2022年山东省临沂市经济开发区达标名校中考四模数学试题含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.已知反比例函数y=﹣,当1<x<3时,y的取值范围是( )
A.0<y<1 B.1<y<2 C.﹣2<y<﹣1 D.﹣6<y<﹣2
2.下列计算正确的是( )
A.a3•a2=a6 B.(a3)2=a5 C.(ab2)3=ab6 D.a+2a=3a
3.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m,先到终点
的人原地休息.已知甲先出发2s.在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系
如图所示,给出以下结论:①a=8;②b=92;③c=1.其中正确的是( )
A.①②③ B.仅有①② C.仅有①③ D.仅有②③
4.不等式5+2x <1的解集在数轴上表示正确的是( ).
A. B. C. D.
5.如图,是由一个圆柱体和一个长方体组成的几何体,其主视图是( )
A. B. C. D.
6.如图,已知抛物线和直线.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M= y1=y2.
下列判断: ①当x>2时,M=y2;
②当x<0时,x值越大,M值越大;
③使得M大于4的x值不存在;
④若M=2,则x=" 1" .
其中正确的有
A.1个 B.2个 C.3个 D.4个
7.估计的运算结果应在哪个两个连续自然数之间( )
A.﹣2和﹣1 B.﹣3和﹣2 C.﹣4和﹣3 D.﹣5和﹣4
8.下列命题中真命题是( )
A.若a2=b2,则a=b B.4的平方根是±2
C.两个锐角之和一定是钝角 D.相等的两个角是对顶角
9.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC,若∠CAB=22.5°,CD=8cm,则⊙O的半径为( )
A.8cm B.4cm C.4cm D.5cm
10.下列计算正确的是( ).
A.(x+y)2=x2+y2 B.(-xy2)3=- x3y6
C.x6÷x3=x2 D.=2
11.下列是我国四座城市的地铁标志图,其中是中心对称图形的是( )
A. B. C. D.
12.已知a-2b=-2,则4-2a+4b的值是( )
A.0 B.2 C.4 D.8
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.在平面直角坐标系中,点P到轴的距离为1,到轴的距离为2.写出一个符合条件的点P的坐标________________.
14.计算:2﹣1+=_____.
15.分式方程=1的解为_____
16.如图,在等腰中,,点在以斜边为直径的半圆上,为的中点.当点沿半圆从点运动至点时,点运动的路径长是________.
17.如图,在Rt△AOB中,直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后,得到△A′O′B,且反比例函数y=的图象恰好经过斜边A′B的中点C,若SABO=4,tan∠BAO=2,则k=_____.
18.如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF=__.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)某纺织厂生产的产品,原来每件出厂价为80元,成本为60元.由于在生产过程中平均每生产一件产品有0.5的污水排出,现在为了保护环境,需对污水净化处理后再排出.已知每处理1污水的费用为2元,且每月排污设备损耗为8000元.设现在该厂每月生产产品x件,每月纯利润y元:
(1)求出y与x的函数关系式.(纯利润=总收入-总支出)
(2)当y=106000时,求该厂在这个月中生产产品的件数.
20.(6分)已知关于x的方程x2﹣6mx+9m2﹣9=1.
(1)求证:此方程有两个不相等的实数根;
(2)若此方程的两个根分别为x1,x2,其中x1>x2,若x1=2x2,求m的值.
21.(6分)为了贯彻“减负增效”精神,掌握九年级600名学生每天的自主学习情况,某校学生会随机抽查了九年级的部分学生,并调查他们每天自主学习的时间.根据调查结果,制作了两幅不完整的统计图(图1,图2),请根据统计图中的信息回答下列问题:
(1)本次调查的学生人数是 人;
(2)图2中α是 度,并将图1条形统计图补充完整;
(3)请估算该校九年级学生自主学习时间不少于1.5小时有 人;
(4)老师想从学习效果较好的4位同学(分别记为A、B、C、D,其中A为小亮)随机选择两位进行学习经验交流,用列表法或树状图的方法求出选中小亮A的概率.
22.(8分)如图,圆内接四边形ABCD的两组对边延长线分别交于E、F,∠AEB、∠AFD的平分线交于P点.
求证:PE⊥PF.
23.(8分)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.
根据图中信息求出 , ;请你帮助他们将这两个统计图补全;根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?
24.(10分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.
(1)求证:∠A=∠ADE;
(2)若AD=8,DE=5,求BC的长.
25.(10分)如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.
