2022年山西省阳泉市郊区市级名校中考数学考前最后一卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)
1.在3,0,-2,- 四个数中,最小的数是( )
A.3 B.0 C.-2 D.-
2.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是( )
A. B. C. D.
3.关于的方程有实数根,则整数的最大值是( )
A.6 B.7 C.8 D.9
4.在下列四个图案中既是轴对称图形,又是中心对称图形的是( )
A. B. C.. D.
5.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车辆,根据题意,可列出的方程是 ( ).
A. B.
C. D.
6.一个多边形内角和是外角和的2倍,它是( )
A.五边形 B.六边形 C.七边形 D.八边形
7.如图是某几何体的三视图,下列判断正确的是( )
A.几何体是圆柱体,高为2 B.几何体是圆锥体,高为2
C.几何体是圆柱体,半径为2 D.几何体是圆锥体,直径为2
8.如图,AB是⊙O的弦,半径OC⊥AB 于D,若CD=2,⊙O的半径为5,那么AB的长为( )
A.3 B.4 C.6 D.8
9.如图,直线AB与半径为2的⊙O相切于点C,D是⊙O上一点,且∠EDC=30°,弦EF∥AB,则EF的长度为( )
A.2 B.2 C. D.2
10.一次函数与二次函数在同一平面直角坐标系中的图像可能是( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.若式子在实数范围内有意义,则x的取值范围是_______.
12.一元二次方程x2=3x的解是:________.
13.将直角边长为5cm的等腰直角△ABC绕点A逆时针旋转15°后,得到△AB′C′,则图中阴影部分的面积是_____cm1.
14.如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为2,则k1-k2=________.
15.若关于x的方程x2-mx+m=0有两个相等实数根,则代数式2m2-8m+3的值为__________.
16.一次函数y=kx+b的图象如图所示,当y>0时,x的取值范围是_____.
三、解答题(共8题,共72分)
17.(8分)如图,在平面直角坐标系中,一次函数的图象分别交x轴、y轴于A、B两点,与反比例函数的图象交于C、D两点.已知点C的坐标是(6,-1),D(n,3).求m的值和点D的坐标.求的值.根据图象直接写出:当x为何值时,一次函数的值大于反比例函数的值?
18.(8分)某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品为四样A:菜包、B:面包、C:鸡蛋、D:油条.超市约定:随机发放,早餐一人一份,一份两样,一样一个.
(1)按约定,“某顾客在该天早餐得到两个鸡蛋”是 事件(填“随机”、“必然”或“不可能”);
(2)请用列表或画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率.
19.(8分)学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图1,2).请根据统计图解答下列问题:
本次调查中,王老师一共调查了 名学生;将条形统计图补充完整;为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.
20.(8分)如图,小华和同伴在春游期间,发现在某地小山坡的点E处有一棵盛开的桃花的小桃树,他想利用平面镜测量的方式计算一下小桃树到山脚下的距离,即DE的长度,小华站在点B的位置,让同伴移动平面镜至点C处,此时小华在平面镜内可以看到点E,且BC=2.7米,CD=11.5米,∠CDE=120°,已知小华的身高为1.8米,请你利用以上的数据求出DE的长度.(结果保留根号)
21.(8分)在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.
求证:四边形BFDE是矩形;若CF=3,BF=4,DF=5,求证:AF平分∠DAB.
22.(10分)某校为选拔一名选手参加“美丽邵阳,我为家乡做代言”主题演讲比赛,经研究,按图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整).下表是李明、张华在选拔赛中的得分情况:
项目 选手 | 服装 | 普通话 | 主题 | 演讲技巧 |
李明 | 85 | 70 | 80 | 85 |
张华 | 90 | 75 | 75 | 80 |
结合以上信息,回答下列问题:求服装项目的权数及普通话项目对应扇形的圆心角大小;求李明在选拔赛中四个项目所得分数的众数和中位数;根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽邵阳,我为家乡做代言”主题演讲比赛,并说明理由.
23.(12分)计算:
24.如图,已知:AD 和 BC 相交于点 O,∠A=∠C,AO=2,BO=4,OC=3,求 OD 的长.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
根据比较实数大小的方法进行比较即可.根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.
