终身会员
搜索
    上传资料 赚现金
    2022年山东省德州市夏津县达标名校中考适应性考试数学试题含解析
    立即下载
    加入资料篮
    2022年山东省德州市夏津县达标名校中考适应性考试数学试题含解析01
    2022年山东省德州市夏津县达标名校中考适应性考试数学试题含解析02
    2022年山东省德州市夏津县达标名校中考适应性考试数学试题含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年山东省德州市夏津县达标名校中考适应性考试数学试题含解析

    展开
    这是一份2022年山东省德州市夏津县达标名校中考适应性考试数学试题含解析,共20页。试卷主要包含了下列各数中,最小的数是,下列运算结果是无理数的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.已知,代数式的值为( )
    A.-11 B.-1 C.1 D.11
    2.一个多边形内角和是外角和的2倍,它是( )
    A.五边形 B.六边形 C.七边形 D.八边形
    3.如图1,等边△ABC的边长为3,分别以顶点B、A、C为圆心,BA长为半径作弧AC、弧CB、弧BA,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形.设点I为对称轴的交点,如图2,将这个图形的顶点A与等边△DEF的顶点D重合,且AB⊥DE,DE=2π,将它沿等边△DEF的边作无滑动的滚动,当它第一次回到起始位置时,这个图形在运动中扫过区域面积是(  )

    A.18π B.27π C.π D.45π
    4.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是( )

    A.甲的速度是4km/h B.乙的速度是10km/h
    C.乙比甲晚出发1h D.甲比乙晚到B地3h
    5.点A 为数轴上表示-2的动点,当点A 沿数轴移动4个单位长到B时,点B所表示的实数是( )
    A.1 B.-6 C.2或-6 D.不同于以上答案
    6.下列各数中,最小的数是
    A. B. C.0 D.
    7.下列运算结果是无理数的是(  )
    A.3× B. C. D.
    8.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是( )
    A.方程有两个相等的实数根
    B.方程有两个不相等的实数根
    C.没有实数根
    D.无法确定
    9.如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为( )

    A. B. C. D.
    10.已知x2-2x-3=0,则2x2-4x的值为( )
    A.-6 B.6 C.-2或6 D.-2或30
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,BE与CD相交于点G,且OE=OD,则AP的长为__________.

    12.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为_____.

    13.七边形的外角和等于_____.
    14.在平面直角坐标系中,点 A的坐标是(-1,2) .作点A关于x 轴的对称点,得到点A1 ,再将点A1 向下平移 4个单位,得到点A2 ,则点A2 的坐标是_________.
    15.计算的结果为 .
    16.在△ABC中,点D在边BC上,BD=2CD,,,那么= .
    17.分解因式:2a2﹣2=_____.
    三、解答题(共7小题,满分69分)
    18.(10分)如图,AB是⊙O的直径,BC⊥AB,垂足为点B,连接CO并延长交⊙O于点D、E,连接AD并延长交BC于点F.
    (1)试判断∠CBD与∠CEB是否相等,并证明你的结论;
    (2)求证:
    (3)若BC=AB,求tan∠CDF的值.

    19.(5分)某化妆品店老板到厂家选购A、B两种品牌的化妆品,若购进A品牌的化妆品5套,B品牌的化妆品6套,需要950元;若购进A品牌的化妆品3套,B品牌的化妆品2套,需要450元.
    (1)求A、B两种品牌的化妆品每套进价分别为多少元?
    (2)若销售1套A品牌的化妆品可获利30元,销售1套B品牌的化妆品可获利20元;根据市场需求,店老板决定购进这两种品牌化妆品共50套,且进货价钱不超过4000元,应如何选择进货方案,才能使卖出全部化妆品后获得最大利润,最大利润是多少?
    20.(8分)一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立身高AM与其影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25 m,已知李明直立时的身高为1.75 m,求路灯的高CD的长.(结果精确到0.1 m)

    21.(10分)如图,的顶点是方格纸中的三个格点,请按要求完成下列作图,①仅用无刻度直尺,且不能用直尺中的直角;②保留作图痕迹.
    在图1中画出边上的中线;在图2中画出,使得.
    22.(10分)某学校“智慧方园”数学社团遇到这样一个题目:
    如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的长.
    经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).
    请回答:∠ADB=   °,AB=   .请参考以上解决思路,解决问题:
    如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.

