度时与a平行,则旋转的最小度数是( )

    A.60° B.50° C.40° D.30°
    2.实数a,b,c在数轴上对应点的位置如图所示,则下列结论中正确的是(  )

    A.a+c>0 B.b+c>0 C.ac>bc D.a﹣c>b﹣c
    3.定义:若点P(a,b)在函数y=的图象上,将以a为二次项系数,b为一次项系数构造的二次函数y=ax2+bx称为函数y=的一个“派生函数”.例如:点(2, )在函数y=的图象上,则函数y=2x2+称为函数y=的一个“派生函数”.现给出以下两个命题:
    (1)存在函数y=的一个“派生函数”,其图象的对称轴在y轴的右侧
    (2)函数y=的所有“派生函数”的图象都经过同一点,下列判断正确的是(  )
    A.命题(1)与命题(2)都是真命题
    B.命题(1)与命题(2)都是假命题
    C.命题(1)是假命题,命题(2)是真命题
    D.命题(1)是真命题,命题(2)是假命题
    4.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C,对称轴为直线x=-1,点B的坐标为(1,0),则下列结论:①AB=4;②b2-4ac>0;③ab<0;④a2-ab+ac<0,其中正确的结论有(  )个.

    A.3 B.4 C.2 D.1
    5.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )
    A.众数 B.方差 C.平均数 D.中位数
    6.下列标志中,可以看作是轴对称图形的是( )
    A. B. C. D.
    7.如图,由两个相同的正方体和一个圆锥体组成一个立体图形,其俯视图是

    A. B. C. D.
    8.下列计算中,正确的是(  )
    A.a•3a=4a2 B.2a+3a=5a2
    C.(ab)3=a3b3 D.7a3÷14a2=2a
    9.如图,D是等边△ABC边AD上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E、F分别在AC、BC上,则CE:CF=( )

    A. B. C. D.
    10.我国古代数学著作《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何。”大致意思是:“用一根绳子去量一根木条,绳长剩余4.5尺,将绳子对折再量木条,木条剩余一尺,问木条长多少尺”,设绳子长尺,木条长尺,根据题意所列方程组正确的是( )
    A. B. C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.分解因式:m2n﹣2mn+n= .
    12.布袋中装有2个红球和5个白球,它们除颜色外其它都相同.如果从这个布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是 ________.
    13.如图,在△ABC中,∠ACB=90°,∠ABC=60°,AB=6cm,将△ABC以点B为中心顺时针旋转,使点C旋转到AB边延长线上的点D处,则AC边扫过的图形(阴影部分)的面积是_____cm1.(结果保留π).

    14.已知点A(x1,y1),B(x2,y2)在直线y=kx+b上,且直线经过第一、三、四象限,当x1<x2时,y1与y2的大小关系为______________.
    15.如图,是由一些大小相同的小正方体搭成的几何体分别从正面看和从上面看得到的平面图形,则搭成该几何体的小正方体最多是_______个.

    16.如图,在△ABC中,AB=BC,∠ABC=110°,AB的垂直平分线DE交AC于点D,连接BD,则∠ABD= ___________°.

    17.如图所示,轮船在处观测灯塔位于北偏西方向上,轮船从处以每小时海里的速度沿南偏西方向匀速航行,小时后到达码头处,此时,观测灯塔位于北偏西方向上,则灯塔与码头的距离是______海里(结果精确到个位,参考数据:,,)

    三、解答题(共7小题,满分69分)
    18.(10分)如图,已知函数(x>0)的图象经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图象经过点A、D,与x轴的负半轴交于点E.
    若AC=OD,求a、b的值;若BC∥AE,求BC的长.
    19.(5分)如图1,三个正方形ABCD、AEMN、CEFG,其中顶点D、C、G在同一条直线上,点E是BC边上的动点,连结AC、AM.
    (1)求证:△ACM∽△ABE.
    (2)如图2,连结BD、DM、MF、BF,求证:四边形BFMD是平行四边形.
    (3)若正方形ABCD的面积为36,正方形CEFG的面积为4,求五边形ABFMN的面积.