【详解】
因为正数大于负数,两个负数比较大小,绝对值较大的数反而较小,
所以,
所以最小的数是,
故选C.
【点睛】
此题主要考查了实数的大小的比较,正数都大于0,负数都小于0,两个负数绝对值大的反而小.
2、A
【解析】
根据俯视图即从物体的上面观察得得到的视图,进而得出答案.
【详解】
该几何体的俯视图是:.
故选A.
【点睛】
此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键.
3、C
【解析】
方程有实数根,应分方程是一元二次方程与不是一元二次方程,两种情况进行讨论,当不是一元二次方程时,a-6=0,即a=6;当是一元二次方程时,有实数根,则△≥0,求出a的取值范围,取最大整数即可.
【详解】
当a-6=0,即a=6时,方程是-1x+6=0,解得x=;
当a-6≠0,即a≠6时,△=(-1)2-4(a-6)×6=201-24a≥0,解上式,得≈1.6,
取最大整数,即a=1.
故选C.
4、B
【解析】
试题分析:根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,因此:
A、不是轴对称图形,是中心对称图形,不符合题意;
B、是轴对称图形,也是中心对称图形,符合题意;
C、不是轴对称图形,也不是中心对称图形,不符合题意;
D、是轴对称图形,不是中心对称图形,不符合题意.
故选B.
考点:轴对称图形和中心对称图形
5、B
【解析】
根据题意,表示出两种方式的总人数,然后根据人数不变列方程即可.
【详解】
根据题意可得:每车坐3人,两车空出来,可得人数为3(x-2)人;每车坐2人,多出9人无车坐,可得人数为(2x+9)人,所以所列方程为:3(x-2)=2x+9.
故选B.
【点睛】
此题主要考查了一元一次方程的应用,关键是找到问题中的等量关系:总人数不变,列出相应的方程即可.
6、B
【解析】
多边形的外角和是310°,则内角和是2×310=720°.设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程,从而求出边数n的值.
【详解】
设这个多边形是n边形,根据题意得:
(n﹣2)×180°=2×310°
解得:n=1.
故选B.
【点睛】
本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.
7、A
【解析】
试题解析:根据主视图和左视图为矩形是柱体,根据俯视图是圆可判断出这个几何体应该是圆柱,
再根据左视图的高度得出圆柱体的高为2;
故选A.
考点:由三视图判断几何体.
8、D
【解析】
连接OA,构建直角三角形AOD;利用垂径定理求得AB=2AD;然后在直角三角形AOD中由勾股定理求得AD的长度,从而求得AB=2AD=1.
【详解】
连接OA.
∵⊙O的半径为5,CD=2,
∵OD=5-2=3,即OD=3;
又∵AB是⊙O的弦,OC⊥AB,
∴AD=AB;
在直角三角形ODC中,根据勾股定理,得
AD==4,
∴AB=1.
故选D.
【点睛】
本题考查了垂径定理、勾股定理.解答该题的关键是通过作辅助线OA构建直角三角形,在直角三角形中利用勾股定理求相关线段的长度.
9、B
【解析】
本题考查的圆与直线的位置关系中的相切.连接OC,EC所以∠EOC=2∠D=60°,所以△ECO为等边三角形.又因为弦EF∥AB所以OC垂直EF故∠OEF=30°所以EF=OE=2.
10、D
【解析】
本题可先由一次函数y=ax+c图象得到字母系数的正负,再与二次函数y=ax2+bx+c的图象相比较看是否一致.
【详解】
A、一次函数y=ax+c与y轴交点应为(0,c),二次函数y=ax2+bx+c与y轴交点也应为(0,c),图象不符合,故本选项错误;
B、由抛物线可知,a>0,由直线可知,a<0,a的取值矛盾,故本选项错误;
C、由抛物线可知,a<0,由直线可知,a>0,a的取值矛盾,故本选项错误;
D、由抛物线可知,a<0,由直线可知,a<0,且抛物线与直线与y轴的交点相同,故本选项正确.
故选D.
【点睛】
本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、x≠﹣1
【解析】
分式有意义的条件是分母不等于零.
【详解】
∵式子在实数范围内有意义,
∴x+1≠0,解得:x≠-1.