    23.(12分)如图①,一次函数y=x﹣2的图象交x轴于点A,交y轴于点B,二次函数y=x2+bx+c的图象经过A、B两点,与x轴交于另一点C.
    (1)求二次函数的关系式及点C的坐标;
    (2)如图②,若点P是直线AB上方的抛物线上一点,过点P作PD∥x轴交AB于点D,PE∥y轴交AB于点E,求PD+PE的最大值;
    (3)如图③,若点M在抛物线的对称轴上,且∠AMB=∠ACB,求出所有满足条件的点M的坐标.

    24.(14分)(8分)如图,在平面直角坐标系中,O为原点,直线AB分别与x轴、y轴交于B和A,与反比例函数的图象交于C、D,CE⊥x轴于点E,tan∠ABO=,OB=4,OE=1.

    (1)求直线AB和反比例函数的解析式;
    (1)求△OCD的面积.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    根据整式的运算法则,先利用已知求出a的值,再将a的值带入所要求解的代数式中即可得到此题答案.
    【详解】
    解:由题意可知:,
    原式



    故选:D.
    【点睛】
    此题考查整式的混合运算,解题的关键在于利用整式的运算法则进行化简求得代数式的值
    2、B
    【解析】
    多边形的外角和是310°,则内角和是2×310=720°.设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程,从而求出边数n的值.
    【详解】
    设这个多边形是n边形,根据题意得:
    (n﹣2)×180°=2×310°
    解得:n=1.
    故选B.
    【点睛】
    本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.
    3、B
    【解析】
    先判断出莱洛三角形等边△DEF绕一周扫过的面积如图所示,利用矩形的面积和扇形的面积之和即可.
    【详解】
    如图1中,

    ∵等边△DEF的边长为2π,等边△ABC的边长为3,
    ∴S矩形AGHF=2π×3=6π,
    由题意知,AB⊥DE,AG⊥AF,
    ∴∠BAG=120°,
    ∴S扇形BAG==3π,
    ∴图形在运动过程中所扫过的区域的面积为3(S矩形AGHF+S扇形BAG)=3(6π+3π)=27π;
    故选B.
    【点睛】
    本题考查轨迹,弧长公式,莱洛三角形的周长,矩形,扇形面积公式,解题的关键是判断出莱洛三角形绕等边△DEF扫过的图形.
    4、C
    【解析】
    甲的速度是:20÷4=5km/h;
    乙的速度是:20÷1=20km/h;
    由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,
    故选C.
    5、C
    【解析】
    解:∵点A为数轴上的表示-1的动点,①当点A沿数轴向左移动4个单位长度时,点B所表示的有理数为-1-4=-6;
    ②当点A沿数轴向右移动4个单位长度时,点B所表示的有理数为-1+4=1.
    故选C.
    点睛:注意数的大小变化和平移之间的规律:左减右加.与点A的距离为4个单位长度的点B有两个,一个向左,一个向右.
    6、A
    【解析】
    应明确在数轴上,从左到右的顺序,就是数从小到大的顺序,据此解答.
    【详解】
    解:因为在数轴上-3在其他数的左边,所以-3最小;
    故选A.
    【点睛】
    此题考负数的大小比较,应理解数字大的负数反而小.
    7、B
    【解析】
    根据二次根式的运算法则即可求出答案.
    【详解】
    A选项:原式=3×2=6,故A不是无理数;
    B选项:原式=,故B是无理数;
    C选项:原式==6,故C不是无理数;
    D选项:原式==12,故D不是无理数
    故选B.
    【点睛】
    考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.
    8、B
    【解析】
    试题分析:先求出△=42﹣4×3×(﹣5)=76>0,即可判定方程有两个不相等的实数根.故答案选B.
    考点:一元二次方程根的判别式.
    9、B
    【解析】
    过F作FH⊥AD于H,交ED于O,于是得到FH=AB=1,根据勾股定理得到AF===,根据平行线分线段成比例定理得到,OH=AE=,由相似三角形的性质得到=,求得AM=AF=,根据相似三角形的性质得到=,求得AN=AF=,即可得到结论.
    【详解】
    过F作FH⊥AD于H,交ED于O,则FH=AB=1.
    ∵BF=1FC,BC=AD=3,
    ∴BF=AH=1,FC=HD=1,
    ∴AF===,
    ∵OH∥AE,
    ∴=,
    ∴OH=AE=,
    ∴OF=FH﹣OH=1﹣=,
    ∵AE∥FO,∴△AME∽△FMO,
    ∴=,∴AM=AF=,
    ∵AD∥BF,∴△AND∽△FNB,
    ∴=,
    ∴AN=AF=,
    ∴MN=AN﹣AM=﹣=,故选B.