    20.(8分)某工厂准备用图甲所示的A型正方形板材和B型长方形板材,制作成图乙所示的竖式和横式两种无盖箱子.
    若该工厂准备用不超过10000元的资金去购买A,B两种型号板材,并全部制作竖式箱子,已知A型板材每张30元,B型板材每张90元,求最多可以制作竖式箱子多少只?
    若该工厂仓库里现有A型板材65张、B型板材110张,用这批板材制作两种类型的箱子,问制作竖式和横式两种箱子各多少只,恰好将库存的板材用完?
    若该工厂新购得65张规格为的C型正方形板材,将其全部切割成A型或B型板材不计损耗,用切割成的板材制作两种类型的箱子,要求竖式箱子不少于20只,且材料恰好用完,则能制作两种箱子共______只

    21.(10分)问题提出
    (1)如图1,正方形ABCD的对角线交于点O,△CDE是边长为6的等边三角形,则O、E之间的距离为 ;
    问题探究
    (2)如图2,在边长为6的正方形ABCD中,以CD为直径作半圆O,点P为弧CD上一动点,求A、P之间的最大距离;
    问题解决
    (3)窑洞是我省陕北农村的主要建筑,窑洞宾馆更是一道靓丽的风景线,是因为窑洞除了它的坚固性及特有的外在美之外,还具有冬暖夏凉的天然优点家住延安农村的一对即将参加中考的双胞胎小宝和小贝两兄弟,发现自家的窑洞(如图3所示)的门窗是由矩形ABCD及弓形AMD组成,AB=2m,BC=3.2m,弓高MN=1.2m(N为AD的中点,MN⊥AD),小宝说,门角B到门窗弓形弧AD的最大距离是B、M之间的距离.小贝说这不是最大的距离,你认为谁的说法正确?请通过计算求出门角B到门窗弓形弧AD的最大距离.

    22.(10分)矩形AOBC中,OB=4,OA=1.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=(k>0)的图象与边AC交于点E。当点F运动到边BC的中点时,求点E的坐标;连接EF,求∠EFC的正切值;如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式.

    23.(12分). 在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为 ;小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.

    24.(14分)如图,在菱形ABCD中,E、F分别为AD和CD上的点,且AE=CF,连接AF、CE交于点G,求证:点G在BD上.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    先根据平角的定义求出∠1的度数,再由平行线的性质即可得出结论.
    【详解】
    解:∵∠1=180°﹣100°=80°,a∥c,
    ∴∠α=180°﹣80°﹣60°=40°.
    故选:C.

