搜索
    上传资料 赚现金
    英语朗读宝

    2022年山东省青岛43中中考数学模试卷含解析

    2022年山东省青岛43中中考数学模试卷含解析第1页
    2022年山东省青岛43中中考数学模试卷含解析第2页
    2022年山东省青岛43中中考数学模试卷含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年山东省青岛43中中考数学模试卷含解析

    展开

    这是一份2022年山东省青岛43中中考数学模试卷含解析,共22页。试卷主要包含了的平方根是,如图,点P等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为

    A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=1
    2.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )
    A.众数 B.方差 C.平均数 D.中位数
    3.如图,为了测量河对岸l1上两棵古树A、B之间的距离,某数学兴趣小组在河这边沿着与AB平行的直线l2上取C、D两点,测得∠ACB=15°,∠ACD=45°,若l1、l2之间的距离为50m,则A、B之间的距离为(  )

    A.50m B.25m C.(50﹣)m D.(50﹣25)m
    4.有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )

    A. B. C. D.
    5.的平方根是( )
    A.2 B. C.±2 D.±
    6.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为( )

    A.115° B.120° C.130° D.140°
    7.如图,点P(x,y)(x>0)是反比例函数y=(k>0)的图象上的一个动点,以点P为圆心,OP为半径的圆与x轴的正半轴交于点A,若△OPA的面积为S,则当x增大时,S的变化情况是(  )

    A.S的值增大 B.S的值减小
    C.S的值先增大,后减小 D.S的值不变
    8.如右图,⊿ABC内接于⊙O,若∠OAB=28°则∠C的大小为( )

    A.62° B.56° C.60° D.28°
    9.图1~图4是四个基本作图的痕迹,关于四条弧①、②、③、④有四种说法:
    弧①是以O为圆心,任意长为半径所画的弧;弧②是以P为圆心,任意长为半径所画的弧;弧③是以A为圆心,任意长为半径所画的弧;弧④是以P为圆心,任意长为半径所画的弧;
    其中正确说法的个数为(  )
    A.4 B.3 C.2 D.1
    10.如图,在中,,,,点在以斜边为直径的半圆上,点是的三等分点,当点沿着半圆,从点运动到点时,点运动的路径长为( )

    A.或 B.或 C.或 D.或
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.已知AD、BE是△ABC的中线,AD、BE相交于点F,如果AD=6,那么AF的长是_____.
    12.把多项式9x3﹣x分解因式的结果是_____.
    13.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是_________.

    14.若 m、n 是方程 x2+2018x﹣1=0 的两个根,则 m2n+mn2﹣mn=_________.
    15.如图,在矩形ABCD中,E、F分别是AD、CD的中点,沿着BE将△ABE折叠,点A刚好落在BF上,若AB=2,则AD=________.

    16.对于任意不相等的两个实数,定义运算※如下:※=,如3※2==.那么8※4= .
    三、解答题(共8题,共72分)
    17.(8分)如图①,二次函数的抛物线的顶点坐标C,与x轴的交于A(1,0)、B(﹣3,0)两点,与y轴交于点D(0,3).

    (1)求这个抛物线的解析式;
    (2)如图②,过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为﹣2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上是否存在一点H,使D、G、H、F四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;
    (3)如图③,连接AC交y轴于M,在x轴上是否存在点P,使以P、C、M为顶点的三角形与△AOM相似?若存在,求出点P的坐标;若不存在,请说明理由.
    18.(8分)我市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.A、B两种奖品每件各多少元?现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?
    19.(8分)一件上衣,每件原价500元,第一次降价后,销售甚慢,于是再次进行大幅降价,第二次降价的百分率是第一次降价的百分率的2倍,结果这批上衣以每件240元的价格迅速售出,求两次降价的百分率各是多少.
    20.(8分)为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制出如下的统计图①和图②,请跟进相关信息,解答下列问题:
    (1)本次抽测的男生人数为   ,图①中m的值为   ;
    (2)求本次抽测的这组数据的平均数、众数和中位数;
    (3)若规定引体向上5次以上(含5次)为体能达标,根据样本数据,估计该校350名九年级男生中有多少人体能达标.