    【点睛】
    构造相似三角形是本题的关键,且求长度问题一般需用到勾股定理来解决,常作垂线
    10、B
    【解析】
    方程两边同时乘以2,再化出2x2-4x求值.
    解:x2-2x-3=0
    2×(x2-2x-3)=0
    2×(x2-2x)-6=0
    2x2-4x=6
    故选B.

    二、填空题(共7小题,每小题3分,满分21分)
    11、4.1
    【解析】
    解:如图所示:∵四边形ABCD是矩形,
    ∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=1,
    根据题意得:△ABP≌△EBP,
    ∴EP=AP,∠E=∠A=90°,BE=AB=1,
    在△ODP和△OEG中,

    ∴△ODP≌△OEG(ASA),
    ∴OP=OG,PD=GE,
    ∴DG=EP,
    设AP=EP=x,则PD=GE=6﹣x,DG=x,
    ∴CG=1﹣x,BG=1﹣(6﹣x)=2+x,
    根据勾股定理得:BC2+CG2=BG2,
    即62+(1﹣x)2=(x+2)2,
    解得:x=4.1,
    ∴AP=4.1;
    故答案为4.1.

    12、(﹣,1)
    【解析】
    如图作AF⊥x轴于F,CE⊥x轴于E.

    ∵四边形ABCD是正方形,
    ∴OA=OC,∠AOC=90°,
    ∵∠COE+∠AOF=90°,∠AOF+∠OAF=90°,
    ∴∠COE=∠OAF,
    在△COE和△OAF中,

    ∴△COE≌△OAF,
    ∴CE=OF,OE=AF,
    ∵A(1,),
    ∴CE=OF=1,OE=AF=,
    ∴点C坐标(﹣,1),
    故答案为(,1).
    点睛:本题考查正方形的性质、全等三角形的判定和性质等知识,坐标与图形的性质,解题的关键是学会添加常用的辅助线,构造全等三角形解决问题,属于中考常考题型.注意:距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.
    13、360°
    【解析】
    根据多边形的外角和等于360度即可求解.
    【详解】
    解:七边形的外角和等于360°.
    故答案为360°
    【点睛】
    本题考查了多边形的内角和外角的知识,属于基础题,解题的关键是掌握多边形的外角和等于360°.
    14、(-1, -6)
    【解析】
    直接利用关于x轴对称点的性质得出点A1坐标,再利用平移的性质得出答案.
    【详解】
    ∵点A的坐标是(-1,2),作点A关于x轴的对称点,得到点A1,
    ∴A1(-1,-2),
    ∵将点A1向下平移4个单位,得到点A2,
    ∴点A2的坐标是:(-1,-6).
    故答案为:(-1, -6).
    【点睛】
    解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
    15、
    【解析】
    直接把分子相加减即可.
    【详解】
    =,故答案为:.
    【点睛】
    本题考查了分式的加减法,关键是要注意通分及约分的灵活应用.
    16、
    【解析】
    首先利用平行四边形法则,求得的值,再由BD=2CD,求得的值,即可求得的值.
    【详解】
    ∵,,
    ∴=-=-,
    ∵BD=2CD,
    ∴==,
    ∴=+==.