26.(12分)为缓解交通压力,市郊某地正在修建地铁站,拟同步修建地下停车库.如图是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D,F,坡道AB的坡度=1:3,AD=9米,点C在DE上,CD=0.5米,CD是限高标志牌的高度(标志牌上写有:限高 米).如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1米,参考数据:≈1.41,≈1.73,≈3.16)
27.(12分)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
根据反比例函数的性质可以求得y的取值范围,从而可以解答本题.
【详解】
解:∵反比例函数y=﹣,∴在每个象限内,y随x的增大而增大,∴当1<x<3时,y的取值范围是﹣6<y<﹣1.
故选D.
【点睛】
本题考查了反比例函数的性质,解答本题的关键是明确题意,求出相应的y的取值范围,利用反比例函数的性质解答.
2、D
【解析】
根据同底数幂的乘法、积的乘方与幂的乘方及合并同类项的运算法则进行计算即可得出正确答案.
【详解】
解:A.x4•x4=x4+4=x8≠x16,故该选项错误;
B.(a3)2=a3×2=a6≠a5,故该选项错误;
C.(ab2)3=a3b6≠ab6,故该选项错误;
D.a+2a=(1+2)a=3a,故该选项正确;
故选D.
考点:1.同底数幂的乘法;2.积的乘方与幂的乘方;3.合并同类项.
3、A
【解析】
解:∵乙出发时甲行了2秒,相距8m,∴甲的速度为8/2=4m/ s.
∵100秒时乙开始休息.∴乙的速度是500/100=5m/ s.
∵a秒后甲乙相遇,∴a=8/(5-4)=8秒.因此①正确.
∵100秒时乙到达终点,甲走了4×(100+2)=408 m,∴b=500-408=92 m. 因此②正确.
∵甲走到终点一共需耗时500/4=125 s,,∴c=125-2=1 s. 因此③正确.
终上所述,①②③结论皆正确.故选A.
4、C
【解析】
先解不等式得到x<-1,根据数轴表示数的方法得到解集在-1的左边.
【详解】
5+1x<1,
移项得1x<-4,
系数化为1得x<-1.
故选C.
【点睛】
本题考查了在数轴上表示不等式的解集:先求出不等式组的解集,然后根据数轴表示数的方法把对应的未知数的取值范围通过画区间的方法表示出来,等号时用实心,不等时用空心.
5、B
【解析】
试题分析:长方体的主视图为矩形,圆柱的主视图为矩形,根据立体图形可得:主视图的上面和下面各为一个矩形,且下面矩形的长比上面矩形的长要长一点,两个矩形的宽一样大小.
考点:三视图.
6、B
【解析】
试题分析:∵当y1=y2时,即时,解得:x=0或x=2,
∴由函数图象可以得出当x>2时, y2>y1;当0<x<2时,y1>y2;当x<0时, y2>y1.∴①错误.
∵当x<0时, -直线的值都随x的增大而增大,
∴当x<0时,x值越大,M值越大.∴②正确.
∵抛物线的最大值为4,∴M大于4的x值不存在.∴③正确;
∵当0<x<2时,y1>y2,∴当M=2时,2x=2,x=1;
∵当x>2时,y2>y1,∴当M=2时,,解得(舍去).
∴使得M=2的x值是1或.∴④错误.
综上所述,正确的有②③2个.故选B.
7、C
【解析】
根据二次根式的性质,可化简得=﹣3=﹣2,然后根据二次根式的估算,由3<2<4可知﹣2在﹣4和﹣3之间.
故选C.
点睛:此题主要考查了二次根式的化简和估算,关键是根据二次根式的性质化简计算,再二次根式的估算方法求解.
8、B
【解析】
利用对顶角的性质、平方根的性质、锐角和钝角的定义分别判断后即可确定正确的选项.
【详解】
A、若a2=b2,则a=±b,错误,是假命题;
B、4的平方根是±2,正确,是真命题;
C、两个锐角的和不一定是钝角,故错误,是假命题;
D、相等的两个角不一定是对顶角,故错误,是假命题.
故选B.
【点睛】
考查了命题与定理的知识,解题的关键是了解对顶角的性质、平方根的性质、锐角和钝角的定义,难度不大.
9、C
【解析】
连接OC,如图所示,由直径AB垂直于CD,利用垂径定理得到E为CD的中点,即CE=DE,由OA=OC,利用等边对等角得到一对角相等,确定出三角形COE为等腰直角三角形,求出OC的长,即为圆的半径.