    21.(8分)目前节能灯在城市已基本普及,今年某省面向农村地区推广,为响应号召,某商场用3300元购进节能灯100只,这两种节能灯的进价、售价如表:

    进价元只
    售价元只
    甲种节能灯
    30
    40
    乙种节能灯
    35
    50
    求甲、乙两种节能灯各进多少只?
    全部售完100只节能灯后,该商场获利多少元?
    22.(10分)某保健品厂每天生产A,B两种品牌的保健品共600瓶,A,B两种产品每瓶的成本和利润如表,设每天生产A产品x瓶,生产这两种产品每天共获利y元.
    (1)请求出y关于x的函数关系式;
    (2)如果该厂每天至少投入成本26 400元,那么每天至少获利多少元?
    (3)该厂每天生产的A,B两种产品被某经销商全部订购,厂家对A产品进行让利,每瓶利润降低元,厂家如何生产可使每天获利最大?最大利润是多少?

    A
    B
    成本(元/瓶)
    50
    35
    利润(元/瓶)
    20
    15

    23.(12分)已知抛物线y=x2﹣6x+9与直线y=x+3交于A,B两点(点A在点B的左侧),抛物线的顶点为C,直线y=x+3与x轴交于点D.
    (1)求抛物线的顶点C的坐标及A,B两点的坐标;
    (2)将抛物线y=x2﹣6x+9向上平移1个单位长度,再向左平移t(t>0)个单位长度得到新抛物线,若新抛物线的顶点E在△DAC内,求t的取值范围;
    (3)点P(m,n)(﹣3<m<1)是抛物线y=x2﹣6x+9上一点,当△PAB的面积是△ABC面积的2倍时,求m,n的值.
    24.已知,关于x的方程x2+2x-k=0有两个不相等的实数根.
    (1)求k的取值范围;
    (2)若x1,x2是这个方程的两个实数根,求的值;
    (3)根据(2)的结果你能得出什么结论?



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    试题分析:根据作图方法可得点P在第二象限角平分线上,
    则P点横纵坐标的和为0,即2a+b+1=0,
    ∴2a+b=﹣1.故选B.
    2、D
    【解析】
    根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
    【详解】
    由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.
    故本题选:D.
    【点睛】
    本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键.
    3、C
    【解析】
    如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.则AM=BN.通过解直角△ACM和△BCN分别求得CM、CN的长度,则易得AB =MN=CM﹣CN,即可得到结论.
    【详解】
    如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.
    则AB=MN,AM=BN.
    在直角△ACM中,∵∠ACM=45°,AM=50m,∴CM=AM=50m.
    在直角△BCN中,∵∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN=(m),∴MN=CM﹣CN=50﹣(m).
    则AB=MN=(50﹣)m.
    故选C.

    【点睛】
    本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.
    4、C
    【解析】
    试题分析:根据主视图是从正面看得到的图形,可得答案.
    解:从正面看第一层三个小正方形,第二层左边一个小正方形,右边一个小正方形.
    故选C.
    考点:简单组合体的三视图.
    5、D
    【解析】
    先化简,然后再根据平方根的定义求解即可.
    【详解】
    ∵=2,2的平方根是±,
    ∴的平方根是±.
    故选D.
    【点睛】
    本题考查了平方根的定义以及算术平方根,先把正确化简是解题的关键,本题比较容易出错.
    6、A
    【解析】
    解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A.
    7、D
    【解析】
    作PB⊥OA于B,如图,根据垂径定理得到OB=AB,则S△POB=S△PAB,再根据反比例函数k的几何意义得到S△POB=|k|,所以S=2k,为定值.
    【详解】
    作PB⊥OA于B,如图,则OB=AB,∴S△POB=S△PAB.
    ∵S△POB=|k|,∴S=2k,∴S的值为定值.
    故选D.