    【点睛】
    本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.
    2、D
    【解析】
    分析:根据图示,可得:c 详解: ∵c<0<a,|c|>|a|,
    ∴a+c<0,
    ∴选项A不符合题意;
    ∵c<b<0,
    ∴b+c<0,
    ∴选项B不符合题意;
    ∵c<b<0<a,c<0,
    ∴ac<0,bc>0,
    ∴ac<bc,
    ∴选项C不符合题意;
    ∵a>b,
    ∴a﹣c>b﹣c,
    ∴选项D符合题意.
    故选D.
    点睛:此题考查了数轴,考查了有理数的大小比较关系,考查了不等关系与不等式.熟记有理数大小比较法则,即正数大于0,负数小于0,正数大于一切负数.
    3、C
    【解析】
    试题分析:(1)根据二次函数y=ax2+bx的性质a、b同号对称轴在y轴左侧,a、b异号对称轴在y轴右侧即可判断.(2)根据“派生函数”y=ax2+bx,x=0时,y=0,经过原点,不能得出结论.
    (1)∵P(a,b)在y=上, ∴a和b同号,所以对称轴在y轴左侧,
    ∴存在函数y=的一个“派生函数”,其图象的对称轴在y轴的右侧是假命题.
    (2)∵函数y=的所有“派生函数”为y=ax2+bx, ∴x=0时,y=0,
    ∴所有“派生函数”为y=ax2+bx经过原点,
    ∴函数y=的所有“派生函数”,的图象都进过同一点,是真命题.
    考点:(1)命题与定理;(2)新定义型
    4、A
    【解析】
    利用抛物线的对称性可确定A点坐标为(-3,0),则可对①进行判断;利用判别式的意义和抛物线与x轴有2个交点可对②进行判断;由抛物线开口向下得到a>0,再利用对称轴方程得到b=2a>0,则可对③进行判断;利用x=-1时,y<0,即a-b+c<0和a>0可对④进行判断.
    【详解】
    ∵抛物线的对称轴为直线x=-1,点B的坐标为(1,0),
    ∴A(-3,0),
    ∴AB=1-(-3)=4,所以①正确;
    ∵抛物线与x轴有2个交点,
    ∴△=b2-4ac>0,所以②正确;
    ∵抛物线开口向下,
    ∴a>0,
    ∵抛物线的对称轴为直线x=-=-1,
    ∴b=2a>0,
    ∴ab>0,所以③错误;
    ∵x=-1时,y<0,
    ∴a-b+c<0,
    而a>0,
    ∴a(a-b+c)<0,所以④正确.
    故选A.
    【点睛】
    本题考查了抛物线与x轴的交点:对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0),△=b2-4ac决定抛物线与x轴的交点个数:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.也考查了二次函数的性质.
    5、D
    【解析】
    根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
    【详解】
    由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.
    故本题选:D.
    【点睛】
    本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键.
    6、D
    【解析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A、不是轴对称图形,是中心对称图形,不符合题意;
    B、不是轴对称图形,是中心对称图形,不符合题意;
    C、不是轴对称图形,是中心对称图形,不符合题意;
    D、是轴对称图形,符合题意.
    故选D.
    【点睛】
    本题考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.
    7、D
    【解析】
    由圆锥的俯视图可快速得出答案.
    【详解】
    找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中,从几何体的上面看:可以得到两个正方形,右边的正方形里面有一个内接圆.故选D.
    【点睛】
    本题考查立体图形的三视图,熟记基本立体图的三视图是解题的关键.
    8、C
    【解析】
    根据同底数幂的运算法则进行判断即可.
    【详解】
    解:A、a•3a=3a2,故原选项计算错误;
    B、2a+3a=5a,故原选项计算错误;
    C、(ab)3=a3b3,故原选项计算正确;
    D、7a3÷14a2=a,故原选项计算错误;
    故选C.
    【点睛】
    本题考点:同底数幂的混合运算.
    9、B
    【解析】
    解:由折叠的性质可得,∠EDF=∠C=60º,CE=DE,CF=DF
    再由∠BDF+∠ADE=∠BDF+∠BFD=120º
    可得∠ADE=∠BFD,又因∠A=∠B=60º,
    根据两角对应相等的两三角形相似可得△AED∽△BDF
    所以,
    设AD=a,BD=2a,AB=BC=CA=3a,
    再设CE==DE=x,CF==DF=y,则AE=3a-x,BF=3a-y,
    所以
    整理可得ay=3ax-xy,2ax=3ay-xy,即xy=3ax-ay①,xy=3ay-2ax②;
    把①代入②可得3ax-ay=3ay-2ax,所以5ax=4ay,,

    故选B.
    【点睛】
    本题考查相似三角形的判定及性质.
    10、A
    【解析】
    本题的等量关系是:绳长-木长=4.5;木长-×绳长=1,据此列方程组即可求解.
    【详解】
    设绳子长x尺,木条长y尺,依题意有

    故选A.
    【点睛】
    本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组.