    故答案为.
    17、2(a+1)(a﹣1).
    【解析】
    先提取公因式2,再对余下的多项式利用平方差公式继续分解.
    【详解】
    解:2a2﹣2,
    =2(a2﹣1),
    =2(a+1)(a﹣1).
    【点睛】
    本题考查了提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.

    三、解答题(共7小题,满分69分)
    18、(1)∠CBD与∠CEB相等,证明见解析;(2)证明见解析;(3)tan∠CDF=.
    【解析】
    试题分析:
    (1)由AB是⊙O的直径,BC切⊙O于点B,可得∠ADB=∠ABC=90°,由此可得∠A+∠ABD=∠ABD+∠CBD=90°,从而可得∠A=∠CBD,结合∠A=∠CEB即可得到∠CBD=∠CEB;
    (2)由∠C=∠C,∠CEB=∠CBD,可得∠EBC=∠BDC,从而可得△EBC∽△BDC,再由相似三角形的性质即可得到结论;
    (3)设AB=2x,结合BC=AB,AB是直径,可得BC=3x,OB=OD=x,再结合∠ABC=90°,
    可得OC=x,CD=(-1)x;由AO=DO,可得∠CDF=∠A=∠DBF,从而可得△DCF∽△BCD,由此可得:==,这样即可得到tan∠CDF=tan∠DBF==.
    试题解析:
    (1)∠CBD与∠CEB相等,理由如下:
    ∵BC切⊙O于点B,
    ∴∠CBD=∠BAD,
    ∵∠BAD=∠CEB,
    ∴∠CEB=∠CBD,
    (2)∵∠C=∠C,∠CEB=∠CBD,
    ∴∠EBC=∠BDC,
    ∴△EBC∽△BDC,
    ∴;

    (3)设AB=2x,∵BC=AB,AB是直径,
    ∴BC=3x,OB=OD=x,
    ∵∠ABC=90°,
    ∴OC=x,
    ∴CD=(-1)x,
    ∵AO=DO,
    ∴∠CDF=∠A=∠DBF,
    ∴△DCF∽△BCD,
    ∴==,
    ∵tan∠DBF==,
    ∴tan∠CDF=.
    点睛:解答本题第3问的要点是:(1)通过证∠CDF=∠A=∠DBF,把求tan∠CDF转化为求tan∠DBF=;(2)通过证△DCF∽△BCD,得到.
    19、(1)A、B两种品牌得化妆品每套进价分别为100元,75元;(2)A种品牌得化妆品购进10套,B种品牌得化妆品购进40套,才能使卖出全部化妆品后获得最大利润,最大利润是1100元
    【解析】
    (1)求A、B两种品牌的化妆品每套进价分别为多少元,可设A种品牌的化妆品每套进价为x元,B种品牌的化妆品每套进价为y元.根据两种购买方法,列出方程组解方程;
    (2)根据题意列出不等式,求出m的范围,再用代数式表示出利润,即可得出答案.
    【详解】
    (1)设A种品牌的化妆品每套进价为x元,B种品牌的化妆品每套进价为y元.