    【点睛】
    本题考查了反比例函数系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
    8、A
    【解析】
    连接OB.
    在△OAB中,OA=OB(⊙O的半径),
    ∴∠OAB=∠OBA(等边对等角);
    又∵∠OAB=28°,
    ∴∠OBA=28°;
    ∴∠AOB=180°-2×28°=124°;
    而∠C=∠AOB(同弧所对的圆周角是所对的圆心角的一半),
    ∴∠C=62°;
    故选A
    9、C
    【解析】
    根据基本作图的方法即可得到结论.
    【详解】
    解:(1)弧①是以O为圆心,任意长为半径所画的弧,正确;
    (2)弧②是以P为圆心,大于点P到直线的距离为半径所画的弧,错误;
    (3)弧③是以A为圆心,大于AB的长为半径所画的弧,错误;
    (4)弧④是以P为圆心,任意长为半径所画的弧,正确.
    故选C.
    【点睛】
    此题主要考查了基本作图,解决问题的关键是掌握基本作图的方法.
    10、A
    【解析】
    根据平行线的性质及圆周角定理的推论得出点M的轨迹是以EF为直径的半圆,进而求出半径即可得出答案,注意分两种情况讨论.
    【详解】

    当点D与B重合时,M与F重合,当点D与A重合时,M与E重合,连接BD,FM,AD,EM,



    ∵AB是直径



    ∴点M的轨迹是以EF为直径的半圆,

    ∴以EF为直径的圆的半径为1
    ∴点M运动的路径长为
    当 时,同理可得点M运动的路径长为
    故选:A.
    【点睛】
    本题主要考查动点的运动轨迹,掌握圆周角定理的推论,平行线的性质和弧长公式是解题的关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、4
    【解析】
    由三角形的重心的概念和性质,由AD、BE为△ABC的中线,且AD与BE相交于点F,可知F点是三角形ABC的重心,可得AF=AD=×6=4.
    故答案为4.
    点睛:此题考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.
    12、x(3x+1)(3x﹣1)
    【解析】
    提取公因式分解多项式,再根据平方差公式分解因式,从而得到答案.
    【详解】
    9x3-x=x(9x2-1)=x(3x+1)(3x-1),故答案为x(3x+1)(3x-1).
    【点睛】
    本题主要考查了因式分解以及平方差公式,解本题的要点在于熟知多项式分解因式的相关方法.
    13、1
    【解析】
    画出图形,设菱形的边长为x,根据勾股定理求出周长即可.
    【详解】

    当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为xcm,
    在Rt△ABC中,
    由勾股定理:x2=(8-x)2+22,
    解得:x=,
    ∴4x=1,
    即菱形的最大周长为1cm.
    故答案是:1.
    【点睛】
    解答关键是怎样放置纸条使得到的菱形的周长最大,然后根据图形列方程.
    14、1
    【解析】
    根据根与系数的关系得到 m+n=﹣2018,mn=﹣1,把 m2n+mm2﹣mn分解因式得到 mn(m+n﹣1),然后利用整体代入的方法计算.
    【详解】
    解:∵m、n 是方程 x2+2018x﹣1=0 的两个根,
    则原式=mn(m+n﹣1)
    =﹣1×(﹣2018﹣1)
    =﹣1×(﹣1)
    =1,
    故答案为:1.
    【点睛】
    本题考查了根与系数的关系,如果一元二次方程 ax2+bx+c=0 的两根分别
    为与,则解题时要注意这两个关 系的合理应用.
    15、
    【解析】
    如图,连接EF,

    ∵点E、点F是AD、DC的中点,
    ∴AE=ED,CF=DF=CD=AB=1,
    由折叠的性质可得AE=A′E,
    ∴A′E=DE,
    在Rt△EA′F和Rt△EDF中,

    ∴Rt△EA′F≌Rt△EDF(HL),
    ∴A′F=DF=1,
    ∴BF=BA′+A′F=AB+DF=2+1=3,
    在Rt△BCF中,
    BC=.
    ∴AD=BC=2 .
    点睛:本题考查了翻折变换的知识,解答本题的关键是连接EF,证明Rt△EA′F≌Rt△EDF,得出BF的长,再利用勾股定理解答即可.
    16、
    【解析】
    根据新定义的运算法则进行计算即可得.
    【详解】
    ∵※=,
    ∴8※4=,
    故答案为.