故答案是:x≠-1.
【点睛】
考查的是分式有意义的条件,掌握分式有意义的条件是解题的关键.
12、x1=0,x2=1
【解析】
先移项,然后利用因式分解法求解.
【详解】
x2=1x
x2-1x=0,
x(x-1)=0,
x=0或x-1=0,
∴x1=0,x2=1.
故答案为:x1=0,x2=1
【点睛】
本题考查了解一元二次方程-因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解
13、
【解析】
∵等腰直角△ABC绕点A逆时针旋转15°后得到△AB′C′,
∵∠CAC′=15°,
∴∠C′AB=∠CAB﹣∠CAC′=45°﹣15°=30°,AC′=AC=5,
∴阴影部分的面积=×5×tan30°×5=.
14、2
【解析】
试题分析:∵反比例函数(x>1)及(x>1)的图象均在第一象限内,
∴>1,>1.
∵AP⊥x轴,∴S△OAP=,S△OBP=,
∴S△OAB=S△OAP﹣S△OBP==2,
解得:=2.
故答案为2.
15、1.
【解析】
根据方程的系数结合根的判别式即可得出△=m2﹣4m=0,将其代入2m2﹣8m+1中即可得出结论.
【详解】
∵关于x的方程x2﹣mx+m=0有两个相等实数根,
∴△=(﹣m)2﹣4m=m2﹣4m=0,
∴2m2﹣8m+1=2(m2﹣4m)+1=1.
故答案为1.
【点睛】
本题考查了根的判别式,熟练掌握“当△=0时,方程有两个相等的两个实数根”是解题的关键.
16、
【解析】
试题解析:根据图象和数据可知,当y>0即图象在x轴的上方,x>1.
故答案为x>1.
三、解答题(共8题,共72分)
17、(1)m=-6,点D的坐标为(-2,3);(2);(3)当或时,一次函数的值大于反比例函数的值.
【解析】
(1)将点C的坐标(6,-1)代入即可求出m,再把D(n,3)代入反比例函数解析式求出n即可.
(2)根据C(6,-1)、D(-2,3)得出直线CD的解析式,再求出直线CD与x轴和y轴的交点即可,得出OA、OB的长,再根据锐角三角函数的定义即可求得;
(3)根据函数的图象和交点坐标即可求得.
【详解】
⑴把C(6,-1)代入,得.
则反比例函数的解析式为,
把代入,得,
∴点D的坐标为(-2,3).
⑵将C(6,-1)、D(-2,3)代入,得
,解得.
∴一次函数的解析式为,
∴点B的坐标为(0,2),点A的坐标为(4,0).
∴,
在在中,
∴.
⑶根据函数图象可知,当或时,一次函数的值大于反比例函数的值
【点睛】
此题考查了反比例函数与一次函数的交点问题.其知识点有解直角三角形,待定系数法求解析式,此题难度适中,注意掌握数形结合思想与方程思想的应用.
18、(1)不可能;(2).
【解析】
(1)利用确定事件和随机事件的定义进行判断;
(2)画树状图展示所有12种等可能的结果数,再找出其中某顾客该天早餐刚好得到菜包和油条的结果数,然后根据概率公式计算.
【详解】
(1)某顾客在该天早餐得到两个鸡蛋”是不可能事件;
故答案为不可能;
(2)画树状图:
共有12种等可能的结果数,其中某顾客该天早餐刚好得到菜包和油条的结果数为2,
所以某顾客该天早餐刚好得到菜包和油条的概率=.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
19、(1)20;(2)作图见试题解析;(3).
【解析】
(1)由A类的学生数以及所占的百分比即可求得答案;
(2)先求出C类的女生数、D类的男生数,继而可补全条形统计图;
(3)首先根据题意列出表格,再利用表格求得所有等可能的结果与恰好选中一名男生和一名女生的情况,继而求得答案.
【详解】
(1)根据题意得:王老师一共调查学生:(2+1)÷15%=20(名);
故答案为20;
(2)∵C类女生:20×25%﹣2=3(名);
D类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);
如图:
(3)列表如下:A类中的两名男生分别记为A1和A2,
| 男A1 | 男A2 | 女A |
男D | 男A1男D | 男A2男D | 女A男D |
女D | 男A1女D | 男A2女D | 女A女D |
共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一位男生和一位女生的概率为:.