    二、填空题(共7小题,每小题3分,满分21分)
    11、n(m﹣1)1.
    【解析】
    先提取公因式n后,再利用完全平方公式分解即可
    【详解】
    m1n﹣1mn+n=n(m1﹣1m+1)=n(m﹣1)1.
    故答案为n(m﹣1)1.
    12、
    【解析】
    试题解析:∵一个布袋里装有2个红球和5个白球,
    ∴摸出一个球摸到红球的概率为:.
    考点:概率公式.
    13、9π
    【解析】
    根据直角三角形两锐角互余求出∠BAC=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得BC=AB,然后求出阴影部分的面积=S扇形ABE﹣S扇形BCD,列计算即可得解.
    【详解】
    ∵∠C是直角,∠ABC=60°,
    ∴∠BAC=90°﹣60°=30°,
    ∴BC=AB=×6=3(cm),
    ∵△ABC以点B为中心顺时针旋转得到△BDE,
    ∴S△BDE=S△ABC,∠ABE=∠CBD=180°﹣60°=110°,
    ∴阴影部分的面积=S扇形ABE+S△BDE﹣S扇形BCD﹣S△ABC
    =S扇形ABE﹣S扇形BCD
    =﹣
    =11π﹣3π
    =9π(cm1).
    故答案为9π.
    【点睛】
    本题考查了旋转的性质,扇形的面积计算,直角三角形30°角所对的直角边等于斜边的一半的性质,求出阴影部分的面积等于两个扇形的面积的差是解题的关键.
    14、y1 【解析】
    直接利用一次函数的性质分析得出答案.
    【详解】
    解:∵直线经过第一、三、四象限,
    ∴y随x的增大而增大,
    ∵x1<x1,
    ∴y1与y1的大小关系为:y1<y1.
    故答案为:y1 【点睛】
    此题主要考查了一次函数图象上点的坐标特征,正确掌握一次函数增减性是解题关键.
    15、7
    【解析】
    首先利用从上面看而得出的俯视图得出该几何体的第一层是由几个小正方体组成,然后进一步根据其从正面看得出的主视图得知其第二层最多可以放几个小正方体,然后进一步计算即可得出答案.
    【详解】
    根据俯视图可得出第一层由5个小正方体组成;再结合主视图,该正方体第二层最多可放2个小正方体,
    ∴,
    ∴最多是7个,
    故答案为:7.
    【点睛】
    本题主要考查了三视图的运用,熟练掌握三视图的特性是解题关键.
    16、1
    【解析】
    ∵在△ABC中,AB=BC,∠ABC=110°, 
    ∴∠A=∠C=1°, 
    ∵AB的垂直平分线DE交AC于点D, 
    ∴AD=BD, 
    ∴∠ABD=∠A=1°;
    故答案是1.
    17、1
    【解析】
    作BD⊥AC于点D,在直角△ABD中,利用三角函数求得BD的长,然后在直角△BCD中,利用三角函数即可求得BC的长.
    【详解】
    ∠CBA=25°+50°=75°,
    作BD⊥AC于点D,
    则∠CAB=(90°﹣70°)+(90°﹣50°)=20°+40°=60°,
    ∠ABD=30°,
    ∴∠CBD=75°﹣30°=45°,
    在直角△ABD中,BD=AB•sin∠CAB=20×sin60°=20×=10,
    在直角△BCD中,∠CBD=45°,
    则BC=BD=10×=10≈10×2.4=1(海里),
    故答案是:1.

    【点睛】
    本题考查了解直角三角形的应用——方向角问题,正确求得∠CBD以及∠CAB的度数是解决本题的关键.

    三、解答题(共7小题,满分69分)
    18、(1)a=,b=2;(2)BC=.
    【解析】
    试题分析:(1)首先利用反比例函数图象上点的坐标性质得出k的值,再得出A、D点坐标,进而求出a,b的值;
    (2)设A点的坐标为:(m,),则C点的坐标为:(m,0),得出tan∠ADF=,tan∠AEC=,进而求出m的值,即可得出答案.
    试题解析:(1)∵点B(2,2)在函数y=(x>0)的图象上,
    ∴k=4,则y=,
    ∵BD⊥y轴,∴D点的坐标为:(0,2),OD=2,
    ∵AC⊥x轴,AC=OD,∴AC=3,即A点的纵坐标为:3,
    ∵点A在y=的图象上,∴A点的坐标为:(,3),
    ∵一次函数y=ax+b的图象经过点A、D,
    ∴,
    解得:,b=2;
    (2)设A点的坐标为:(m,),则C点的坐标为:(m,0),
    ∵BD∥CE,且BC∥DE,
    ∴四边形BCED为平行四边形,
    ∴CE=BD=2,
    ∵BD∥CE,∴∠ADF=∠AEC,
    ∴在Rt△AFD中,tan∠ADF=,
    在Rt△ACE中,tan∠AEC=,
    ∴=,
    解得:m=1,
    ∴C点的坐标为:(1,0),则BC=.
    考点:反比例函数与一次函数的交点问题.
    19、(1)证明见解析;(2)证明见解析;(3)74.
    【解析】
    (1)根据四边形ABCD和四边形AEMN都是正方形得,∠CAB=∠MAC=45°,∠BAE=∠CAM,可证△ACM∽△ABE;
    (2)连结AC,由△ACM∽△ABE得∠ACM=∠B=90°,易证∠MCD=∠BDC=45°,得BD∥CM,由MC=BE,FC=CE,得MF=BD,从而可以证明四边形BFMD是平行四边形;
    (3)根据S五边形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM求解即可.
    【详解】
    (1)证明:∵四边形ABCD和四边形AEMN都是正方形,
    ∴,∠CAB=∠MAC=45°,
    ∴∠CAB-∠CAE=∠MAC-∠CAE,
    ∴∠BAE=∠CAM,
    ∴△ACM∽△ABE.