    三、解答题(共8题,共72分)
    17、【小题1】 设所求抛物线的解析式为:,将A(1,0)、B(-3,0)、 D(0,3)代入,得…………………………………………2分
    即所求抛物线的解析式为:……………………………3分
    【小题2】 如图④,在y轴的负半轴上取一点I,使得点F与点I关于x轴对称,
    在x轴上取一点H,连接HF、HI、HG、GD、GE,则HF=HI…………………①
    设过A、E两点的一次函数解析式为:y=kx+b(k≠0),
    ∵点E在抛物线上且点E的横坐标为-2,将x=-2,代入抛物线,得
    ∴点E坐标为(-2,3)………………………………………………………………4分
    又∵抛物线图象分别与x轴、y轴交于点A(1,0)、B(-3,0)、
    D(0,3),所以顶点C(-1,4)
    ∴抛物线的对称轴直线PQ为:直线x=-1, [中国教#&~@育出%版网]
    ∴点D与点E关于PQ对称,GD=GE……………………………………………②
    分别将点A(1,0)、点E(-2,3)
    代入y=kx+b,得:
    解得:
    过A、E两点的一次函数解析式为:
    y=-x+1
    ∴当x=0时,y=1
    ∴点F坐标为(0,1)……………………5分
    ∴=2………………………………………③
    又∵点F与点I关于x轴对称,
    ∴点I坐标为(0,-1)
    ∴……………………………………④
    又∵要使四边形DFHG的周长最小,由于DF是一个定值,
    ∴只要使DG+GH+HI最小即可 ……………………………………6分
    由图形的对称性和①、②、③,可知,
    DG+GH+HF=EG+GH+HI
    只有当EI为一条直线时,EG+GH+HI最小
    设过E(-2,3)、I(0,-1)两点的函数解析式为:,
    分别将点E(-2,3)、点I(0,-1)代入,得:
    解得:
    过I、E两点的一次函数解析式为:y=-2x-1
    ∴当x=-1时,y=1;当y=0时,x=-;
    ∴点G坐标为(-1,1),点H坐标为(-,0)
    ∴四边形DFHG的周长最小为:DF+DG+GH+HF=DF+EI
    由③和④,可知:

    DF+EI=
    ∴四边形DFHG的周长最小为. …………………………………………7分
    【小题3】 如图⑤,

    由(2)可知,点A(1,0),点C(-1,4),设过A(1,0),点C(-1,4)两点的函数解析式为:,得:
    解得:,
    过A、C两点的一次函数解析式为:y=-2x+2,当x=0时,y=2,即M的坐标为(0,2);
    由图可知,△AOM为直角三角形,且, ………………8分
    要使,△AOM与△PCM相似,只要使△PCM为直角三角形,且两直角边之比为1:2即可,设P(,0),CM=,且∠CPM不可能为90°时,因此可分两种情况讨论; ……………………………………………………………………………9分
    ①当∠CMP=90°时,CM=,若则,可求的P(-4,0),则CP=5,,即P(-4,0)成立,若由图可判断不成立;……………………………………………………………………………………10分
    ②当∠PCM=90°时,CM=,若则,可求出
    P(-3,0),则PM=,显然不成立,若则,更不可能成立.……11分
    综上所述,存在以P、C、M为顶点的三角形与△AOM相似,点P的坐标为(-4,0)12分
    【解析】
    (1)直接利用三点式求出二次函数的解析式;
    (2)若四边形DFHG的周长最小,应将边长进行转换,利用对称性,要使四边形DFHG的周长最小,由于DF是一个定值,只要使DG+GH+HI最小即可,
    由图形的对称性和,可知,HF=HI,GD=GE,
    DG+GH+HF=EG+GH+HI
    只有当EI为一条直线时,EG+GH+HI最小,即
    ,DF+EI=
    即边形DFHG的周长最小为.
    (3)要使△AOM与△PCM相似,只要使△PCM为直角三角形,且两直角边之比为1:2即可,设P(,0),CM=,且∠CPM不可能为90°时,因此可分两种情况讨论,①当∠CMP=90°时,CM=,若则,可求的P(-4,0),则CP=5,,即P(-4,0)成立,若由图可判断不成立;②当∠PCM=90°时,CM=,若则,可求出P(-3,0),则PM=,显然不成立,若则,更不可能成立. 即求出以P、C、M为顶点的三角形与△AOM相似的P的坐标(-4,0)
    18、(1)A种奖品每件16元,B种奖品每件4元.(2)A种奖品最多购买41件.
    【解析】
    【分析】(1)设A种奖品每件x元,B种奖品每件y元,根据“如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;
    (2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据总价=单价×购买数量结合总费用不超过900元,即可得出关于a的一元一次不等式,解之取其中最大的整数即可得出结论.
    【详解】(1)设A种奖品每件x元,B种奖品每件y元,
    根据题意得:,
    解得:,
    答:A种奖品每件16元,B种奖品每件4元;
    (2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,
    根据题意得:16a+4(100﹣a)≤900,
    解得:a≤,
    ∵a为整数,
    ∴a≤41,
    答:A种奖品最多购买41件.
    【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据不等关系,正确列出不等式.
    19、40%
    【解析】
    先设第次降价的百分率是x,则第一次降价后的价格为500(1-x)元,第二次降价后的价格为500(1-2x),根据两次降价后的价格是240元建立方程,求出其解即可.
    【详解】
    第一次降价的百分率为x,则第二次降价的百分率为2x,
    根据题意得:500(1﹣x)(1﹣2x)=240,
    解得x1=0.2=20%,x2=1.3=130%.
    则第一次降价的百分率为20%,第二次降价的百分率为40%.
    【点睛】
    本题考查了一元二次方程解实际问题,读懂题意,找出题目中的等量关系,列出方程,求出符合题的解即可.
    20、(1)50、1;(2)平均数为5.16次,众数为5次,中位数为5次;(3)估计该校350名九年级男生中有2人体能达标.
    【解析】
    分析:(Ⅰ)根据4次的人数及其百分比可得总人数,用6次的人数除以总人数求得m即可;
    (Ⅱ)根据平均数、众数、中位数的定义求解可得;
    (Ⅲ)总人数乘以样本中5、6、7次人数之和占被调查人数的比例可得.
    详解:(Ⅰ)本次抽测的男生人数为10÷20%=50,m%=×100%=1%,所以m=1.
    故答案为50、1;
    (Ⅱ)平均数为=5.16次,众数为5次,中位数为=5次;
    (Ⅲ)×350=2.
    答:估计该校350名九年级男生中有2人体能达标.
    点睛:本题考查了条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
    21、甲、乙两种节能灯分别购进40、60只;商场获利1300元.
    【解析】
    (1)利用节能灯数量和所用的价钱建立方程组即可;
    (2)每种灯的数量乘以每只灯的利润,最后求出之和即可.
    【详解】
    (1)设商场购进甲种节能灯x只,购进乙种节能灯y只,
    根据题意,得,
    解这个方程组,得 ,
    答:甲、乙两种节能灯分别购进40、60只.
    (2)商场获利元,
    答:商场获利1300元.
    【点睛】
    此题是二元一次方程组的应用,主要考查了列方程组解应用题的步骤和方法,利润问题,解本题的关键是求出两种节能灯的数量.
    22、(1)y=5x+9000;(2)每天至少获利10800元;(3)每天生产A产品250件,B产品350件获利最大,最大利润为9625元.
    【解析】
    试题分析:(1)A种品牌白酒x瓶,则B种品牌白酒(600-x)瓶;利润=A种品牌白酒瓶数×A种品牌白酒一瓶的利润+B种品牌白酒瓶数×B种品牌白酒一瓶的利润,列出函数关系式;
    (2)A种品牌白酒x瓶,则B种品牌白酒(600-x)瓶;成本=A种品牌白酒瓶数×A种品牌白酒一瓶的成本+B种品牌白酒瓶数×B种品牌白酒一瓶的成本,列出不等式,求x的值,再代入(1)求利润.
    (3)列出y与x的关系式,求y的最大值时,x的值.
    试题解析:
    (1)y=20x+15(600-x) =5x+9000,
    ∴y关于x的函数关系式为y=5x+9000;
    (2)根据题意,得50 x+35(600-x)≥26400,
    解得x≥360,
    ∵y=5x+9000,5>0,
    ∴y随x的增大而增大,
    ∴当x=360时,y有最小值为10800,
    ∴每天至少获利10800元;
    (3) ,
    ∵,∴当x=250时,y有最大值9625,
    ∴每天生产A产品250件,B产品350件获利最大,最大利润为9625元.
    23、(1)C(2,0),A(1,4),B(1,9);(2)<t<5;(2)m=,∴n=.
    【解析】
    分析:(Ⅰ)将抛物线的一般式配方为顶点式即可求出点C的坐标,联立抛物线与直线的解析式即可求出A、B的坐标.
    (Ⅱ)由题意可知:新抛物线的顶点坐标为(2﹣t,1),然后求出直线AC的解析式后,将点E的坐标分别代入直线AC与AD的解析式中即可求出t的值,从而可知新抛物线的顶点E在△DAC内,求t的取值范围.
    (Ⅲ)直线AB与y轴交于点F,连接CF,过点P作PM⊥AB于点M,PN⊥x轴于点N,交DB于点G,由直线y=x+2与x轴交于点D,与y轴交于点F,得D(﹣2,0),F(0,2),易得CF⊥AB,△PAB的面积是△ABC面积的2倍,所以AB•PM=AB•CF,PM=2CF=1,从而可求出PG=3,利用点G在直线y=x+2上,P(m,n),所以G(m,m+2),所以PG=n﹣(m+2),所以n=m+4,由于P(m,n)在抛物线y=x2﹣1x+9上,联立方程从而可求出m、n的值.
    详解:(I)∵y=x2﹣1x+9=(x﹣2)2,∴顶点坐标为(2,0).
    联立,
    解得:或;
    (II)由题意可知:新抛物线的顶点坐标为(2﹣t,1),设直线AC的解析式为y=kx+b
    将A(1,4),C(2,0)代入y=kx+b中,∴,
    解得:,
    ∴直线AC的解析式为y=﹣2x+1.
    当点E在直线AC上时,﹣2(2﹣t)+1=1,解得:t=.
    当点E在直线AD上时,(2﹣t)+2=1,解得:t=5,
    ∴当点E在△DAC内时,<t<5;
    (III)如图,直线AB与y轴交于点F,连接CF,过点P作PM⊥AB于点M,PN⊥x轴于点N,交DB于点G.
    由直线y=x+2与x轴交于点D,与y轴交于点F,
    得D(﹣2,0),F(0,2),∴OD=OF=2.
    ∵∠FOD=90°,∴∠OFD=∠ODF=45°.
    ∵OC=OF=2,∠FOC=90°,
    ∴CF==2,∠OFC=∠OCF=45°,
    ∴∠DFC=∠DFO+∠OFC=45°+45°=90°,∴CF⊥AB.
    ∵△PAB的面积是△ABC面积的2倍,∴AB•PM=AB•CF,
    ∴PM=2CF=1.
    ∵PN⊥x轴,∠FDO=45°,∴∠DGN=45°,∴∠PGM=45°.
    在Rt△PGM中,sin∠PGM=, ∴PG===3.
    ∵点G在直线y=x+2上,P(m,n), ∴G(m,m+2).
    ∵﹣2<m<1,∴点P在点G的上方,∴PG=n﹣(m+2),∴n=m+4.
    ∵P(m,n)在抛物线y=x2﹣1x+9上,
    ∴m2﹣1m+9=n,∴m2﹣1m+9=m+4,解得:m=.
    ∵﹣2<m<1,∴m=不合题意,舍去,∴m=,∴n=m+4=.