20、DE的长度为6+1.
【解析】
根据相似三角形的判定与性质解答即可.
【详解】
解:过E作EF⊥BC,
∵∠CDE=120°,
∴∠EDF=60°,
设EF为x,DF=x,
∵∠B=∠EFC=90°,
∵∠ACB=∠ECD,
∴△ABC∽△EFC,
∴,
即,
解得:x=9+2,
∴DE==6+1,
答:DE的长度为6+1.
【点睛】
本题考查相似三角形性质的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.
21、(1)见解析(2)见解析
【解析】
试题分析:(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;
(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,可得答案.
试题分析:(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD.
∵BE∥DF,BE=DF,
∴四边形BFDE是平行四边形.
∵DE⊥AB,
∴∠DEB=90°,
∴四边形BFDE是矩形;
(2)∵四边形ABCD是平行四边形,
∴AB∥DC,
∴∠DFA=∠FAB.
在Rt△BCF中,由勾股定理,得
BC===5,
∴AD=BC=DF=5,
∴∠DAF=∠DFA,
∴∠DAF=∠FAB,
即AF平分∠DAB.
【点睛】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DFA是解题关键.
22、(1)服装项目的权数是10%,普通话项目对应扇形的圆心角是72°;(2)众数是85,中位数是82.5;(3)选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛,理由见解析.
【解析】
(1)根据扇形图用1减去其它项目的权重可求得服装项目的权重,用360度乘以普通话项目的权重即可求得普通话项目对应扇形的圆心角大小;
(2)根据统计表中的数据可以求得李明在选拔赛中四个项目所得分数的众数和中位数;
(3)根据统计图和统计表中的数据可以分别计算出李明和张华的成绩,然后比较大小,即可解答本题.
【详解】
(1)服装项目的权数是:1﹣20%﹣30%﹣40%=10%,
普通话项目对应扇形的圆心角是:360°×20%=72°;
(2)明在选拔赛中四个项目所得分数的众数是85,中位数是:(80+85)÷2=82.5;
(3)李明得分为:85×10%+70×20%+80×30%+85×40%=80.5,
张华得分为:90×10%+75×20%+75×30%+80×40%=78.5,
∵80.5>78.5,
∴李明的演讲成绩好,
故选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛.
【点睛】
本题考查了扇形统计图、中位数、众数、加权平均数,明确题意,结合统计表和统计图找出所求问题需要的条件,运用数形结合的思想进行解答是解题的关键.
23、-1
【解析】
先化简二次根式、计算负整数指数幂、分母有理化、去绝对值符号,再合并同类二次根式即可得.
【详解】
原式=1﹣4﹣+1﹣=﹣1.
【点睛】
本题考查了实数的混合运算,熟练掌握二次根式的性质、分母有理化、负整数指数幂的意义、绝对值的意义是解答本题的关键.
24、OD=6.
【解析】
(1)根据有两个角相等的三角形相似,直接列出比例式,求出OD的长,即可解决问题.
【详解】
在△AOB与△COD中,
,
∴△AOB~△COD,
∴,
∴,
∴OD=6.
【点睛】
该题主要考查了相似三角形的判定及其性质的应用问题;解题的关键是准确找出图形中的对应元素,正确列出比例式;对分析问题解决问题的能力提出了一定的要求.
2022年山西省阳泉市郊区市级名校中考四模数学试题含解析: 这是一份2022年山西省阳泉市郊区市级名校中考四模数学试题含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,计算等内容,欢迎下载使用。
2022年福建三明市市级名校中考数学考前最后一卷含解析: 这是一份2022年福建三明市市级名校中考数学考前最后一卷含解析,共19页。试卷主要包含了答题时请按要求用笔,下列运算结果正确的是,下列实数中,为无理数的是等内容,欢迎下载使用。
2022届安徽合肥市市级名校中考数学考前最后一卷含解析: 这是一份2022届安徽合肥市市级名校中考数学考前最后一卷含解析,共19页。试卷主要包含了关于x的方程等内容,欢迎下载使用。