    (2)证明:连结AC
    因为△ACM∽△ABE,则∠ACM=∠B=90°,
    因为∠ACB=∠ECF=45°,
    所以∠ACM+∠ACB+∠ECF=180°,
    所以点M,C,F在同一直线上,所以∠MCD=∠BDC=45°,
    所以BD平行MF,
    又因为MC=BE,FC=CE,
    所以MF=BC=BD,
    所以四边形BFMD是平行四边形

    (3)S五边形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM
    =62+42+(2+6)4+ 26
    =74.
    【点睛】
    本题主要考查了正方形的性质的应用,解此题的关键是能正确作出辅助线,综合性比较强,有一定的难度.
    20、(1)最多可以做25只竖式箱子;(2)能制作竖式、横式两种无盖箱子分别为5只和30只;(3)47或1.
    【解析】
    表示出竖式箱子所用板材数量进而得出总金额即可得出答案;设制作竖式箱子a只,横式箱子b只,利用A型板材65张、B型板材110张,得出方程组求出答案;设裁剪出B型板材m张,则可裁A型板材张,进而得出方程组求出符合题意的答案.
    【详解】
    解:设最多可制作竖式箱子x只,则A型板材x张,B型板材4x张,根据题意得

    解得.
    答:最多可以做25只竖式箱子.
    设制作竖式箱子a只,横式箱子b只,根据题意,
    得,
    解得:.
    答:能制作竖式、横式两种无盖箱子分别为5只和30只.
    设裁剪出B型板材m张,则可裁A型板材张,由题意得:

    整理得,,.
    竖式箱子不少于20只,
    或22,这时,或,.
    则能制作两种箱子共:或.
    故答案为47或1.
    【点睛】
    本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是理解题意,列出等式.
    21、(1);(2);(2)小贝的说法正确,理由见解析,.
    【解析】
    (1)连接AC,BD,由OE垂直平分DC可得DH长,易知OH、HE长,相加即可;
    (2)补全⊙O,连接AO并延长交⊙O右半侧于点P,则此时A、P之间的距离最大,在Rt△AOD中,由勾股定理可得AO长,易求AP长;
    (1)小贝的说法正确,补全弓形弧AD所在的⊙O,连接ON,OA,OD,过点O作OE⊥AB于点E,连接BO并延长交⊙O上端于点P,则此时B、P之间的距离即为门角B到门窗弓形弧AD的最大距离,在Rt△ANO中,设AO=r,由勾股定理可求出r,在Rt△OEB中,由勾股定理可得BO长,易知BP长.
    【详解】
    解:(1)如图1,连接AC,BD,对角线交点为O,连接OE交CD于H,则OD=OC.

    ∵△DCE为等边三角形,
    ∴ED=EC,
    ∵OD=OC
    ∴OE垂直平分DC,
    ∴DHDC=1.
    ∵四边形ABCD为正方形,
    ∴△OHD为等腰直角三角形,
    ∴OH=DH=1,
    在Rt△DHE中,
    HEDH=1,
    ∴OE=HE+OH=11;
    (2)如图2,补全⊙O,连接AO并延长交⊙O右半侧于点P,则此时A、P之间的距离最大,

    在Rt△AOD中,AD=6,DO=1,
    ∴AO1,

    ∴AP=AO+OP=11;
    (1)小贝的说法正确.理由如下,
    如图1,补全弓形弧AD所在的⊙O,连接ON,OA,OD,过点O作OE⊥AB于点E,连接BO并延长交⊙O上端于点P,则此时B、P之间的距离即为门角B到门窗弓形弧AD的最大距离,