    点睛:本题是二次函数综合题,涉及待定系数法,解方程,勾股定理,三角形的面积公式,综合程度较高,需要学生综合运用所学知识.
    24、(1)k>-1;(2)2;(3)k>-1时,的值与k无关.
    【解析】
    (1)由题意得该方程的根的判别式大于零,列出不等式解答即可.
    (2)将要求的代数式通分相加转化为含有两根之和与两根之积的形式,再根据根与系数的关系代数求值即可.
    (3)结合(1)和(2)结论可见,k>-1时,的值为定值2,与k无关.
    【详解】
    (1)∵方程有两个不等实根,
    ∴△>0,
    即4+4k>0,∴k>-1
    (2)由根与系数关系可知
    x1+x2=-2 ,x1x2=-k,



    (3)由(1)可知,k>-1时,
    的值与k无关.
    【点睛】
    本题考查了一元二次方程的根的判别式,根与系数的关系等知识,熟练掌握相关知识点是解答关键.

    相关试卷

    2024年山东省青岛市市南区中考数学三模试卷(含解析):

    这是一份2024年山东省青岛市市南区中考数学三模试卷(含解析),共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年山东省青岛市城阳区中考数学三模试卷(含解析):

    这是一份2023年山东省青岛市城阳区中考数学三模试卷(含解析),共31页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年山东省青岛市即墨区中考数学二模试卷(含解析):

    这是一份2023年山东省青岛市即墨区中考数学二模试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题,八年级抽取成绩的平均数等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map