【详解】
解:连接OC,如图所示:
∵AB是⊙O的直径,弦CD⊥AB,
∴
∵OA=OC,
∴∠A=∠OCA=22.5°,
∵∠COE为△AOC的外角,
∴∠COE=45°,
∴△COE为等腰直角三角形,
∴
故选:C.
【点睛】
此题考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键.
10、D
【解析】
分析:根据完全平方公式、积的乘方法则、同底数幂的除法法则和算术平方根的定义计算,判断即可.
详解:(x+y)2=x2+2xy+y2,A错误;
(-xy2)3=-x3y6,B错误;
x6÷x3=x3,C错误;
==2,D正确;
故选D.
点睛:本题考查的是完全平方公式、积的乘方、同底数幂的除法以及算术平方根的计算,掌握完全平方公式、积的乘方法则、同底数幂的除法法则和算术平方根的定义是解题的关键.
11、D
【解析】
根据中心对称图形的定义解答即可.
【详解】
选项A不是中心对称图形;
选项B不是中心对称图形;
选项C不是中心对称图形;
选项D是中心对称图形.
故选D.
【点睛】
本题考查了中心对称图形的定义,熟练运用中心对称图形的定义是解决问题的关键.
12、D
【解析】
∵a-2b=-2,
∴-a+2b=2,
∴-2a+4b=4,
∴4-2a+4b=4+4=8,
故选D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、(写出一个即可)
【解析】
【分析】根据点到x轴的距离即点的纵坐标的绝对值,点到y轴的距离即点的横坐标的绝对值,进行求解即可.
【详解】设P(x,y),
根据题意,得
|x|=2,|y|=1,
即x=±2,y=±1,
则点P的坐标有(2,1),(2,-1),(-2,1),(2,-1),
故答案为:(2,1),(2,-1),(-2,1),(2,-1)(写出一个即可).
【点睛】本题考查了点的坐标和点到坐标轴的距离之间的关系.熟知点到x轴的距离即点的纵坐标的绝对值,点到y轴的距离即点的横坐标的绝对值是解题的关键.
14、
【解析】
根据负整指数幂的性质和二次根式的性质,可知=.
故答案为.
15、x=0.1
【解析】
分析:方程两边都乘以最简公分母,化为整式方程,然后解方程,再进行检验.
详解:方程两边都乘以2(x2﹣1)得,
8x+2﹣1x﹣1=2x2﹣2,
解得x1=1,x2=0.1,
检验:当x=0.1时,x﹣1=0.1﹣1=﹣0.1≠0,
当x=1时,x﹣1=0,
所以x=0.1是方程的解,
故原分式方程的解是x=0.1.
故答案为:x=0.1
点睛:本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.
16、π
【解析】
取的中点,取的中点,连接,,,则,故的轨迹为以为圆心,为半径的半圆弧,根据弧长公式即可得轨迹长.
【详解】
解:如图,取的中点,取的中点,连接,,,
∵在等腰中,,点在以斜边为直径的半圆上,
∴,
∵为的中位线,
∴,
∴当点沿半圆从点运动至点时,点的轨迹为以为圆心,为半径的半圆弧,
∴弧长,
故答案为:.
【点睛】
本题考查了点的轨迹与等腰三角形的性质.解决动点问题的关键是在运动中,把握不变的等量关系(或函数关系),通过固定的等量关系(或函数关系),解决动点的轨迹或坐标问题.
17、1
【解析】
设点C坐标为(x,y),作CD⊥BO′交边BO′于点D,
∵tan∠BAO=2,
∴=2,
∵S△ABO=•AO•BO=4,
∴AO=2,BO=4,
∵△ABO≌△A'O'B,
∴AO=A′O′=2,BO=BO′=4,
∵点C为斜边A′B的中点,CD⊥BO′,
∴CD=A′O′=1,BD=BO′=2,
∴x=BO﹣CD=4﹣1=3,y=BD=2,
∴k=x·y=3×2=1.
故答案为1.
18、15°
【解析】
根据平行四边形的性质和圆的半径相等得到△AOB为等边三角形,根据等腰三角形的三线合一得到∠BOF=∠AOF=30°,根据圆周角定理计算即可.
【详解】
解答:
连接OB,
∵四边形ABCO是平行四边形,∴OC=AB,又OA=OB=OC,
∴OA=OB=AB,∴△AOB为等边三角形.
∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°.
由圆周角定理得 ,
故答案为15°.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)y=19x-1(x>0且x是整数) (2)6000件
【解析】
(1)本题的等量关系是:纯利润=产品的出厂单价×产品的数量-产品的成本价×产品的数量-生产过程中的污水处理费-排污设备的损耗,可根据此等量关系来列出总利润与产品数量之间的函数关系式;
(2)根据(1)中得出的式子,将y的值代入其中,求出x即可.
【详解】
(1)依题意得:y=80x-60x-0.5x•2-1,
化简得:y=19x-1,
∴所求的函数关系式为y=19x-1.(x>0且x是整数)
(2)当y=106000时,代入得:106000=19x-1,
解得x=6000,
∴这个月该厂生产产品6000件.
【点睛】
本题是利用一次函数的有关知识解答实际应用题,可根据题意找出等量关系,列出函数式进行求解.
20、 (1)见解析;(2)m=2
【解析】
(1)根据一元二次方程根的判别式进行分析解答即可;
(2)用“因式分解法”解原方程,求得其两根,再结合已知条件分析解答即可.
【详解】
(1)∵在方程x2﹣6mx+9m2﹣9=1中,△=(﹣6m)2﹣4(9m2﹣9)=26m2﹣26m2+26=26>1.
∴方程有两个不相等的实数根;
(2)关于x的方程:x2﹣6mx+9m2﹣9=1可化为:[x﹣(2m+2)][x﹣(2m﹣2)]=1,
解得:x=2m+2和x=2m-2,
∵2m+2>2m﹣2,x1>x2,
∴x1=2m+2,x2=2m﹣2,
又∵x1=2x2,
∴2m+2=2(2m﹣2)解得:m=2.
【点睛】
(1)熟知“一元二次方程根的判别式:在一元二次方程中,当时,原方程有两个不相等的实数根,当时,原方程有两个相等的实数根,当时,原方程没有实数根”是解答第1小题的关键;(2)能用“因式分解法”求得关于x的方程x2﹣6mx+9m2﹣9=1的两个根是解答第2小题的关键.
21、(1)40;(2)54,补图见解析;(3)330;(4).
【解析】
(1)根据由自主学习的时间是1小时的人数占30%,可求得本次调查的学生人数;
(2),由自主学习的时间是0.5小时的人数为40×35%=14;
(3)求出这40名学生自主学习时间不少于1.5小时的百分比乘以600即可;
(4)根据题意画出树状图,然后由树状图求得所有等可能的结果与选中小亮A的情况,再利用概率公式求解即可求得答案.
【详解】
(1)∵自主学习的时间是1小时的有12人,占30%,
∴12÷30%=40,
故答案为40;
(2),故答案为54;
自主学习的时间是0.5小时的人数为40×35%=14;
补充图形如图:
(3)600×=330;
故答案为330;
(4)画树状图得:
∵共有12种等可能的结果,选中小亮A的有6种可能,
∴P(A)=.
22、证明见解析.
【解析】
由圆内接四边形ABCD的两组对边延长线分别交于E、F,∠AEB、∠AFD的平分线交于P点,继而可得EM=EN,即可证得:PE⊥PF.
【详解】
∵四边形内接于圆,
∴,
∵平分,
∴,
∵,,
∴,
∴,
∵平分,
∴.
【点睛】
此题考查了圆的内接多边形的性质以及圆周角定理.此题难度不大,注意掌握数形结合思想的应用.
23、(1)100,35;(2)补全图形,如图;(3)800人
【解析】
(1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得百分比n的值;(2)总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得百分比即可补全两个图形;(3)总人数乘以样本中微信人数所占的百分比可得答案.
【详解】
解:(1)∵被调查总人数为m=10÷10%=100人,
∴用支付宝人数所占百分比n%= ,
∴m=100,n=35.
(2)网购人数为100×15%=15人,
微信人数所占百分比为,
补全图形如图:
(3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为2000×40%=800人.
【点睛】
本题考查条形统计图和扇形统计图的信息关联问题,样本估计总体问题,从不同的统计图得到必要的信息是解决问题的关键.
24、(1)见解析(2)7.5
【解析】
(1)只要证明∠A+∠B=90°,∠ADE+∠B=90°即可解决问题;
(2)首先证明AC=2DE=10,在Rt△ADC中,求得DC=6,设BD=x,在Rt△BDC中,BC2=x2+62,在Rt△ABC中,BC2=(x+8)2-102,可得x2+62=(x+8)2-102,解方程即可解决问题.