    解得:,
    答:A、B两种品牌得化妆品每套进价分别为100元,75元.
    (2)设A种品牌得化妆品购进m套,则B种品牌得化妆品购进(50﹣m)套.
    根据题意得:100m+75(50﹣m)≤4000,且50﹣m≥0,
    解得,5≤m≤10,
    利润是30m+20(50﹣m)=1000+10m,
    当m取最大10时,利润最大,
    最大利润是1000+100=1100,
    所以A种品牌得化妆品购进10套,B种品牌得化妆品购进40套,才能使卖出全部化妆品后获得最大利润,最大利润是1100元.
    【点睛】
    本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.
    20、路灯的高CD的长约为6.1 m.
    【解析】
    设路灯的高CD为xm,
    ∵CD⊥EC,BN⊥EC,
    ∴CD∥BN,
    ∴△ABN∽△ACD,∴,
    同理,△EAM∽△ECD,
    又∵EA=MA,∵EC=DC=xm,
    ∴,解得x=6.125≈6.1.
    ∴路灯的高CD约为6.1m.
    21、(1)见解析;(2)见解析.
    【解析】
    (1)利用矩形的性质得出AB的中点,进而得出答案.
    (2)利用矩形的性质得出AC、BC的中点,连接并延长,使延长线段与连接这两个中点的线段相等.
    【详解】
    (1)如图所示:CD即为所求.

    (2)

    【点睛】
    本题考查应用设计与作图,正确借助矩形性质和网格分析是解题关键.
    22、(1)75;4;(2)CD=4.
    【解析】
    (1)根据平行线的性质可得出∠ADB=∠OAC=75°,结合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性质可求出OD的值,进而可得出AD的值,由三角形内角和定理可得出∠ABD=75°=∠ADB,由等角对等边可得出AB=AD=4,此题得解;
    (2)过点B作BE∥AD交AC于点E,同(1)可得出AE=4,在Rt△AEB中,利用勾股定理可求出BE的长度,再在Rt△CAD中,利用勾股定理可求出DC的长,此题得解.
    【详解】
    解:(1)∵BD∥AC,
    ∴∠ADB=∠OAC=75°.
    ∵∠BOD=∠COA,
    ∴△BOD∽△COA,
    ∴.
    又∵AO=3,
    ∴OD=AO=,
    ∴AD=AO+OD=4.
    ∵∠BAD=30°,∠ADB=75°,
    ∴∠ABD=180°-∠BAD-∠ADB=75°=∠ADB,
    ∴AB=AD=4.
    (2)过点B作BE∥AD交AC于点E,如图所示.