    由题意知,点N为AD的中点,,
    ∴ANAD=1.6,ON⊥AD,
    在Rt△ANO中,
    设AO=r,则ON=r﹣1.2.
    ∵AN2+ON2=AO2,
    ∴1.62+(r﹣1.2)2=r2,
    解得:r,
    ∴AE=ON1.2,
    在Rt△OEB中,OE=AN=1.6,BE=AB﹣AE,
    ∴BO,
    ∴BP=BO+PO,
    ∴门角B到门窗弓形弧AD的最大距离为.
    【点睛】
    本题考查了圆与多边形的综合,涉及了圆的有关概念及性质、等边三角形的性质、正方形和长方形的性质、勾股定理等,灵活的利用两点之间线段最短,添加辅助线将题中所求最大距离转化为圆外一点到圆上的最大距离是解题的关键.
    22、(1)E(2,1);(2);(1).
    【解析】
    (1)先确定出点C坐标,进而得出点F坐标,即可得出结论;
    (2)先确定出点F的横坐标,进而表示出点F的坐标,得出CF,同理表示出CE,即可得出结论;
    (1)先判断出△EHG∽△GBF,即可求出BG,最后用勾股定理求出k,即可得出结论.
    【详解】
    (1)∵OA=1,OB=4,
    ∴B(4,0),C(4,1),
    ∵F是BC的中点,
    ∴F(4,),
    ∵F在反比例y=函数图象上,
    ∴k=4×=6,
    ∴反比例函数的解析式为y=,
    ∵E点的坐标为1,
    ∴E(2,1);
    (2)∵F点的横坐标为4,
    ∴F(4,),
    ∴CF=BC﹣BF=1﹣=
    ∵E的纵坐标为1,
    ∴E(,1),
    ∴CE=AC﹣AE=4﹣=,
    在Rt△CEF中,tan∠EFC=,
    (1)如图,由(2)知,CF=,CE=,,
    过点E作EH⊥OB于H,

    ∴EH=OA=1,∠EHG=∠GBF=90°,
    ∴∠EGH+∠HEG=90°,
    由折叠知,EG=CE,FG=CF,∠EGF=∠C=90°,
    ∴∠EGH+∠BGF=90°,
    ∴∠HEG=∠BGF,
    ∵∠EHG=∠GBF=90°,
    ∴△EHG∽△GBF,
    ∴,
    ∴,
    ∴BG=,
    在Rt△FBG中,FG2﹣BF2=BG2,
    ∴()2﹣()2=,
    ∴k=,
    ∴反比例函数解析式为y=.
    点睛:此题是反比例函数综合题,主要考查了待定系数法,中点坐标公式,相似三角形的判定和性质,锐角三角函数,求出CE:CF是解本题的关键.
    23、(1);(2)列表见解析,.
    【解析】
    试题分析:(1)一共有3种等可能的结果总数,摸出标有数字2的小球有1种可能,因此摸出的球为标有数字2的小球的概率为;(2)利用列表得出共有9种等可能的结果数,再找出点M落在如图所示的正方形网格内(包括边界)的结果数,可求得结果.
    试题解析:(1)P(摸出的球为标有数字2的小球)=;(2)列表如下:
    小华
    小丽

    -1

    0

    2

    -1

    (-1,-1)

    (-1,0)

    (-1,2)

    0

    (0,-1)

    (0,0)

    (0,2)

    2

    (2,-1)

    (2,0)

    (2,2)

    共有9种等可能的结果数,其中点M落在如图所示的正方形网格内(包括边界)的结果数为6,
    ∴P(点M落在如图所示的正方形网格内)==.
    考点:1列表或树状图求概率;2平面直角坐标系.
    24、见解析
    【解析】
    先连接AC,根据菱形性质证明△EAC≌△FCA,然后结合中垂线的性质即可证明点G在BD上.
    【详解】

    证明:如图,连接AC.
    ∵四边形ABCD是菱形,∴DA=DC,BD与AC互相垂直平分,
    ∴∠EAC=∠FCA.
    ∵AE=CF,AC=CA, ∴△EAC≌△FCA,
    ∴∠ECA=∠FAC, ∴GA=GC,
    ∴点G在AC的中垂线上,
    ∴点G在BD上.
    【点睛】
    此题重点考察学生对菱形性质的理解,掌握菱形性质和三角形全等证明方法是解题的关键.

    相关试卷

    2024年山东省聊城市阳谷县中考数学二模试卷(含解析): 这是一份2024年山东省聊城市阳谷县中考数学二模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年山东省聊城市阳谷县中考数学二模试卷(含解析): 这是一份2023年山东省聊城市阳谷县中考数学二模试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年山东省聊城市阳谷县中考数学三模试卷(含解析): 这是一份2023年山东省聊城市阳谷县中考数学三模试卷(含解析),共21页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map