【详解】
(1)证明:连接OD,
∵DE是切线,
∴∠ODE=90°,
∴∠ADE+∠BDO=90°,
∵∠ACB=90°,
∴∠A+∠B=90°,
∵OD=OB,
∴∠B=∠BDO,
∴∠A=∠ADE;
(2)连接CD,∵∠A=∠ADE
∴AE=DE,
∵BC是⊙O的直径,∠ACB=90°,
∴EC是⊙O的切线,
∴ED=EC,
∴AE=EC,
∵DE=5,∴AC=2DE=10,
在Rt△ADC中,DC=,
设BD=x,在Rt△BDC中,BC2=x2+62,
在Rt△ABC中,BC2=(x+8)2-102,
∴x2+62=(x+8)2-102,
解得x=4.5,
∴BC=
【点睛】
此题主要考查圆的切线问题,解题的关键是熟知切线的性质.
25、
【解析】
试题分析:过O作OF垂直于CD,连接OD,利用垂径定理得到F为CD的中点,由AE+EB求出直径AB的长,进而确定出半径OA与OD的长,由OA﹣AE求出OE的长,在直角三角形OEF中,利用30°所对的直角边等于斜边的一半求出OF的长,在直角三角形ODF中,利用勾股定理求出DF的长,由CD=2DF即可求出CD的长.
试题解析:过O作OF⊥CD,交CD于点F,连接OD,
∴F为CD的中点,即CF=DF,
∵AE=2,EB=6,
∴AB=AE+EB=2+6=8,
∴OA=4,
∴OE=OA﹣AE=4﹣2=2,
在Rt△OEF中,∠DEB=30°,
∴OF=OE=1,
在Rt△ODF中,OF=1,OD=4,
根据勾股定理得:DF==,
则CD=2DF=2.
考点:垂径定理;勾股定理.
26、2.1.
【解析】
据题意得出tanB = , 即可得出tanA, 在Rt△ADE中, 根据勾股定理可求得DE, 即可得出∠FCE的正切值, 再在Rt△CEF中, 设EF=x,即可求出x, 从而得出CF=1x的长.
【详解】
解:
据题意得tanB=,
∵MN∥AD,
∴∠A=∠B,
∴tanA=,
∵DE⊥AD,
∴在Rt△ADE中,tanA=,
∵AD=9,
∴DE=1,
又∵DC=0.5,
∴CE=2.5,
∵CF⊥AB,
∴∠FCE+∠CEF=90°,
∵DE⊥AD,
∴∠A+∠CEF=90°,
∴∠A=∠FCE,
∴tan∠FCE=
在Rt△CEF中,CE2=EF2+CF2
设EF=x,CF=1x(x>0),CE=2.5,
代入得()2=x2+(1x)2
解得x=(如果前面没有“设x>0”,则此处应“x=±,舍负”),
∴CF=1x=≈2.1,
∴该停车库限高2.1米.
【点睛】
点评: 本题考查了解直角三角形的应用, 坡面坡角问题和勾股定理, 解题的关键是坡度等于坡角的正切值.
27、观景亭D到南滨河路AC的距离约为248米.
【解析】
过点D作DE⊥AC,垂足为E,设BE=x,根据AE=DE,列出方程即可解决问题.
【详解】
过点D作DE⊥AC,垂足为E,设BE=x,
在Rt△DEB中,tan∠DBE=,
∵∠DBC=65°,
∴DE=xtan65°.
又∵∠DAC=45°,
∴AE=DE.
∴132+x=xtan65°,
∴解得x≈115.8,
∴DE≈248(米).
∴观景亭D到南滨河路AC的距离约为248米.
山东省临沂市经济开发区达标名校2022年中考数学模拟预测题含解析: 这是一份山东省临沂市经济开发区达标名校2022年中考数学模拟预测题含解析,共21页。试卷主要包含了|–|的倒数是,如图,能判定EB∥AC的条件是,一、单选题等内容,欢迎下载使用。
山东省临沂市经济开发区2022年中考四模数学试题含解析: 这是一份山东省临沂市经济开发区2022年中考四模数学试题含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,下列说法中,正确的是等内容,欢迎下载使用。
临沂市达标名校2021-2022学年中考冲刺卷数学试题含解析: 这是一份临沂市达标名校2021-2022学年中考冲刺卷数学试题含解析,共23页。