    ∵AC⊥AD,BE∥AD,
    ∴∠DAC=∠BEA=90°.
    ∵∠AOD=∠EOB,
    ∴△AOD∽△EOB,
    ∴.
    ∵BO:OD=1:3,
    ∴.
    ∵AO=3,
    ∴EO=,
    ∴AE=4.
    ∵∠ABC=∠ACB=75°,
    ∴∠BAC=30°,AB=AC,
    ∴AB=2BE.
    在Rt△AEB中,BE2+AE2=AB2,即(4)2+BE2=(2BE)2,
    解得:BE=4,
    ∴AB=AC=8,AD=1.
    在Rt△CAD中,AC2+AD2=CD2,即82+12=CD2,
    解得:CD=4.
    【点睛】
    本题考查了相似三角形的性质、等腰三角形的判定与性质、勾股定理以及平行线的性质,解题的关键是:(1)利用相似三角形的性质求出OD的值;(2)利用勾股定理求出BE、CD的长度.
    23、(1)二次函数的关系式为y=;C(1,0);(2)当m=2时,PD+PE有最大值3;(3)点M的坐标为(,)或(,).
    【解析】
    (1)先求出A、B的坐标,然后把A、B的坐标分别代入二次函数的解析式,解方程组即可得到结论;
    (2)先证明△PDE∽△OAB,得到PD=2PE.设P(m,),则E(m,),PD+PE=3PE,然后配方即可得到结论.
    (3)分两种情况讨论:①当点M在在直线AB上方时,则点M在△ABC的外接圆上,如图1.求出圆心O1的坐标和半径,利用MO1=半径即可得到结论.
    ②当点M在在直线AB下方时,作O1关于AB的对称点O2,如图2.求出点O2的坐标,算出DM的长,即可得到结论.
    【详解】
    解:(1)令y==0,得:x=4,∴A(4,0).
    令x=0,得:y=-2,∴B(0,-2).
    ∵二次函数y=的图像经过A、B两点,
    ∴,解得:,
    ∴二次函数的关系式为y=.
    令y==0,解得:x=1或x=4,∴C(1,0).
    (2)∵PD∥x轴,PE∥y轴,
    ∴∠PDE=∠OAB,∠PED=∠OBA,
    ∴△PDE∽△OAB.∴===2,
    ∴PD=2PE.设P(m,),
    则E(m,).
    ∴PD+PE=3PE=3×[()-()]==.
    ∵0<m<4,∴当m=2时,PD+PE有最大值3.
    (3)①当点M在在直线AB上方时,则点M在△ABC的外接圆上,如图1.
    ∵△ABC的外接圆O1的圆心在对称轴上,设圆心O1的坐标为(,-t).
    ∴=,解得:t=2,
    ∴圆心O1的坐标为(,-2),∴半径为.
    设M(,y).∵MO1=,∴,
    解得:y=,∴点M的坐标为().
    ②当点M在在直线AB下方时,作O1关于AB的对称点O2,如图2.
    ∵AO1=O1B=,∴∠O1AB=∠O1BA.∵O1B∥x轴,∴∠O1BA=∠OAB,
    ∴∠O1AB=∠OAB,O2在x轴上,∴点O2的坐标为 (,0),∴O2D=1,
    ∴DM==,∴点M的坐标为(,).
    综上所述:点M的坐标为(,)或(,).

    点睛:本题是二次函数的综合题.考查了求二次函数的解析式,求二次函数的最值,圆的有关性质.难度比较大,解答第(3)问的关键是求出△ABC外接圆的圆心坐标.
    24、(1),;(1)2.
    【解析】
    试题分析:(1)先求出A、B、C点坐标,用待定系数法求出直线AB和反比例的函数解析式;
    (1)联立一次函数的解析式和反比例的函数解析式可得交点D的坐标,从而根据三角形面积公式求解.
    试题解析:(1)∵OB=4,OE=1,∴BE=1+4=3.∵CE⊥x轴于点E,tan∠ABO==,∴OA=1,CE=3,∴点A的坐标为(0,1)、点B的坐标为C(4,0)、点C的坐标为(﹣1,3),设直线AB的解析式为,则,解得:,故直线AB的解析式为,设反比例函数的解析式为(),将点C的坐标代入,得3=,∴m=﹣3.∴该反比例函数的解析式为;
    (1)联立反比例函数的解析式和直线AB的解析式可得,可得交点D的坐标为(3,﹣1),则△BOD的面积=4×1÷1=1,△BOD的面积=4×3÷1=3,故△OCD的面积为1+3=2.
    考点:反比例函数与一次函数的交点问题.

    相关试卷

    2022年北京石景山达标名校中考适应性考试数学试题含解析: 这是一份2022年北京石景山达标名校中考适应性考试数学试题含解析,共20页。试卷主要包含了答题时请按要求用笔,函数的图像位于,下列计算正确的是,若分式方程无解,则a的值为等内容,欢迎下载使用。

    2022年广西钦州市达标名校中考适应性考试数学试题含解析: 这是一份2022年广西钦州市达标名校中考适应性考试数学试题含解析,共16页。试卷主要包含了四组数中等内容,欢迎下载使用。

    2022届山东省昌乐县达标名校中考适应性考试数学试题含解析: 这是一份2022届山东省昌乐县达标名校中考适应性考试数学试题含解析,共22页。试卷主要包含了实数﹣5.22的绝对值是,tan30°的值为,下列各式计算正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map